Dark Matter Searches with the CMS Experiment

Guillelmo Gómez-Ceballos (on behalf of the CMS Collaboration)

Massachusetts Institute of Technology

June 2018 Guadeloupe

●●● Ⅲ → ■● → Ⅲ → ■● → ●●●

Underlying assumption: DM has also non-gravitational interactions with the Standard Model particles (SM)

- *Direct detection*: scattering of DM particles on nuclei
- Indirect detection: annihilation products out of WIMP collisions
- Collider search: produce WIMPs through collision of SM particles

DM Production at Colliders

- This talk will focus on "direct" production, not by-product of other searches
- A large number of SUSY searches can be re-interpreted as a DM search

idea:

- restrict to relevant aspects aiming at maximal experimental coverage
- ingredients beyond SM:
 - mediator
 - DM particle
- free parameters:
 - masses, spins, coupling structure and strength
- recasting results in full models:
 - caveats may apply
 - parameter scans manageable

9 6000000000

Missing Transverse Energy $(p_{\rm T}^{\rm miss})$: The Name of the Game

- Most analyses rely on large p_T^{miss} balancing against "visible" (X) objects (jets, boosted-jets, b-jets, photons, charged leptons)
 - $\Delta \phi_{p_{\mathrm{T}}^{\mathrm{miss}}, X} \sim \pi$ $p_{\mathrm{T}}^{\mathrm{miss}} \sim p_{\mathrm{T}}^{X}$
- Understanding $p_{\rm T}^{\rm miss}$ is a critical component

How Are Interesting Events Selected?: Triggers

- Most multijet analyses rely on p_T^{miss} triggers
- Triggers designed in similar way as offline with more basic/faster algorithms
- Efficiency turn-on reaches ${\sim}100\%$ at $p_{\rm T}^{\rm miss} {\sim} 250~{\rm GeV}$
- Reconstruction differences in online/offline observables lead to broad turn-on curves
- Online thresholds are dictated by the rate of the trigger

(ロ) (同) (E) (E) (E)

Taking (Good) Data at $\sqrt{s} = 13$ TeV

- More than 20fb⁻¹ of collected data in 2018
- ► More than 100fb⁻¹ of collected data at √s = 13 TeV

Larger datasets, but with larger pileup

Analyses

Goal is to search for DM in all possible/feasible final states $p_T^{miss} + X$

▶ mono-X

- Mono-jet: one or more jets
- Mono-V(qq): a single boosted jet compatible with an hadronic W/Z boson decay
- Mono-photon: a single energetic and isolated photon
- ▶ Mono- $Z(\ell \ell)$: a single $Z \to \ell \ell$ boson decay
- Mono-top: a single boosted top
- \blacktriangleright VBF: a pair of jets compatible with Vector Boson Fusion production, mostly on $H \rightarrow invisible$ models
- Mono-H: a SM Higgs boson decaying to $b\bar{b}$, $\gamma\gamma$, $\tau\tau$, WW...
- ► DM+HF
 - $\blacktriangleright~t\bar{t}:$ a top quark pair in all possible decaying final states
 - bb: a b quark pair
- Di-jet
 - $\chi \rightarrow jj$ (bump hunting or angular analyses)
- Multijet + p_{T}^{miss} SUSY reinterpretations

Background Estimation (I)

- Can not rely on purely simulated driven methods to their estimation
- Main estimation method uses events with identified leptons, and extrapolate to the zero identified leptons sample

• $Z(\rightarrow \ell \ell) \Rightarrow Z(\rightarrow \nu \nu) \text{ or } W(\rightarrow \ell \nu) \Rightarrow W(\rightarrow X \nu)$

► Use of links among Z+jets, W+jets, and γ+jets to further constrain backgrounds

 \blacktriangleright critical input from theory community to rely on ${\rm Z/W}/\gamma$ ratios

- Simultaneous fit of control and signal regions to extract results
- Same technique is applied in mono-photon (mono-Z) to estimate Zγ/Wγ (ZZ/WZ) backgrounds

Background Estimation (II)

Comparison between data and simulation for the Z(ℓℓ)/γ+jets, Z(ℓℓ)/W(ℓν), and W(ℓν)/γ+jets ratios as a function of the hadronic recoil in the mono-jet analysis

Emulated p_T^{miss} distribution in data and simulation for the WZ(→ 3ℓν) and ZZ → 4ℓ control regions, and the ratio between both distributions in the mono-Z analysis

Mono-jet/Mono-V(qq) Analysis

- Either a hard ISR jet or a boosted-jet compatible with an hadronic W/Z boson decay recoiling against DM
 - $p_{\mathrm{T}}^{\mathrm{miss}} > 250 \ \mathrm{GeV}, \ p_{\mathrm{T}}^{j} > 100 \ \mathrm{GeV}$
 - $\Delta \phi_{jet_{=1...4}, p_{\mathrm{T}}^{\mathrm{miss}}} > 0.5$
 - vetoing b-jets, charged leptons, and isolated photons in the signal region
- Preference to boosted category, both analyses non-overlapping by construction

► Major backgrounds are Z+jets (60%) and W+jets (30%) Mono-jet Mono-V(qq)

Mono-jet/Mono-V(qq) Analysis: 95% CL Limits

Limits for different mediator types and for different coupling strengths

12

Mono-jet/Mono-V(qq) Analysis: 90% CL Limits

Exclusion limits at 90% CL in the m_{DM} vs. SI/SD plane for vector (left) and axial-vector (right) mediator models

Mono-photon Analysis

- Hard ISR photon recoiling against DM
 - $p_{\mathrm{T}}^{\mathrm{miss}} > 170 \ \mathrm{GeV}, \ p_{\mathrm{T}}^{j} > 175 \ \mathrm{GeV}$
 - $\Delta \phi_{jet_{=1...4}, p_T^{miss}} > 0.5$
 - vetoing charged leptons in the signal region
- ▶ Major backgrounds are Z+jets (55%) and W+jets (25%)
- Understanding (subdominant) instrumental backgrounds is a very important point

Mono-photon Analysis: Limits

95% CL cross section upper limits to theoretical cross section for DM simplified models

90% CL exclusion limits on the χ -nucleon spin-dependent scattering cross sections

15

Mono- $Z(\rightarrow \ell \ell)$ Analysis

- \blacktriangleright DM recoiling against a $Z \rightarrow \rightarrow \ell \ell$ boson decay
 - The easiest channel to trigger due to the presence of leptons in the final state
 - $p_{\rm T}^{\rm miss} > 100 \,\, {
 m GeV}, \, p_{\rm T}^{\ell\ell} > 60 \,\, {
 m GeV}$
 - $p_{\mathrm{T}}^{\mathrm{miss}}$ and $p_{\mathrm{T}}^{\ell\ell}$ consistent with each other
 - vetoing b-jets and additional charged leptons in the signal region
- ▶ Major backgrounds are ZZ (60%) and WZ (25%)
- ZZ, WZ, non-resonant, and Z+jets backgrounds estimated from data

Mono-Top Analysis

- DM recoiling against a boosted hadronically decaying top quark
 - $p_{\mathrm{T}}^{\mathrm{miss}} > 250 \ \mathrm{GeV}, \ p_{\mathrm{T}}^{j} > 250 \ \mathrm{GeV}$
 - CA15 b-tagged jet with a mass compatible with a top quark decay
 - BDT to separate top and gluon/jets to split events in categories
 - using $p_{\rm T}^{\rm miss}$ as final discriminant variable
- \blacktriangleright Z+jets, W+jets, and $\mathrm{t}\bar{\mathrm{t}}$ similarly important backgrounds
- No excess of events observed, 95% CL limits on a large variety of models considered

Putting All Together (I)

- Dijet searches (discussed by Tommaso) dominate under some assumptions
- Results updated rapidly due to the increase in the integrated luminosity

Putting All Together (II)

- Heavy flavor searches (also discussed by Tommaso) allow for excluding scalar mediators
- Good complementarity between LHC and direct detection experiments

Invisible Higgs Decays

- The most extensive set of rare decays searches by far
- ▶ It exists in the SM, but extremely rare: $BR(H \rightarrow ZZ \rightarrow 4\nu) \sim 0.1\%$
- Observation of a large rate would be a sign of BSM:
 - LSPs in SUSY (neutralinos, gravitinos)
 - Graviscalars (large extra-dimensions)
 - ► Dark Matter (DM) → limits competitive with other DM searches
- Several production modes can be studied:
 - ▶ qqH (VBF): two forward/backward jets with high $\Delta \eta_{jj}$ & m_{jj}
 - ▶ $Z(\ell \ell/bb)H$: two leptons/two b-jets compatible with a Z boson
 - $Z/W(q\bar{q'})H$: two jets compatible with a Z/W boson
 - ▶ $gg \rightarrow H + jet$: one high p_T jet
 - ▶ ttH: two top-quarks

DM searches can directly be re-used for these studies

VBF Searches

- Two forward/backward jets with high $\Delta \eta_{jj}$ & m_{jj}
- Most sensitive channel at this point
- ▶ Fitting for first time a distribution (*m_{jj}*) as a final discriminant variable, instead of a simple cut-and-count analysis

Mono- $Z(\rightarrow \ell \ell)$ for Invisible Higgs Searches

- To further squeeze the sensitivity a BDT analysis is performed for this search
- ▶ Observed (expected) 95% CL limits for $BR(H \rightarrow invisible)$ at $m_H = 125$ GeV assuming SM rates:
 - ▶ BDT approach: 0.40 (0.42)
 - ▶ *p*_T^{miss} approach: 0.45 (0.44)

Invisible Higgs Decays: Combination

- A large set of analyses coming up
- More complex techniques exploited by having a single fit combining signal and background regions
- For $m_{\rm H} = 125~{
 m GeV}$ will profit from a larger dataset

Mono-H $\rightarrow \gamma \gamma$ Analysis

• $H \rightarrow \gamma \gamma$ events recoiling against p_T^{miss}

Variable	Low- p_T^{miss} category	High- p_{T}^{miss} category
$p_{\rm T}^{\rm miss}$	>50 GeV, <130 GeV	>130 GeV
$p_{T1}/m_{\gamma\gamma}$	>0.45	>0.5
$p_{T2}/m_{\gamma\gamma}$	>0.25	>0.25
$p_{\mathrm{T}\gamma\gamma}$	$>75\mathrm{GeV}$	>90 GeV

- ▶ Selecting $H \rightarrow \tau \tau$ event candidates recoiling against p_T^{miss}
- Using $\mu \tau_h$, $e \tau_h$, and $\tau_h \tau_h$ categories
- Making use of transverse mass using p_T^{miss} and visible objects as a final discriminant variable

Mono-H $\rightarrow \gamma \gamma / \tau \tau$ Combination

95% CL upper limits on Z'-2HDM DM and on baryonic Z' production cross sections

90% CL exclusion limits on the DM-nucleon SI scattering cross section as a function of m_{DM}

3. 3

26 Additional Mono-H analyses coming up, stay tuned...

SUSY Re-interpretation Example

- Search for top squarks and DM particles in opposite-charge dilepton final states
- Select events with two electrons or muons, b-jets, and large p_T^{miss}
- Signal and backgrounds separated using p_T^{miss} and transverse mass variables

New Directions & Prospects

- Entering era of "precision" searches in multi-jet analyses:
 - Vector & Axial-vector models: tails of the distributions
 - more statistically limited
 - extended binning ⇒ theory uncertainties will be getting important (again)
 - ► Scalar & Pseudo-scalar models: bulk of the distributions
 - experimental uncertainties in the lepton / photon identification are very important
 - trigger thresholds need to be kept under control for maximum sensitivity
- $\blacktriangleright\ H \rightarrow \mbox{invisible}$ searches will improve again and again with larger datasets
 - $\blacktriangleright\ Z \to \ell\ell$ and VBF channels not systematic limited yet
- Long-lived + DM decays
 - very reach phenomenology, not much explored experimentally
 - need to make sure this possible signal events are triggered!

HL-LHC DM Projections with Mono-Jet

Current 95% CL limits:

- ▶ on axial-vector mediators, $m_{med} \sim 2000 \; {
 m GeV}$
- \blacktriangleright on pseudoscalar mediators, $m_{med} \sim 450~{\rm GeV}$

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

Systematic uncertainties matter a lot

29

HL-LHC Projections for Invisible Higgs Searches

	ECFA2016 (S1)	ECFA2016 (S2+)	ECFA2016 (S2)
300 fb ⁻¹	0.210	0.092	0.084
$3000 fb^{-1}$	0.200	0.056	0.028

- Current 95% limits:
 - ► HIG-16-016 (run-I + 2015): 0.23
 - ▶ HIG-17-023 (2016): 0.18
- An unofficial naive combination gives ~0.15
- Better than existing projections with much less data!

Long-Lived Searches (Examples)

- 3

Manifold DM program at CMS

 missing transverse momentum signatures and visible mediator searches

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- complementarity to direct and indirect searches
- LHC Run-II going full speed
 - factor 3 more collisions to analyze
- Several developments to come
 - more realism/complexity in scalar sector
 - include scenarios with long-lived particles

References

- Mono-jet: EXO-16-048 (arXiv:1712.02345)
- Mono-V(qq): EXO-16-048 (arXiv:1712.02345)
- Mono-photon: EXO-16-039 (arXiv:1706.03794)
- ▶ Mono-Z(ℓℓ): EXO-16-052 (arXiv:1711.00431)
- Mono-top: EXO-16-051 (arXiv:1801.08427)
- $H \rightarrow invisible$: HIG-17-023 (paper submission in progress)
- Mono-H: EXO-16-055 (arXiv:1806.04771)
- SUSY search: SUS-17-001 (arXiv: 1711.00752)
- Long-lived analyses: EXO-16-044 (arXiv:1804.07321) & EXO-16-004 (arXiv:1801.00359)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Projections: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP

You can find all EXO and HIG results on:

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html and the set of t

http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/index.html and the state of the state o