Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimental constraints

Future experiments

Conclusion

Outline

Introduction

Dark matter candidates

CP-strong problem

Effective models

Experimental constraints

Future experiments

Conclusion

Exploring The Dark Side of the universe
Guadeloupe 25-29 June 2018

Dark matter candidates

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Conclusion

Search for ultra low-mass dark matter

Scope of this talk

Axions

Axions-like-particles (ALPs) Hidden (or Dark) photons

Ultra-low mass

dark matter

light neutral (pseudo) scalar boson weakly couple

Remarks

- CMB exclude masses $< 10^{-24}$ eV
- Dwarf galaxy structure formation →

$$rac{\lambda_{
m dB}}{2~{
m kpc}} \sim \left(rac{10^{-22}~{
m eV}}{
m m_a}
ight) \left(rac{10~{
m km/s}}{
m v}
ight)$$

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Conclusion

Remarks:

dark matter candidates → **light dark matter** must be **bosons**

$$N_{particles} \sim \frac{10^{12} M_{\odot}}{m}$$

$$N_{cells} \sim \frac{\frac{4\pi}{3} p_{max}^3 \frac{4\pi}{3} R^3}{(2\pi\hbar)^3}$$

$$\frac{N_{particles}}{N_{cells}} \sim \left(\frac{100 \frac{\text{eV}}{\text{c}^2}}{m}\right)^4$$

Search for ultra low-mass dark matter

Dark matter candidates

Problem: missing matter of the universe

Dark matter predictions from astrophysics and cosmology

- CMB
- Velocity dispersion in galaxy cluster
- Bullet cluster
- Galaxy rotation curve
- Galaxy without dark matter

Effective

Main dark matter candidates

- Standard model
- WIMPS
- LSP susy $\tilde{\chi}^0$
- Axions
 - Axions-like-particles (ALPs)
 - Hidden (or Dark) photons

constraints

LHC: ATLAS, CMS, LHCB results

 $1/B_s \rightarrow \mu^+\mu^-$ purely SM

 $2/\ m_{top} \ll m_{\tilde{t}}$

3/ no other susy clues

4/ neither exotics process

Future experiments

Dark matter candidates

Dark matter candidates

- Standard model
- WIMPS
- LSP susy $\tilde{\chi}^0$
- Axions
 - Axions-like-particles (ALPs)

Problem: missing matter of the universe

Hidden (or Dark) photons

no?

no clues

no clues

no clues neither

But large unexplored mass domain

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Conclusion

CP-strong problem:

```
EW interaction : 6 quarks → CKM matrix →
3 mixing angles
1 CP-violating complex phase : θ<sub>weak</sub> = Arg(det(CKM))
```

QCD vacuum structure & QCD gauge invariance \rightarrow 1 CP_strong violating term θ_{strong}

SM Lagrangian:
$$ightarrow \mathcal{L}_{\rm SM} = \mathcal{L}_{\rm EW} + \mathcal{L}_{\rm QCD} + \frac{\theta_{total}}{8\pi} \frac{\alpha_s}{8\pi} G \tilde{G}$$
 with $\theta_{total} = \theta_{\rm strong} + \theta_{\rm weak}$

T-violating quantity

Remarks:

- this term reflect the topological properties of the QCD vacua
- strong CP violation is predicted
- induces a large neutron Electric Dipole Moment (←T-violation)
- non-zero EDM necessarily violates CP
- for the neutron $d_n \rightarrow \theta_{total}$ e $m_q/m_n^2 \rightarrow \theta_{total}$ 10⁻¹⁶ e cm

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem:

The experimental limit on $d_n < 10^{-26}$ e cm $\rightarrow \theta_{total} < 10^{-10}$ e cm

CP-strong problem

issues:

- why this free parameter θ_{total} is so small?
- $\theta_{\text{weak}} \sim 10^{-4}$ & $\theta_{\text{total}} = \theta_{\text{strong}} + \theta_{\text{weak}} \rightarrow \text{cancellation}$?
- unexpected fine tuning

Effective models

solutions:

- θ_{total} is small! (Anthropic solution)
- there is new global spontaneously chiral-symmetry breaking
- other ...

Experimenta constraints

Future experiments

CP-strong problem → solution

CP-strong problem

New global spontaneously chiral-symmetry breaking: U(1)_{pq}

- R.D.Peccei & H.Quinn proposed the first prototype chiral solution
- many other similar mechanism exist today, that I did not explore

New SSB → new Nambu-Goldstone boson field

- S.Weinberg & F.Wilczek proposed a new field: axion → a(x)
- U(1)_{pg} degree of freedom θ_{total} is replaced by this field a(x)
- scale of the U(1)_{ng} spontaneously symmetry breaking: f_a

 $T \sim \Lambda_{OCD} \rightarrow$ explicit chiral-symmetry breaking

- axion become a pseudo-Nambu-Goldstone boson
- a(x) dynamically relax to $0 \rightarrow no$ more apparent CP-violation

 $\mathcal{L}_{\theta} = \frac{\theta_{total}}{8\pi} \frac{\alpha_s}{8\pi} G\tilde{G} \to \mathcal{L}_{\theta} = \frac{a(x)}{f_s} \frac{\alpha_s}{8\pi} G\tilde{G}$

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem → solution

CP-strong problem

Remarks:

- non-pertubative QCD effect at $T \sim \Lambda_{\text{QCD}} \rightarrow \text{ESB}$
- axion at weak scale: f_a ~246GeV → 100keV resonance
 - \rightarrow ruled out by beam dump experiment K⁺ \rightarrow π ⁺ a, π ⁺ \rightarrow e⁺ ν a ...

Effective models

• but the U(1)_{pq} symmetry breaking could be higher: $f_a \gg 246$ GeV

Experimenta constraints

Future experiments

Search for ultra low-mass dark matter

Dark matter candidates

$$T = f_a \gg \Lambda_{QCD}$$

 $T \sim \Lambda_{QCD}$

U(1)_{pq} spontaneous symmetry breaking

U(1)_{pg} explicit symmetry breaking

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Conclusion

Two scenarios: PQ symmetry is broken during

pre inflation: Misalignment

→ light constraints on axion mass

post inflation: decay of topological defects

→ hard constraints on axion mass

Effective models

Effective models

Kim-Shifman-Vainshtein-Zakharov: KSVZ (1,11,111) a complex SM singlet scalar a(x) and color triplet exotic (heavy) quark Q

Dine-Fischler-Srednicki-Zhitnitsky: **DFSZ** (I,II) a complex SM singlet scalar a(x) and two Higgs doublets

Astrophysical constraints $f_a > \sim 10^9 \text{GeV}$

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Axion or Axion-Like-Particles

- Observations via electromagnetic interaction: Primakoff effect
- Adding to the QCD Lagrangian a new effective term

$$\mathcal{L}_{a}^{eff} = -\frac{1}{2}\partial_{\mu}\partial^{\mu}a + \frac{1}{2}m^{2}a^{2} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}g_{a\gamma\gamma}F_{\mu\nu}\tilde{F}^{\mu\nu}a$$
$$g_{a\gamma\gamma} = \frac{\alpha_{s}}{2\pi}\frac{C_{a\gamma}}{f_{a}}$$

Remarks:

axion

axion-like-particle

$$F_{\mu\nu}\tilde{F}^{\mu\nu} \propto \vec{E}.\vec{B} \longrightarrow m_a \propto \frac{1}{f_a}$$

Search for ultra low-mass dark matter

Dark matter candidates

Search strategies and current limits

- Astrophysical bounds (see slide 16)
 - Star evolution
- Laboratory
 - Haloscopes
 resonance condition
 high sensitivity → small bandwidth exploration
 - Helioscopes
 big volume and High B-field
 less sensitive → large bandwidth exploration
 - Dish antenna
 - Light Shining though Walls

CP-strong problem

Effective models

Experimental constraints

Future experiments

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimental constraints

Future experiments

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimental constraints

Future experiments

Conclusion

Helioscope CAST

Search for ultra low-mass dark matter

Axions & ALPs current limits

Dark matter candidates

CP-strong problem

Effective models

Experimental constraints

Future experiments

Dark matter candidates

CP-strong problem

Effective models

Experimental constraints

Future experiments

Conclusion

Search for ultra low-mass dark matter

Hidden photon current limits

- Observations without electromagnetic interaction
- Adding to the QCD Lagrangian a new effective term

$$\mathcal{L}_{HP}^{eff} = -\frac{1}{2}\tilde{\chi}_{\mu\nu}\tilde{\chi}^{\mu\nu} + \frac{1}{2}m^2\tilde{\chi}_{\mu}\tilde{\chi}^{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}\chi F_{\mu\nu}\tilde{\chi}^{\mu\nu}$$

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Future experiments

MadMax
IAXO
ALP-II
Orpheus
Quax
Cultask
CASPER

Shuket

. . . .

Search for ultra low-mass dark matter

Mirror

Dark matter candidates

Future experiments: MadMax

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Conclusion

Horn antenna

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Search for ultra low-mass dark matter

Dark matter candidates

CP-strong problem

Effective models

Experimenta constraints

Future experiments

Conclusion

5.852

5.853

5.8535

Axion mass [eV]

5.8525

5.854

5.8545

5.855 ×10⁻⁵

Search for ultra low-mass dark matter

Dark matter candidates

Future experiments: Orpheus

CP-strong

- Open Fabry-Perot resonator and a series of current-carrying wire planes
- Searches for axion like particles in the 68.2-76.5µeV mass range
- Potentially searches in the mass range 40-400µeV in the future
- g_{ayy}~1e-14

Effective models

Experimenta constraints

Future experiments

Dark matter

Future experiments

Future experiments: Shuket (SearcH for extra-U(1) darK matter with a sphErical Telescope)

- dish antenna
- no B field → hidden photon

Search for ultra low-mass dark matter

Dark matter candidates

Conclusion

CP-strong problem

problem

Effective models

Experimenta constraints

Future experiments

- a very large and technically interesting experimental area is now accessible to constraint axion models.
- many new experiments are starting on this new unexplored mass domain
- the PQ post-inflation scenario with convergence of two clues: dark matter candidate solution of SM CP-strong problem leads to a limited mass region which should be soon covered

Backup

Search for ultra low-mass dark matter Neutron Electric Dipole Moment (EDM)

Search for ultra low-mass dark matter Neutron Electric Dipole Moment (EDM)

- Measure precession frequency caused by electric field
- Challenge: a tiny magnetic field causes a much faster precession!
- Absolute measurement of precession frequency impossible → measure difference of precession with E-field parallel or anti-parallel to a given B-field
- Excellent knowledge of B-field stability still required!
- Correct for B-field variations over time by measuring precession of Mercury (Hg) atoms in the same volume

$$h\nu = 2(\mu B \pm d_n E)$$
$$\Delta(h\nu) = 4d_n E$$

Search for ultra low-mass dark matter

Neutron Electric Dipole Moment (EDM)

ILL (Grenoble)

Ultra Cold Neutron

- K ~ 100 neV
- T ~ 2 mK
- speed ~ 5 m/s
- λ ~ 1000 Å
- Gravity not negligible!
 → m.g.h ~ 100 neV / m

Standard model results from LHC experiments:

- very good agreements on large numbers of measurements
- no dark matter candidates (cosmology → neutrinos are not good candidates)

Search for ultra low-mass dark matter

$$N_{particles} \simeq \frac{10^{12} M_{\odot}}{m} \simeq 10^{69} \frac{1 \ Gev/c^2}{m}$$

$$N_{cells} \simeq \frac{(4\pi/3)p_{max}^3(4\pi/3)R^3}{(2\pi\hbar)^3} \simeq 10^{98} \left(\frac{m}{1 \text{ GeV/}c^2}\right)^3$$

$$\frac{N_{particles}}{N_{cells}} \simeq \left(\frac{100 \ eV/c^2}{m}\right)^4$$

Search for ultra low-mass dark matter

U(1) problem

QCD Lagrangian, with massless quarks, is invariant under chiral symmetry

$$q_{rl} \to \frac{1}{2} (1 \pm \gamma^5) q_{rl}$$

$$\mathcal{L}_{QCD}^{m_q \to 0} = \overline{q_r} i \gamma^{\mu} D_{\mu} q_r + \overline{q_l} i \gamma^{\mu} D_{\mu} q_l - \frac{1}{4} G_{\mu\nu}^{(a)} G^{\mu\nu(a)}$$

But not in agreement with the observation (no m $_{\text{Goldston}} \sim \sqrt{3} \ \text{m}_{\pi}!)$ \rightarrow QCD vacuum structure is more complex

$$|\Theta> \propto \sum_{n=0}^{\infty} e^{-i\theta n} |n>$$

QCD vacuum is a sum of infinite but countable degenerate vacuum, topologically disconnected

but can be connected by tunnel effect

Search for ultra low-mass dark matter

To restore the approximate chiral symmetry (Isospin \rightarrow SU(N)_F results) add full derivative (EoM saved) term to the Lagrangian

$$\mathcal{L}_{\scriptscriptstyle QCD} = \mathcal{L}_{\scriptscriptstyle QCD}^{m_q o 0} + \mathcal{L}_{ heta}$$

$$\mathcal{L}_{\theta} = -\frac{\theta}{8\pi} \frac{\alpha_s}{8\pi} G_{\mu\nu}^{\ (a)} \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^{\alpha\beta(a)} \qquad \leftarrow \text{T-violating quantity}$$

$$= -\frac{\theta}{8\pi} \frac{\alpha_s}{8\pi} G_{\mu\nu}^{\ (a)} \tilde{G}^{\alpha\beta(a)}$$

Search for ultra low-mass dark matter

$$\mathcal{L}_{\theta} = -\frac{\theta}{8\pi} G_{\mu\nu}^{(a)} \tilde{G}^{\alpha\beta(a)}$$

Consequences of this new term:

- ullet conservation of the axial current j_5^μ is restored
- violates T (and P) → CP violation in the strong sector
- add a new free parameter θ , to the SM

Remarks:

one rewriting the QCD Lagrangian with the CP violation from the strong and weak interactions, by a simple transformation $q \to e^{-i\gamma^5 \frac{\theta_q}{2}} q$

$$\mathcal{L}_{QCD} = \overline{q}(i\gamma^{\mu}D_{\mu} - m_{\mathbf{q}}e^{i\theta_{\mathbf{q}}})q - \frac{1}{4}G_{\mu\nu}^{(a)}G^{\mu\nu(a)} - \theta \frac{\alpha_{s}}{8\pi}G_{\mu\nu}^{(a)}\tilde{G}^{\alpha\beta(a)}$$
$$= \overline{q}(i\gamma^{\mu}D_{\mu} - m_{\mathbf{q}})q - \frac{1}{4}GG - \theta_{total}\frac{\alpha_{s}}{8\pi}G\tilde{G}$$

