ATLAS Search for Dark Matter Produced in Association with a Hadronically Decaying Vector Boson

Wei Wang^{1,2} on behalf of the ATLAS collaboration

> ¹Nanjing University (CN) ²Academia Sinica (TW)

2nd World Summit on Exploring the Dark Side of the Universe

Guadeloupe, 25 Jun to 29 Jun, 2018

Nanjing University Academia Sinica

Introduction

- Weakly interacting massive particles (WIMPs)
 - can be produced in LHC

See talk from Mario Martinez: Overview of DM searches in ATLAS

- can be detected by the momentum imbalance of the recoiling SM particles
- * Search for dark matter in events with a large missing transverse momentum (MET) and a vector boson, decaying hardronically, in ATLAS detector at LHC
 - * DM production in associated with a W/Z boson (mono-V analysis)
 - * SM-like Higgs boson decaying into a pair of DM particles (H->invisible analysis)
 - DM production in associated with a potentially new vector boson Z' (mono-Z' analysis, first time!)
- Latest result performed with 36.1 fb⁻¹ of collision data at centre-of-mass energy of 13 TeV collected by ATLAS detector
 - * published on April 2018 <u>ATLAS-CONF-2018-005</u>

Signal models

- simplified vector-mediator model (mono-V), figure (a)
 - mass m_χ {1 GeV, 1 TeV}, m_{Z'} {10 GeV, 10 TeV}
 - * coupling g_{SM} = 0.25, g_{DM} = 1.0
- invisible Higgs boson decays (H->invisible), figure (b)
 - B_{H->invisible} = 1.0
 - all SM production modes considered
- dark-fermion model and dark-Higgs model (mono-Z'), figure (c) (d)

Scenario	Dark-fermion model	Dark-Higgs model	
	$m_{\chi_1} = 5 \text{ GeV}$	$m_{\chi} = 5 \text{ GeV}$	q (c)
Light dark sector	$m_{\chi_2} = m_{\chi_1} + m_{Z'} + 25 \text{ GeV}$	$m_{h_D} = \begin{cases} m_{Z'} & , \ m_{Z'} < 125 \text{ GeV} \end{cases}$	q
		$(125 \text{ GeV} , m_{Z'} > 125 \text{ GeV})$	
	$m_{\chi_1} = m_{Z'}/2$	$m_{\chi} = 5 \text{ GeV}$	g_{SM} g_{DM}
Heavy dark sector	$m_{\chi_2} = 2m_{Z'}$	$m_{h_{\pi}} = \begin{cases} 125 \text{ GeV} &, m_{Z'} < 125 \text{ GeV} \end{cases}$	▶ Z'
		$m_{Z'}$, $m_{Z'} > 125 \text{ GeV}$	<i>a</i> ⁄
		``````````````````````````````````````	q



3

### **Event selection**

- at least one large-R jet or two small-R jets
- * MET above 250 GeV (150 GeV)
- Lepton veto
- Vector boson mass window
- Events categorised into 0/1/2 b-jet region

Fraction of events

 $10^{-}$ 

 $10^{-2}$ 





## **Background estimation**

*

* The dominant background in signal region (SR) are Z(vv)+jets, W(lv)+jets and ttbar



### **Statistical analysis**

- * A profile likelihood fit to the data on the discriminate variable MET is performed to interpret the observation of the search
  - * signal strength  $\mu$  as the parameter of interest
  - * background normalisation and systematics uncertainties as nuisance parameters





### Result

- No significant excess over the SM prediction observed
- Set limit on signal strength μ at 95% CLs for each signal model and interpreted them into limit on:
  - DM and mediator mass for mono-V model
  - branching ratio of H->invisible decay
  - cross section for mono-Z' model





## Summary

- A search of dark matter has been performed in events with hadronically decaying vector boson and large MET in ATLAS detector
- Results are in agreement with SM and translated into exclusion limits on DM-pair production
- For simplified vector-mediator model
  - * mediator mass  $m_{z'}$  of up to 650 GeV are excluded for dark matter mass  $m_{\chi}$  of up to 250 GeV
- For invisible Higgs boson decays
  - * upper limit of 0.83 is set on branching ratio B_{H->invisible}
- For dark-fermion and dark-Higgs model
  - cross section exclusion for dark-fermion and dark-Higgs model are set in light and heavy dark sector scenario

Xsec. Exlusion. for 80 <mz'<500 gev<="" th=""><th>light dark sector scenario</th><th>heavy dark sector scenario</th></mz'<500>	light dark sector scenario	heavy dark sector scenario
dark-fermion	0.68 - 27 pb	0.066 - 9.8 pb
dark-Higgs	0.80 - 5.5 pb	0.064 - 2.4 pb



8

Thank you!

### Publications

### ATLAS Run1

- * 2013, mono-W/Z <u>arXiv:1309.4017</u>
- * 2015, H->invisible <u>arXiv:1504.04324</u>
- * ATLAS Run2
  - * 2016, mono-W/Z <u>arXiv:1608.02372</u>
  - * 2018, mono-W/Z, H->invisible and mono-Z' <u>ATLAS-CONF-2018-005</u>

### **Event Selection**

	Merged topology	Resolved topology							
General requirements									
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 250 { m ~GeV}$	> 150  GeV							
Jets, leptons	$\geq 1J, 0\ell$	$\geq 2j, 0\ell$							
$b ext{-jets}$	no $b$ -tagged track jets outside of $J$	$\leq 2 b$ -tagged small-R jets							
	$\Delta \phi(E_{\rm T}^{\rm miss}, J \text{ or } jj) > 120^{\rm o}$								
Multijet	$\min_{i \in \{1,2,3\}} \left[ \Delta \phi \right]$	$\left[E_{\mathrm{T}}^{\tilde{\mathrm{miss}}}, j_{i}\right] > 20^{\mathrm{o}}$							
suppression	$p_{\rm T}^{\rm miss} > 30 \text{ GeV or } \ge 2  b$ -jets								
	$\Delta\phi(\vec{E_{\rm T}^{\rm miss}}, p_{\rm T}^{\rm miss}) < 90^{\rm o}$								
Signal		$p_{\rm T}^{j_1} > 45 { m GeV}$							
properties		$\sum p_{\rm T}^{j_i} > 120$ (150) GeV for 2 ( $\geq 3$ ) jets							

#### Mono-W/Z signal regions

	0b	0b	1b	1b	2b	0b	1b	2b
	HP	$\mathbf{LP}$	HP	LP				
$\Delta R_{jj}$	-	-	-	-	-	< 1.4	< 1.4	< 1.25
$D_2^{(\beta=1)} p_{\rm T}^J$ -dep.	pass	fail	pass	fail	-	-	-	-
Mass requirement	$m_J$				$m_J$	$m_{jj}$		$m_{jj}$
(GeV)	W/Z tagger requirement				[75, 100]	[65,	[65, 100]	

#### Mono-Z' signal regions

	0b	0b	1b	1b	2b	0b	1b	2b		
	HP	LP	HP	LP						
$D_2^{(\beta=1)} < 1.2$	pass	fail	pass	fail	-	-	-	-		
	For $m$	$z_{Z'} < 10$	$00 \mathrm{GeV}$ :	:		For $m_{Z'} < 200$ GeV:				
	$\overline{\left[0.85n\right]}$	$n_{Z'},$	$[0.75m_{Z'},$			$[0.85m_{Z'},$	[0.75n]	$n_{Z'},$		
Mass requirement	$m_{Z'}$	+		$m_{Z'} +$	10]	$m_{Z'} + 10$	$m_{Z'} +$	10]		
	10	]				_		-		
(GeV)							I			
	For $m_{Z'} \ge 100$ GeV:					For $m_{Z'} \ge 2$	200 GeV:			
	no merged-topology					$[0.85m_{Z'},$	0.80n	$n_{Z'},$		
	selection applied					$m_{Z'} + 20$ ]	$m_{Z'} +$	20]		

### Yields - W/Z

	Merged topology									
Process	0b-HP	0b-LP	1 <i>b</i> -HP	1b-LP	2b					
Vector-mediator model,										
$m_{\chi} = 1 \text{ GeV}, m_{Z'} = 200 \text{ GeV}$	$814 \pm 48$	$759 \pm 45$	$96 \pm 18$	$99\pm16$	$49.5\pm4.3$					
$m_{\chi} = 1 \text{ GeV}, m_{Z'} = 600 \text{ GeV}$	$280.9\pm9.0$	$268.5\pm8.8$	$34.7\pm3.6$	$33.8\pm3.1$	$15.38\pm0.84$					
Invisible Higgs boson decays $(m)$	$a_H = 125 \text{ GeV}, \mathcal{B}$	$_{H \to \text{inv.}} = 100\%)$								
VH	$408.4\pm2.1$	$299.3\pm2.0$	$52.06\pm0.85$	$44.06\pm0.82$	$27.35\pm0.52$					
ggH	$184\pm19$	$837\pm35$	$11.7\pm3.8$	$111 \pm 30$	$12.3 \pm 4.2$					
VBF	$29.1\pm2.5$	$96.0\pm4.6$	$2.43\pm0.36$	$5.83 \pm 0.43$	$0.50\pm0.07$					
W+jets	$3170\pm140$	$10120\pm380$	$218\pm28$	$890\pm110$	$91 \pm 12$					
Z+jets	$4750\pm200$	$15590\pm590$	$475\pm52$	$1640\pm180$	$186 \pm 12$					
$tar{t}$	$775 \pm 48$	$937 \pm 60$	$629 \pm 27$	$702 \pm 34$	$50 \pm 11$					
Single top-quark	$159 \pm 12$	$197 \pm 13$	$89.7\pm6.7$	$125.5\pm8.7$	$16.1 \pm 1.7$					
Diboson	$770\pm110$	$960 \pm 140$	$88 \pm 14$	$115 \pm 18$	$54 \pm 10$					
$\operatorname{Multijet}$	$12 \pm 35$	$49 \pm 140$	$3.7\pm3.3$	$15 \pm 13$	$9.3 \pm 9.4$					
Total background	$9642\pm87$	$27850 \pm 150$	$1502 \pm 31$	$3490\pm52$	$407 \pm 15$					
Data	9627	27856	1502	3525	414					
Resolved topology										
Process		0b	]	b	2b					
Vector-mediator model,										
$m_{\chi} = 1 \text{ GeV}, m_{Z'} = 200 \text{ GeV}$	5050	$\pm 130$	342 :	$\pm 29$	$136.7\pm6.0$					
$m_{\chi}^{2} = 1 \text{ GeV}, m_{Z'} = 600 \text{ GeV}$	840	$\pm 16$	$59.9 \pm$	$27.86\pm0.94$						
λ										
Invisible Higgs boson decays $(m)$	$a_H = 125 \text{ GeV}, \mathcal{B}$	$_{H \to \text{inv.}} = 100\%)$								
VH	2129.6	$\pm 6.4$	171.7	$\pm 2.2$	$104.7\pm1.2$					
ggH	4111	$\pm$ 78	178 :	$\pm 16$	$37 \pm 11$					
VBF	514	$\pm 12$	19.8	$\pm 2.3$	$2.33\pm0.72$					
W+jets	117500	$\pm 4600$	5000 =	$\pm 680$	$598\pm98$					
Z+jets	135400	$\pm$ 5600	$7710 \pm$	$\pm$ 780	$1219\pm67$					
$t\bar{t}$	13800	$\pm$ 780	$12070 \pm$	$\pm 420$	$2046\pm70$					
Single top-quark	2360	$\pm 140$	1148 :	$\pm$ 71	$222 \pm 14$					
Diboson	6880	$\pm 950$	514 :	$\pm$ 71	$228\pm34$					
Multijet	11900	$\pm 2300$	1130 :	$\pm 370$	$290\pm150$					
Total background	287770	$\pm 570$	27580 :	± 170	$4601 \pm 90$					
Data	287722		27586		4642					

# Yields - Z' (90GeV)

			Merged topology	7	
Process	0b-HP	0b-LP	1 <i>b</i> -HP	1b-LP	2b
Dark fermion, light sector	$286\pm54$	$125 \pm 36$	$53\pm23$	$26 \pm 16$	$52 \pm 23$
Dark fermion, heavy sector	$165 \pm 18$	$71 \pm 12$	$30.9\pm7.7$	$18.6\pm 6.0$	$36.3\pm8.4$
Dark Higgs, light sector	$253\pm25$	$82 \pm 14$	$37.7\pm9.6$	$19.1\pm 6.9$	$45 \pm 11$
Dark Higgs, heavy sector	$224 \pm 14$	$75.9\pm8.4$	$37.5\pm5.9$	$21.2 \pm 4.4$	$49.5\pm 6.8$
$W+ ext{jets}$	$2960 \pm 170$	$5180 \pm 280$	$342 \pm 52$	$680 \pm 100$	$120 \pm 120$
Z+jets	$4720 \pm 190$	$7990\pm310$	$628 \pm 69$	$1280 \pm 140$	$265 \pm 22$
$t\bar{t}$	$780 \pm 110$	$440 \pm 59$	$646 \pm 59$	$434 \pm 49$	$59 \pm 19$
Single top-quark	$161 \pm 15$	$113 \pm 14$	$93 \pm 10$	$94.1\pm8.9$	$17.8 \pm 2.8$
Diboson	$830 \pm 130$	$575 \pm 95$	$129 \pm 23$	$107 \pm 18$	$61 \pm 11$
Multijet	$48 \pm 41$	$21 \pm 66$	$1.2 \pm 1.0$	$5.4\pm5.1$	$0.52\pm0.51$
Total background	$9498 \pm 96$	$14310 \pm 120$	$1840\pm37$	$2600 \pm 46$	$523 \pm 19$
Data	9516	14282	1845	2628	534
			Resolved topolog	у	
Process	0b		1b		2b
Dark fermion, light sector	$2060 \pm 150$		$264\pm52$		$228\pm55$
Dark fermion, heavy sector	$976 \pm 44$		$121 \pm 15$		$164 \pm 18$
Dark Higgs, light sector	$1206\pm54$		$135 \pm 18$		$197\pm22$
Dark Higgs, heavy sector	$953\pm30$		$112 \pm 10$		$146 \pm 12$
$W+ ext{jets}$	$78400 \pm 3400$		$4400 \pm 690$		$1030 \pm 190$
$Z_{\rm +jets}$	$91700 \pm 3800$		$6970 \pm 690$		$2140 \pm 210$
tt	$11170 \pm 920$		$10590 \pm 530$		$7760 \pm 230$
Single top-quark	$1200 \pm 170$		$1006 \pm 74$		$602 \pm 40$
Diboson	$6080 \pm 930$		$514 \pm 80$		$337\pm55$
Multijet	$14700 \pm 2500$		$1280 \pm 540$		$540 \pm 270$
Total background	$203990 \pm 480$		$2\overline{4770} \pm 220$		$1\overline{2400 \pm 110}$
Data	203991		24783		12406

# Yields - Z' (350GeV)

		Resolved topology	
Process	0b	1b	2b
Dark fermion, light sector	$655 \pm 14$	$104.2 \pm 5.8$	$89.5\pm5.3$
Dark fermion, heavy sector	$70.79 \pm 0.79$	$12.45 \pm 0.33$	$9.04 \pm 0.28$
Dark Higgs, light sector	$639 \pm 13$	$96.7 \pm 4.9$	$72.3 \pm 4.3$
Dark Higgs, heavy sector	$118.9 \pm 1.4$	$19.62 \pm 0.58$	$14.24 \pm 0.50$
W+jets	$68300 \pm 4300$	$4270 \pm 1100$	$115 \pm 84$
Z+jets	$72200 \pm 3000$	$7230 \pm 800$	$1160 \pm 110$
$t \bar{t}$	$3900 \pm 460$	$10320 \pm 720$	$4920 \pm 140$
Single top-quark	$752 \pm 69$	$1530 \pm 110$	$466 \pm 35$
Diboson	$2000 \pm 340$	$282 \pm 47$	$14.6 \pm 2.8$
Multijet	$17100 \pm 2300$	$7870 \pm 390$	$880 \pm 140$
Total background	$164310 \pm 650$	$31520 \pm 250$	$7567 \pm 85$
Data	164386	31465	7597

### Uncertainties

- Two parts of uncertainties are considered: data statistical uncertainty (5-21%) and systematic uncertainties (21-45%)
- Systematic uncertainties further contain experimental uncertainties and modelling uncertainties
  - Iarge-R jet (9-23%), small-R jet (3-13%)
  - MET and MET trigger (1-4%)
  - * b-tagging (2-11%), leptons (4-15%), luminosity (3-4%)
  - signal modeling (7-20%)
  - background modelling (0.3-15%)
  - MC statistical uncertainty (10-20%)
- * The impact of uncertainties varies with different signals and analysis categories

### Systematics impact on signal strength

Source		Un	ncertainty on $\mu = 1$ [%]			
of uncertainty	Vector med	diator, $m_{Z'} =$	$H \rightarrow \text{invisible}$	Dark ferr	nion, $m_{Z'} =$	
	200  GeV = 600  GeV (		$(\mathcal{B}_{H\to \text{inv.}} = 100\%)$	$90~{\rm GeV}$	$300~{\rm GeV}$	
Large- $R$ jets	9	20	17	23	-	
Small-R jets	3	8	7	13	6	
Electrons	4	9	6	7	8	
Muons	6	7	7	15	14	
$E_{\mathrm{T}}^{\mathrm{miss}}$	1	4	3	4	3	
b-tagging (track jets)	4	4	4	8	-	
b-tagging (small- $R$ jets)	2	4	2	5	11	
Luminosity	3	4	3	4	4	
Multijet normalization	7	11	11	13	11	
Diboson normalization	5	11	6	3	1	
Z+jets normalization	5	9	4	15	12	
W+jets normalization	3	4	2	8	7	
$t\bar{t}$ normalization	3	1	0.3	8	6	
Signal modeling	7	9	20	-	-	
V+jets modeling	4	10	4	7	13	
$t\bar{t} \bmod ling$	2	4	3	10	8	
V+ jets flavor composition	1	3	3	4	3	
Diboson modeling	1	2	2	1	0.3	
Background MC stat.	10	18	14	20	19	
Total syst.	21	40	38	45	42	
Data stat.	7	21	5	14	18	
Total	22	45	39	47	47	

### Profile likelihood fit



### Model independent interpretation

 A generic CLs upper limit on the allowed visible cross-section σ_{vis} of potential W+DM and Z+DM production are also performed with W/Z final state

 $\sigma_{\text{vis, W+DM}}(E_{\text{T}}^{\text{miss}}) \equiv \sigma_{W+\text{DM}}(E_{\text{T}}^{\text{miss}}) \times \mathcal{B}_{W \to q'q} \times (A \times \varepsilon)(E_{\text{T}}^{\text{miss}}) \quad \text{for } W + \text{DM events},$  $\sigma_{\text{vis, Z+DM}}(E_{\text{T}}^{\text{miss}}) \equiv \sigma_{Z+\text{DM}}(E_{\text{T}}^{\text{miss}}) \times \mathcal{B}_{Z \to q\bar{q}} \times (A \times \varepsilon)(E_{\text{T}}^{\text{miss}}) \quad \text{for } Z + \text{DM events},$ 

- Selection similar to SR but with inclusive b-jet multiplicity and no separation in W/Z mass window
- The exclusion upper limit on σ_{vis} thus apply to any processes which have a generic back-to-back topology with W/Z boson recoiling against MET from weak interacting particles

$E_{\rm T}^{\rm miss}$ range	Uppe	r limit	at 95%	CL [fb]		: :	$E_{\rm T}^{\rm miss}$ range	Uppe	r limit	at 95%	CL [fb]	
[GeV]	$\sigma_{\rm vis}^{\rm obs}$	$\sigma_{ m vis}^{ m exp}$	$-1\sigma$	$+1\sigma$	$A \times \varepsilon$		[GeV]	$\sigma_{\rm vis}^{\rm obs}$	$\sigma_{ m vis}^{ m exp}$	$-1\sigma$	$+1\sigma$	$A \times \varepsilon$
$W+DM, W \to q'q$					$Z+DM, Z \to q\bar{q}$							
[150, 200)	750	650	470	910	20%		[150, 200)	313	225	162	314	20%
[200, 250)	185	163	117	226	20%		[200, 250)	69	60	43	83	20%
[250,  300)	43	50	36	69	30%		[250,  300)	39	29	21	40	30%
[300, 400)	41	36	26	50	45%		[300, 400)	31.1	18.5	13.3	25.7	45%
[400, 600)	9.7	12.6	9.1	17.6	55%		[400, 600)	9.2	9.1	6.5	12.6	50%
[600, 1500)	5.1	3.1	2.2	4.3	55%		[600, 1500)	3.0	2.6	1.9	3.6	55%

### Upper limit on g_{SM} in mono-Z'

 Upper limit on the coupling g_{SM} in mono-Z' models is also performed, assuming g_{DM}=1

