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Lecture 3: Three Things

* Graphene
« Quantum Hall Effect
» Topological Insulators



Graphene



Graphene
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Geim and Novosolev 2004 (Nobel Prize 2010)



Graphene

Honeycomb lattice Best to think of this as two intersecting triangular lattices
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Red dots = Lattice A: 1 = nja; + noay g a; = 9 (\/§, 1)

White dots = Lattice B: = d 3
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Tight Binding for Graphene
H=-tY" [yr; AVr; B| + [r: AV (r + ay; B| + |r; A {(r + ag: B| + h.c.}
rcA

This Hamiltonian hops from the red dots to
the white dots, and back again

r; A) = |r)
r; B) = |r +d)

To solve the Schrodinger equation, we make the ansatz;

(k) = —— > (calri A) + calr B))

Then we solve H |¢)) = E|v¢)

0 ~(k) €A CA : ik-a; | _ik-a
(w*(k) ) ) <0B> = F(k) (CB> with y(k):—t(l—ke +e )



Tight Binding for Graphene

0 ~(k) €A €A : ikap | ikas
(7*(1{) ; ) (CB> = F(k) (CB> with y(k):—t(l%—e +e )

The eigenvalues are F(k) = +|y(k)|

> E(k) = it\ 1+4cos(

Carbon atoms have valency Z=1.

This means that the lower band is
filled. The upper band is empty

The Fermi surface is simply points.
These are Dirac points




Tight Binding for Graphene

We can also expand the Hamiltonian near the Dirac point. We find the Dirac equation for a
massless, relativistic particle!

H = —vph(g,o' + q,0°)

q is the momentum near the Dirac point
o are Pauli matrices 3ta

The electron always travels with speed Vg = 2_71 . This is 300 times smaller than c.

In graphene, the two components of the wavefunction tell us what sublattice the
electron sits on; in particle physics it is what we call spin



The Quantum Hall Effect



Electron in a Magnetic Field

mX = —ex X B



The Classical Hall Effect

friction=resistance

\ ’
‘5
dv mv 3
m— = —ceE —ev X B 4 au
dt / \ T \/
Electric field in magnetic field S g ’ %
x-direction in z-direction

In equilibrium, we solve for the velocity v. The solution takes the form

v = ok

with ¢ a 2x2 matrix called the conductivity



The Classical Hall Effect

We usually plot the resistivity matrix

1 Pxzx  Pzxy
—Pzy Pyy

The classical calculation above tells us how the components should change with B

A




The Integer Quantum Hall Effect

ko 4 i=2

von Klitzing, Dorda and Pepper, 1981 (Nobel Prize 1985)



The Fractional Quantum Hall Effect

Tsui, Stormer and Goddard, 1982 (Nobel Prize with Laughlin 1998)



Landau Levels

. B
Consider quantum mechanics of particle moving in a magnetic field
1 A.
H = + e

Gauge potential for magnetic field B = V X A . Many choices; we work with A = 2 By
1
2 2
H = 5 (P, + (py + eBx)?)

Try the ansatz 1), (z, y) = €' f;.(x). Then the Schrodinger equation becomes

mwg

(Gt + "2 o ) fls) = Ao

2m

But this is the harmonic oscillator, displaced from the origin by k!



Landau Levels

B
A particle in a magnetic field is a harmonic oscillator t
1 muw? / ® /
(ﬁpi + % (7 + kl%f) fi(x) = E fi(z)

We know the energy immediately

1 elB
E:hw(n+—> with () = —

2 m

Also we have the same energy for every k in the wavefunction 1y, (7, ) = ¢ f.(x) .We have lots
of states with the same energy.

The degeneracy in an area A is t B
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Landau Levels

This is what the degeneracy of states looks like

Energy

= ——AB
N 2mh

Number of:states

These are Landau levels



Understanding the Integer Quantum Hall Effect
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Energy |

Number of:states

Pry = —5 — v is counting the number of filled Landau levels

(A full understanding of why plateau exist needs disorder)
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Topological Insulators



An Aside: Topological Insulators

2016 NOBEL PRIZE IN PHYSICS

David Thouless Michael Kosterlitz

Duncan Haldane



Topological Insulators in 2d

As we saw in the first lecture, if space is discrete then the momentum sits in the Brillouin zone

EEEEEER :>

For an insulator, this Brillouin zone is completely filled

At each point k of the Brillouin zone there is a quantum state |¢(k))

The idea of topological insulators is that the phase of the wavefunction can wind as we
move around in the Brillouin zone.



Topological Insulators in 2d

The Brillouin zone

We can then define the Chern number: (| = — —

The famous TKNN formula is:

Define the Berry connection

9,
i = —1(Y(k | (k
A; = =i (k)| 5= [0 (k)
(k) and the Berry curvature
OA, OA,
T = Dp T o
1 2 . :
d°k F, - Thisis an integer
T JBZ
@2 No magnetic fields in sight!
Opy = —=C
27Th Thouless et al ‘82
Haldane, ‘88




Edge Modes

Topological insulators have interesting things happening on the edge

« For a 2d topological insulator, there are chiral edge modes.

« This move in just one direction



Topological Insulators in 3d

Predicted by Kane and Mele in 2005. Discovered soon after.

Again, interesting things happen on the edge. Now we a single relativistic Dirac fermions



