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Lecture 3: Three Things

• Graphene
• Quantum Hall Effect
• Topological Insulators



Graphene



Graphene

Geim and Novosolev 2004 (Nobel Prize 2010)



Not all Lattices are Bravais

Not all lattices of interest are Bravais lattices. One particularly important lattice in

two dimensions has the shape of a honeycomb and is shown below.

This lattice describes a material called graphene that we will describe in more detail

in Section 4. The lattice is not Bravais because not all points are the same. To see

this, consider a single hexagon from the lattice as drawn below.

Each of the red points is the same: each has a neighbour

Figure 8:

directly to the left of them, and two neighbours diagonally to

the right. But the white points are di↵erent. Each of them has

a neighbour directly to the right, and two neighbours diagonally

to the left.

Lattices like this are best thought by decomposing them into

groups of atoms, where some element of each group sits on the

vertices of a Bravais lattice. For the honeycomb lattice, we can

consider the group of atoms . The red vertices form a triangular lattice, with

primitive lattice vectors

a2

a1

Figure 9:

a
1

=

p
3a

2
(
p
3, 1) , a

2

=

p
3a

2
(
p
3,�1)

Meanwhile, each red vertex is accompanied by a white vertex which

is displaced by

d = (�a, 0)

This way we build our honeycomb lattice.
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Honeycomb lattice Best to think of this as two intersecting triangular lattices

Red dots = Lattice A:

White dots = Lattice B:     

4. Graphene

Graphene is a two-dimensional lattice of carbon atoms, arranged in a honeycomb struc-

ture as shown in the figure. Although it is straightforward to build many of these layers

of these lattices — a substance known as graphite — it was long thought that a purely

two-dimensional lattice would be unstable to thermal fluctuations and impossible to

create. This changed in 2004 when Andre Geim and Konstantin Novoselov at the

University of Manchester succeeded in isolating two-dimensional graphene. For this,

they won the 2010 Nobel prize. As we now show, the band structure of graphene is

particularly interesting.

First, some basic lattice facts. We described the honeycomb lattice in Section 2.1.

It is not Bravais. Instead, it is best thought of as two triangular sublattices. We define

the primitive lattice vectors
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where a the distance between neighbouring atoms, which in graphene is about a ⇡
1.4⇥ 1010 m. These lattice vectors are shown in the figure.

Sublattice A is defined as all the points r = n
1
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with ni 2 Z. These are the

red dots in the figure. Sublattice B is defined as all points r = n
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The reciprocal lattice is generated by vectors bj satisfying ai ·bj = 2⇡�ij. These are
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Figure 25:

inal. The Brillouin zone is constructed in the usual manner by

drawing perpendicular boundaries between the origin and each

other point in the reciprocal lattice. This is shown in the figure.

We shortly see that the corners of the Brillouin zone carry par-

ticular interest. It naively appears that there are 6 corners, but

this should really be viewed as two sets of three. This follows be-

cause any points in the Brillouin zone which are connected by a

reciprocal lattice vector are identified. Representatives of the two,

inequivalent corners of the Brillouin zone are given by
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These are shown in the figure above.
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Tight Binding for Graphene

Tight Binding for Graphene

The carbon atoms in graphene have valency Z = 1, with the pz-atomic orbital aban-

doned by their parent ions and free to roam the lattice. In this context, it is usually

called the ⇡-orbital. We therefore write down a tight-binding model in which this elec-

tron can hop from one atomic site to another. We will work only with nearest neighbour

interactions which, for the honeycomb lattice, means that the Hamiltonian admits hop-

ping from a site of the A-lattice to the three nearest neighbours on the B-lattice, and

vice versa. The Hamiltonian is given by

H = �t
X

r2⇤

h
|r;Aihr;B|+ |r;Aihr+ a

1

;B|+ |r;Aihr+ a
2

;B|+ h.c.
i

(4.2)

where we’re using the notation

|r;Ai = |ri and |r;Bi = |r+ di with d = (�a, 0)

Comparing to (??), we have set E
0

= 0, on the grounds that it doesn’t change any of

the physics. For what it’s worth, t ⇡ 2.8 eV in graphene, although we won’t need the

precise value to get at the key physics.

The energy eigenstates are again plane waves, but now with a suitable mixture of A

and B sublattices. We make the ansatz

| (k)i = 1p
2N

X

r2⇤

eik·r
⇣
cA|r;Ai+ cB|r;Bi

⌘

Plugging this into the Schrödinger equation, we find that cA and cB must satisfy the

eigenvalue equation
 

0 �(k)

�?(k) 0

! 
cA

cB

!
= E(k)

 
cA

cB

!
(4.3)

where

�(k) = �t
⇣
1 + eik·a1 + eik·a2

⌘

The energy eigenvalues of (4.3) are simply

E(k) = ±|�(k)|
We can write this as

E(k)2 = t2
���1 + eik·a1 + eik·a2

���
2

= t2

�����1 + 2e3ikxa/2 cos

 p
3kya

2

!�����

2
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This Hamiltonian hops from the red dots to 
the white dots, and back again

To solve the Schrodinger equation, we make the ansatz;
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The eigenvalues are
Expanding this out, we get the energy eigenvalues

E(k) = ±t
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Note that the energy spectrum is a double cover of the first Brillouin zone, symmetric

about E = 0. This doubling can be traced to the fact the the honeycomb lattice

consists of two intertwined Bravais lattices. Because the carbon atoms have valency

Z = 1, only the lower band with E(k) < 0 will be filled.

Figure 26: The band structure of graphene.

The surprise of graphene is that these two bands meet at special points. These occur

on the corners k = K and k = K0 (4.1), where cos(3kxa/2) = �1 and cos(
p
3kya/2) =

1/2. The resulting band structure is shown in Figure 263. Because the lower band is

filled, the Fermi surface in graphene consists of just two points, K and K0 where the

bands meet. It is an example of a semi-metal.

Emergent Relativistic Physics

The points k = K and K0 where the bands meet are known as Dirac points. To see

why, we linearise about these points. Write

k = K+ q

A little Taylor expansion shows that in the vicinity of the Dirac points, the dispersion

relation is linear

E(k) ⇡ ±3ta

2
|q|

3
The image is taken from the exciting-code website.
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• Carbon atoms have valency Z=1. 

• This means that the lower band is 
filled. The upper band is empty

• The Fermi surface is simply points. 
These are Dirac points
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• In graphene, the two components of the wavefunction tell us what sublattice the 
electron sits on; in particle physics it is what we call spin

We can also expand the Hamiltonian near the Dirac point. We find the Dirac equation for a 
massless, relativistic particle!
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• q is the momentum near the Dirac point
• s are Pauli matrices
• The electron always travels with speed                      . This is 300 times smaller than c. 
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x =
v

!
cos!t

y = � v

!
sin!t

! =
eB

m

d
dv

dt
= �E� ev ⇥B� mv

⌧

v = �E

⇢ = ��1 =

 
⇢
xx

⇢
xy

�⇢
xy

⇢
yy

!

⇢
xy

⇢
xx

3

E =
~2
2m

3X

i=1

k2
i

k
i

=
2⇡n

i

L

n
i

2 Z

E
F

=
~2k2

F

2m
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mẍ = �eẋ⇥B
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friction=resistance

magnetic field 
in z-direction

Electric field in 
x-direction
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x =
v

!
cos!t

y = � v

!
sin!t

! =
eB

m

m
dv

dt
= �eE� ev ⇥B� mv

⌧

v = �E

⇢ = ��1 =

 
⇢
xx

⇢
xy

�⇢
xy

⇢
yy

!

⇢
xy

⇢
xx

3

In equilibrium, we solve for the velocity v. The solution takes the form  
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with s a 2x2 matrix called the conductivity
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We usually plot the resistivity matrix 
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The classical calculation above tells us how the components should change with B
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Landau Levels

Consider quantum mechanics of particle moving in a magnetic field

call “momentum”. But it doesn’t have canonical Poisson structure. Specifically, the

Poisson bracket of the mechanical momentum with itself is non-vanishing,

{mẋi,mẋj} = {pi + eAi, pj + eAj} = �e

✓
@Aj

@xi
� @Ai

@xj

◆
= �e✏ijkBk (1.12)

Quantisation

Our task is to solve for the spectrum and wavefunctions of the quantum Hamiltonian,

H =
1

2m
(p+ eA)2 (1.13)

Note that we’re not going to put hats on operators in this course; you’ll just have to

remember that they’re quantum operators. Since the particle is restricted to lie in the

plane, we write x = (x, y). Meanwhile, we take the magnetic field to be constant and

perpendicular to this plane, r⇥A = Bẑ. The canonical commutation relations that

follow from (1.11) are

[xi, pj] = i~�ij with [xi, xj] = [pi, pj] = 0

We will first derive the energy spectrum using a purely algebraic method. This is very

similar to the algebraic solution of the harmonic oscillator and has the advantage that

we don’t need to specify a choice of gauge potential A. The disadvantage is that we

don’t get to write down specific wavefunctions in terms of the positions of the electrons.

We will rectify this in Sections 1.4.1 and 1.4.3.

To proceed, we work with the commutation relations for the mechanical momentum.

We’ll give it a new name (because the time derivative in ẋ suggests that we’re working

in the Heisenberg picture which is not necessarily true). We write

⇡ = p+ eA = mẋ (1.14)

Then the commutation relations following from the Poisson bracket (1.12) are

[⇡x, ⇡y] = �ie~B (1.15)

At this point we introduce new variables. These are raising and lowering oscillators,

entirely analogous to those that we use in the harmonic oscillator. They are defined by

a =
1p
2e~B

(⇡x � i⇡y) and a† =
1p
2e~B

(⇡x + i⇡y)

The commutation relations for ⇡ then tell us that a and a† obey

[a, a†] = 1

– 16 –

Gauge potential for magnetic field                        . Many choices; we work with

the up and down spins given by � = 2µBB where µB = e~/2m is the Bohr magneton.

We will be interested in large magnetic fields where large energies are needed to flip

the spin. This means that, if we restrict to low energies, the electrons act as if they are

e↵ectively spinless. (We will, however, add a caveat to this argument below.)

Before we get to the quantum theory, we first need to briefly review some of the

structure of classical mechanics in the presence of a magnetic field. The Lagrangian for

a particle of charge �e and mass m moving in a background magnetic field B = r⇥A

is

L =
1

2
mẋ2 � eẋ ·A

Under a gauge transformation, A ! A + r↵, the Lagrangian changes by a total

derivative: L ! L � e↵̇. This is enough to ensure that the equations of motion (1.1)

remain unchanged under a gauge transformation.

The canonical momentum arising from this Lagrangian is

p =
@L

@ẋ
= mẋ� eA

This di↵ers from what we called momentum when we were in high school, namely mẋ.

We will refer to mẋ as the mechanical momentum.

We can compute the Hamiltonian

H = ẋ · p�H =
1

2m
(p+ eA)2

If we write the Hamiltonian in terms of the mechanical momentum then it looks the

same as it would in the absence of a magnetic field: H = 1

2

mẋ2. This is the statement

that a magnetic field does no work and so doesn’t change the energy of the system.

However, there’s more to the Hamiltonian framework than just the value of H. We

need to remember which variables are canonical. This information is encoded in the

Poisson bracket structure of the theory (or, in fancy language, the symplectic structure

on phase space) and, in the quantum theory, is transferred onto commutation relations

between operators. The fact that x and p are canonical means that

{xi, pj} = �ij with {xi, xj} = {pi, pj} = 0 (1.11)

Importantly, p is not gauge invariant. This means that the numerical value of p can’t

have any physical meaning since it depends on our choice of gauge. In contrast, the

mechanical momentum mẋ is gauge invariant; it measures what you would physically

– 15 –

level n + 1. In fact, in real materials, this does not happen. The reason is twofold.

First, the true value of the cyclotron frequency is !B = eB/m
e↵

, where m
e↵

is the

e↵ective mass of the electron moving in its environment. Second, the g factor can also

vary due to e↵ects of band structure. For GaAs, the result is that the Zeeman energy

is typically about 70 times smaller than the cyclotron energy. This means that first

the n = 0 spin-up Landau level fills, then the n = 0 spin-down, then the n = 1 spin-up

and so on. For other materials (such as the interface between ZnO and MnZnO) the

relative size of the energies can be flipped and you can fill levels in a di↵erent order.

This results in di↵erent fractional quantum Hall states. In these notes, we will mostly

ignore these issues to do with spin. (One exception is Section 3.3.4 where we discuss

wavefunctions for particles with spin).

1.4.1 Landau Gauge

To find wavefunctions corresponding to the energy eigenstates, we first need to specify

a gauge potential A such that

r⇥A = Bẑ

There is, of course, not a unique choice. In this section and the next we will describe

two di↵erent choices of A.

In this section, we work with the choice

A = xBŷ (1.17)

This is called Landau gauge. Note that the magnetic field B is invariant under both

translational symmetry and rotational symmetry in the (x, y)-plane. However, the

choice of A is not; it breaks translational symmetry in the x direction (but not in

the y direction) and rotational symmetry. This means that, while the physics will be

invariant under all symmetries, the intermediate calculations will not be manifestly

invariant. This kind of compromise is typical when dealing with magnetic field.

The Hamiltonian (1.13) becomes

H =
1

2m

�
p2x + (py + eBx)2

�
Because we have manifest translational invariance in the y direction, we can look for

energy eigenstates which are also eigenstates of py. These, of course, are just plane

waves in the y direction. This motivates an ansatz using the separation of variables,

 k(x, y) = eikyfk(x) (1.18)
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A = xBŷ (1.17)

This is called Landau gauge. Note that the magnetic field B is invariant under both

translational symmetry and rotational symmetry in the (x, y)-plane. However, the

choice of A is not; it breaks translational symmetry in the x direction (but not in

the y direction) and rotational symmetry. This means that, while the physics will be

invariant under all symmetries, the intermediate calculations will not be manifestly

invariant. This kind of compromise is typical when dealing with magnetic field.

The Hamiltonian (1.13) becomes

H =
1

2m

�
p2x + (py + eBx)2

�
Because we have manifest translational invariance in the y direction, we can look for

energy eigenstates which are also eigenstates of py. These, of course, are just plane

waves in the y direction. This motivates an ansatz using the separation of variables,

 k(x, y) = eikyfk(x) (1.18)

– 18 –

Try the ansatz                                       . Then the Schrodinger equation becomes
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But this is the harmonic oscillator, displaced from the origin by k!

Acting on this wavefunction with the Hamiltonian, we see that the operator py just

gets replaced by its eigenvalue ~k,

H k(x, y) =
1

2m

�
p2x + (~k + eBx)2

�
 x(x, y) ⌘ Hk k(x, y)

But this is now something very familiar: it’s the Hamiltonian for a harmonic oscillator

in the x direction, with the centre displaced from the origin,

Hk =
1

2m
p2x +

m!2

B

2
(x+ kl2B)

2 (1.19)

The frequency of the harmonic oscillator is again the cyloctron frequency !B = eB/m,

and we’ve also introduced a length scale lB. This is a characteristic length scale which

governs any quantum phenomena in a magnetic field. It is called the magnetic length.

lB =

r
~
eB

To give you some sense for this, in a magnetic field of B = 1 Tesla, the magnetic length

for an electron is lB ⇡ 2.5⇥ 10�8 m.

Something rather strange has happened in the Hamiltonian (1.19): the momentum

in the y direction, ~k, has turned into the position of the harmonic oscillator in the x

direction, which is now centred at x = �kl2B.

Just as in the algebraic approach above, we’ve reduced the problem to that of the

harmonic oscillator. The energy eigenvalues are

En = ~!B

✓
n+

1

2

◆
But now we can also write down the explicit wavefunctions. They depend on two

quantum numbers, n 2 N and k 2 R,

 n,k(x, y) ⇠ eikyHn(x+ kl2B)e
�(x+kl2

B

)

2/2l2
B (1.20)

with Hn the usual Hermite polynomial wavefunctions of the harmonic oscillator. The ⇠
reflects the fact that we have made no attempt to normalise these these wavefunctions.

The wavefunctions look like strips, extended in the y direction but exponentially

localised around x = �kl2B in the x direction. However, the large degeneracy means

that by taking linear combinations of these states, we can cook up wavefunctions that

have pretty much any shape you like. Indeed, in the next section we will choose a

di↵erent A and see very di↵erent profiles for the wavefunctions.

– 19 –
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A particle in a magnetic field is a harmonic oscillator
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Also we have the same energy for every k in the wavefunction .We have lots
of states with the same energy.
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We know the energy immediately
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Energy

Number of states

These are Landau levels

This is what the degeneracy of states looks like



Understanding the Integer Quantum Hall Effect

Energy

Number of states
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n is counting the number of filled Landau levels

(A full understanding of why plateau exist needs disorder)

E E

Figure 16: Density of states without dis-

order...

Figure 17: ...and with disorder.

In practice, this means that the samples which exhibit the quantum Hall e↵ect actually

have to be very clean. We need disorder, but not too much disorder! The energy

spectrum in the presence of this weak disorder is the expected to change the quantised

Landau levels from the familiar picture in the left-hand figure, to the more broad

spectrum shown in the right-hand figure.

There is a second e↵ect of disorder: it turns many of the quantum states from

extended to localised. Here, an extended state is spread throughout the whole system.

In contrast, a localised state is restricted to lie in some region of space. We can easily

see the existence of these localised states in a semi-classical picture which holds if

the potential, in addition to obeying (2.6), varies appreciably on distance scales much

greater than the magnetic length lB,

|rV | ⌧ ~!B

lB

With this assumption, the cyclotron orbit of an electron takes place in a region of

essentially constant potential. The centre of the orbit, X then drifts along equipoten-

tials. To see this, recall that we can introduce quantum operators (X, Y ) describing

the centre of the orbit (1.33),

X = x� ⇡y

m!B

and Y = y +
⇡x

m!B

with ⇡ the mechanical momentum (1.14). (Recall that, in contrast to the canonical

momentum, ⇡ is gauge invariant). The time evolution of these operators is given by

i~Ẋ = [X,H + V ] = [X, V ] = [X, Y ]
@V

@Y
= il2B

@V

@Y

i~Ẏ = [Y,H + V ] = [Y, V ] = [Y,X]
@V

@X
= �il2B

@V

@X
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Topological Insulators in 2d

As we saw in the first lecture, if space is discrete then the momentum sits in the Brillouin zone

For an insulator, this Brillouin zone is completely filled

At each point k of the Brillouin zone there is a quantum state 

The idea of topological insulators is that the phase of the wavefunction can wind as we
move around in the Brillouin zone. 
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The Brillouin zone

⇢
xy

=
2⇡~
e2

1

⌫

⌫ 2 Z

⌫ 2 Q

H = E 

✓
1

2m
p2
x

+
m!2

B

2
(x+ kl2

B

)2
◆
f
k

(x) = Ef
k

(x)

E = ~!
✓
n+

1

2

◆

N =
e

2⇡~AB

| (k)i

A
i

= �ih (k)| @
@ki

| (k)i

Acknowledgements

We are supported by the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013), ERC grant agreement STG 279943,

“Strongly Coupled Systems”.

References

[1] M. E. Peskin, “Mandelstam ’t Hooft Duality in Abelian Lattice Models,” Annals Phys.

113, 122 (1978).

4

2.3.3, it is also true (under certain assumptions) for particles moving in a lattice

in the presence of a magnetic field where the torus in question is slightly di↵erent

concept called a magnetic Brillouin zone. (In this case, the periodicity conditions

on u
k

are altered slightly but the formula we derive below still hold).

• Second, we’ll assume that the electrons are non-interacting. This means that we

get the multi-particle spectrum simply by filling up the single-particle spectrum,

subject to the Pauli exclusion principle.

• Finally, we’ll assume that there is a gap between bands and that the Fermi energy

EF lies in one of these gaps. This means that all bands below EF are completely

filled while all bands above EF are empty. In band theory, such a situation

describes an insulator.

Whenever these three criteria are obeyed, one can assign an integer-valued topo-

logical invariant C 2 Z to each band. The topology arises from the way the phase of

the states winds as we move around the Brillouin zone T2. This is captured by a U(1)

connection Berry connection over T2, defined by

Ai(k) = �ihu
k

| @

@ki
|u

k

i

There is one slight conceptual di↵erence from the type of Berry connection we met

previously. In Section 1.5, the connections lived on the space of parameters of the

Hamiltonian; here the connection lives on the space of states itself. Nonetheless, it is

simple to see that many of the basic properties that we met in Section 1.5 still hold.

In particular, a change of phase of the states |u
k

i corresponds to a change of gauge of

the Berry connection.

We can compute the field strength associated to Ai. This is

Fxy =
@Ax

@ky
� @Ay

@kx
= �i

⌧
@u

@ky

���� @u

@kx

�
+ i

⌧
@u

@kx

���� @u

@ky

�
(2.18)

Once again, we can compute the first Chern number by integrating F over the Brillouin

zone T2,

C = � 1

2⇡

Z
T

2

d2k Fxy (2.19)

In the present context, it is usually referred to as the TKNN invariant10. As we’ve seen

before, the Chern number is always an integer: C 2 Z. In this way, we can associate

an integer C↵ to each band ↵.
10As we mentioned in the previous section, the initials stand for Thouless, Kohomoto, Nightingale

and den Nijs. The original paper is “Quantized Hall Conductance in a Two-Dimensional Periodic
Potential”, Phys. Rev. Lett. 49, 405 (1982).
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Define the Berry connection

and the Berry curvature

We can then define the Chern number:                                                         . This is an integer
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The famous TKNN formula is: 
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Haldane, ’88

No magnetic fields in sight!



Edge Modes

Topological insulators have interesting things happening on the edge 

• For a 2d topological insulator, there are chiral edge modes. 

• This move in just one direction



Topological Insulators in 3d

Predicted by Kane and Mele in 2005. Discovered soon after.

Again, interesting things happen on the edge. Now we a single relativistic Dirac fermions


