Palestinian Advanced Physics School

Condensed Matter Physics

Professor David Tong

Lecture 4: The Fractional Quantum Hall Effect

Recall From Lecture 3

$$
\rho_{x y}=\frac{2 \pi \hbar}{e^{2}} \frac{1}{\nu}
$$

$$
\nu \in \mathbf{Z}
$$

v is counting the number of filled Landau levels

The Fractional Quantum Hall Effect

$$
\rho_{x y}=\frac{2 \pi \hbar}{e^{2}} \frac{1}{\nu}
$$

$$
\nu \in \mathbf{Q}
$$

Now v is telling us that the lowest Landau level is only fractionally filled

Why? And what picks the filling fractions?

The Fractional Quantum Hall Effect

What is the ground state? Solving problems like this with many interacting electrons is hard ${ }^{*}$

The Laughlin Wavefunction

Here is an ansatz for the ground state of this system

$$
\psi\left(z_{i}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m} e^{-\sum_{i=1}^{n}\left|z_{i}\right|^{2} / 4 l_{B}^{2}}
$$

$$
\begin{aligned}
l_{B} & =\sqrt{\frac{\hbar}{e B}} \\
z & =x+i y
\end{aligned}
$$

This is not the correct answer but, numerically, it is very close for a small number of electrons

Some properties of this wavefunction:

- The electrons are spread out homogeneously in a disc of radius

$$
R \approx \sqrt{2 m N} l_{B}
$$

- This describes a "liquid" of electrons (strictly speaking, a new phase of matter)
- The filling fraction is $\nu=\frac{1}{m}$
- But electrons are fermions, so only m odd is allowed. This wavefunction describes the $1 / 3$ and $1 / 5$ observed Hall plateaux.

The Laughlin Wavefunction

We can also write down excited states

$$
\psi_{\text {hole }}(z ; \eta)=\prod_{i=1}^{N}\left(z_{i}-\eta\right) \prod_{k<l}\left(z_{k}-z_{l}\right)^{m} e^{-\sum_{i=1}^{n}\left|z_{i}\right|^{2} / 4 l_{B}^{2}}
$$

Some properties of this wavefunction:

- If we place m quasiholes in the same place, then it looks like an electron
- A quasihole carries fractional charge e / m
- The indivisible electron has miraculously split into, for example, 3 pieces!
- Detected experimentally

Anyons

The quasi-holes don't just have fractional charge. They have fractional statistics!

Recall why we get bosons and fermions.

- Exchange two particles to get a phase $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=e^{i \pi \alpha} \psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right)$
- Now exchange again to get back to where we started

$$
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=e^{2 i \pi \alpha} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \quad e^{2 \pi i \alpha}=1
$$

- There are two solutions to this:
- $\alpha=0$ This is a boson
- $\alpha=1$ This is a fermion
- But there's a loophole to this argument in 2 spatial dimensions!

Anyons

Consider the worldline of 2d particles moving in spacetime

- In d=2+1, these two worldline configurations cannot be continuously deformed into each other.
- In $\mathrm{d}=2+1$, it is therefore possible to have $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=e^{i \pi \alpha} \psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right)$ with any α
- These are called anyons.

Quasiholes are Anyons

Claim: The quasi-hole in the quantum Hall effect is an anyon with

$$
\alpha=\frac{1}{m}
$$

Proof: Start with the wavefunction for N electrons and M quasi-holes

$$
\psi_{\text {quasi-holes }}(z ; \eta)=\prod_{j=1}^{M} \prod_{i=1}^{N}\left(z_{i}-\eta_{j}\right) \prod_{k<l}\left(z_{k}-z_{l}\right)^{m} e^{-\sum_{i=1}^{n}\left|z_{i}\right|^{2} / 4 l_{B}^{2}}
$$

Move one quasi-hole around the other and compute the Berry phase

$$
e^{i \alpha}=\exp \left(-i \oint_{C} \mathcal{A}_{\eta} d \eta+\mathcal{A}_{\bar{\eta}} d \bar{\eta}\right) \quad \text { with } \quad \mathcal{A}_{\eta}(\eta, \bar{\eta})=-i\langle\psi| \frac{\partial}{\partial \eta}|\psi\rangle
$$

More Advanced Topics: Half-Filling

The Fractional Quantum Hall Effect

At half-filling, it looks as if nothing strange is going on!

Closer examination shows that this is one of the most surprising regions of the diagram.

> This is a metal!

Recent suggestion that there are relativistic Dirac fermions arising here!

More Advanced Topics: Non-Abelian Anyons

Non-Abelian Anyons

There is one more level in the quantum Hall story

Look at the excitations above the $v=5 / 2$ state

Suppose that we have n excitations. These excitations do not have a unique ground state. Instead, the number of ground states is:

$$
\nu=\frac{5}{2}
$$

Non-Abelian Anyons

- $2^{n .2}$ is a strange number
- If each particle had 2 different states (e.g. spin up or down) we would get 2^{n}

The state is a global property of the system. If we only have access to a subset of the system, there's no way of telling which state we're in.

This makes these quantum states robust...

Topological Quantum Computing

We describe a state by a $2^{n / 2}$ dimensional vector ψ

Now move one particle around on a path

with $U_{\text {path }}$ a unitary matrix that depends on the path taken.

These particles are called non-Abelian anyons.
This allows us to do quantum computation without error!

Summary

There is a lot of interesting physics hiding in this diagram

