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n is counting the number of filled Landau levels
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The Fractional Quantum Hall Effect
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Now n is telling us that the lowest Landau 
level is only fractionally filled
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Why? And what picks the filling fractions?
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The Fractional Quantum Hall Effect

What is the ground state? Solving problems like this with many interacting electrons is hard*

*hard = no one knows how to do it!

All electrons feel the same background field Repulsive Coulomb force
Trap



The Laughlin Wavefunction

Laughlin’s proposal for the ground state wavefunction at filling fraction ⌫ = 1/m is:

 (zi) =
Y
i<j

(zi � zj)
me�

P
n

i=1 |zi|2/4l2
B (3.3)

Clearly this is anti-symmetric when m is an odd integer. For m an even integer, it

can be thought of as a quantum Hall state for bosons. The pre-factor vanishes with

a zero of order m whenever two electrons come together. Meanwhile, the exponential

factor decreases quickly whenever the electrons get too far away from the origin. The

wavefunction is peaked on configurations that balance these two e↵ects.

Let’s first show that the wavefunction has the desired filling fraction. To do this,

focus on what the wavefunction is telling us about a single particle, say z
1

. The terms

that depend on z
1

in the pre-factor of the Laughlin wavefunction are

Y
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which tells us that there are m(N � 1) powers of z
1

. This, in turn, tells us that the

maximum angular momentum of the first particle is m(N � 1) and so its maximum

radius is R ⇡
p
2mNlB. Correspondingly, the area of the droplet is A ⇡ 2⇡mNl2B

(where we’ve replaced N � 1 with N). Recall that the number of states in the full

Landau level is AB/�
0

= A/2⇡l2B ⇡ mN . This argument gives us the filling fraction

⌫ =
1

m
(3.4)

as promised.

It can be shown numerically that, at least for small numbers of particles, this wave-

function has greater than 99% overlap with the true ground state arising arising from

both the Coulomb repulsion (3.1) as well as a number of other repulsive potentials V .

Heuristically this occurs because the wavefunction has a zero of order m whenever two

electrons coincide. Of course, a single zero is guaranteed by Pauli exclusion, but the

Laughlin wavefunction does more. It’s as if each electron carves out a space around it

which helps it minimise the for repulsive potentials.

The high numerical overlap with the true ground state is often put forward as strong

evidence for the veracity of the Laughlin wavefunction. While it’s certainly impressive,

this isn’t the reason that the Laughlin wavefunction is interesting. Finding the ground

state numerically is di�cult and can only be done for a couple of dozen particles. While

this may provide 99.99% overlap with the Laughlin wavefunction, by the time we get
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Acting on this wavefunction with the Hamiltonian, we see that the operator py just

gets replaced by its eigenvalue ~k,
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But this is now something very familiar: it’s the Hamiltonian for a harmonic oscillator

in the x direction, with the centre displaced from the origin,
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The frequency of the harmonic oscillator is again the cyloctron frequency !B = eB/m,

and we’ve also introduced a length scale lB. This is a characteristic length scale which

governs any quantum phenomena in a magnetic field. It is called the magnetic length.

lB =

r
~
eB

To give you some sense for this, in a magnetic field of B = 1 Tesla, the magnetic length

for an electron is lB ⇡ 2.5⇥ 10�8 m.

Something rather strange has happened in the Hamiltonian (1.19): the momentum

in the y direction, ~k, has turned into the position of the harmonic oscillator in the x

direction, which is now centred at x = �kl2B.

Just as in the algebraic approach above, we’ve reduced the problem to that of the

harmonic oscillator. The energy eigenvalues are

En = ~!B
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But now we can also write down the explicit wavefunctions. They depend on two

quantum numbers, n 2 N and k 2 R,

 n,k(x, y) ⇠ eikyHn(x+ kl2B)e
�(x+kl2

B

)

2/2l2
B (1.20)

with Hn the usual Hermite polynomial wavefunctions of the harmonic oscillator. The ⇠
reflects the fact that we have made no attempt to normalise these these wavefunctions.

The wavefunctions look like strips, extended in the y direction but exponentially

localised around x = �kl2B in the x direction. However, the large degeneracy means

that by taking linear combinations of these states, we can cook up wavefunctions that

have pretty much any shape you like. Indeed, in the next section we will choose a

di↵erent A and see very di↵erent profiles for the wavefunctions.
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Here is an ansatz for the ground state of this system

This is not the correct answer but, numerically, it is very close for a small number of electrons

• The electrons are spread out homogeneously in a disc of radius

• This describes a “liquid” of electrons (strictly speaking, a  new phase of matter)

• The filling fraction is 

• But electrons are fermions, so only m odd is allowed. This wavefunction
describes the 1/3 and 1/5 observed Hall plateaux. 

Some properties of this wavefunction:
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The Laughlin Wavefunction

We can also write down excited states

• If we place m quasiholes in the same place, then 
it looks like an electron

• A quasihole carries fractional charge e/m

• The indivisible electron has miraculously split 
into, for example, 3 pieces!

• Detected experimentally 

Some properties of this wavefunction:

So far this doesn’t pick out the Laughlin state, which has s(zi) = 1, as the ground

state. But there is something special about this state: among all states (3.16), it is the

most compact. Indeed, we saw in Section 3.1.1 that it takes up an area A = 2⇡mNl2B.

Any state with s(zi) 6= 1 necessarily spreads over a larger spatial area. This means that

the Laughlin wavefunction will be the ground state if we also add a confining potential

to the system.

We can state this in a slightly di↵erent way in terms of angular momentum. We know

that states with higher angular momentum sit at larger radius. This means that we

can take the total angular momentum operator J as a proxy for the confining potential

and consider the Hamiltonian

H =
m�1X
m0

=1

X
i<j

Pm0(ij) + !J (3.17)

The Laughlin wavefunction has the lowest energy: E
0

= 1

2

!mN(N�1). Any wavefunc-

tion of the form (3.16) with s(zi) 6= 1 has spatial extent larger than the ground state,

and hence higher angular momentum, and so costs extra energy due to the second

term; any wavefunction with spatial extent smaller than the Laughlin wavefunction

necessarily has a pair of particles with relative angular momentum less than m and so

pays an energy cost due to the first term.

The fact that it costs a finite energy to squeeze the wavefunction is expected to

hold for more realistic Hamiltonians as well. It is usually expressed by saying that

the quantum Hall fluid is incompressible. This is responsible for the gap in the bulk

spectrum described in the introduction of this section. However, it turns out that the

dynamics of states with s(zi) 6= 1 contains some interesting information. We’ll return

to this in Section 6.1.

3.2 Quasi-Holes and Quasi-Particles

So far, we’ve only discussed the ground state of the ⌫ = 1/m quantum Hall systems.

Now we turn to their excitations. There are two types of charged excitations, known

as quasi-holes and quasi-particles. We discuss them in turn.

Quasi-Holes

The wavefunction describing a quasi-hole at position ⌘ 2 C is

 
hole

(z; ⌘) =
NY
i=1

(zi � ⌘)
Y
k<l

(zk � zl)
m e�

P
n

i=1 |zi|2/4l2
B (3.18)
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position of some excitation, known as a quasihole



Anyons

The quasi-holes don’t just have fractional charge. They have fractional statistics!

Recall why we get bosons and fermions. 

• Exchange two particles to get a phase

• Now exchange again to get back to where we started 

• There are two solutions to this:

• a=0 This is a boson

• a=1 This is a fermion

• But there’s a loophole to this argument in 2 spatial dimensions!

3.2.2 Introducing Anyons

We’re taught as undergrads that quantum particles fall into two categories: bosons

and fermions. However, if particles are restricted to move in a two-dimensional plane

then there is a loophole to the usual argument and, as we now explain, much more

interesting things can happen16.

Let’s first recall the usual argument that tells us we should restrict to boson and

fermions. We take two identical particles described by the wavefunction  (r
1

, r
2

).

Since the particles are identical, all probabilities must be the same if the particles are

exchanged. This tells us that | (r
1

, r
2

)|2 = | (r
2

, r
1

)|2 so that, upon exchange, the

wavefunctions di↵er by at most a phase

 (r
1

, r
2

) = ei⇡↵ (r
2

, r
1

) (3.21)

Now suppose that we exchange again. Performing two exchanges is equivalent to a

rotation, so should take us back to where we started. This gives the condition

 (r
1

, r
2

) = e2i⇡↵ (r
1

, r
2

) ) e2⇡i↵ = 1

This gives the two familiar possibilities of bosons (↵ = 0) or fermions (↵ = 1).

So what’s the loophole in the above argument? The weak point is the statement that

when we rotate two particles by 360� we should get back to where we came from. Why

should this be true? The answer lies in thinking about the topology of the worldlines

particles make in spacetime.

In d = 3 spatial dimensions (and, if you’re into string theory, higher), the path that

the pair of particles take in spacetime can always be continuously connected to the

situation where the particles don’t move at all. This is the reason the resulting state

should be the same as the one before the exchange. But in d = 2 spatial dimensions,

this is not the case: the worldlines of particles now wind around each other. When

particles are exchanged in an anti-clockwise direction, like this

16This possibility was first pointed out by Jon Magne Leinaas and Jan Myrheim, “On the Theory
of Identical Particles”, Il Nuovo Cimento B37, 1-23 (1977). This was subsequently rediscovered by
Frank Wilczek in “Quantum Mechanics of Fractional-Spin Particles”, Phys. Rev. Lett. 49 (14) 957
(1982).
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Anyons
Consider the worldline of 2d particles moving in spacetime
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the worldlines get tangled. They can’t be smoothly continued into the worldlines of

particles which are exchanged clockwise, like this:

Each winding defines a di↵erent topological sector. The essence of the loophole is that,

after a rotation in the two-dimensions, the wavefunction may retain a memory of the

path it took through the phase. This means that may have any phase ↵ in (3.21). In

fact, we need to be more precise: we will say that after an anti-clockwise exchange, the

wavefunction is

 (r
1

, r
2

) = ei⇡↵ (r
2

, r
1

) (3.22)

After a clockwise exchange, the phase must be e�i⇡↵. Particles with ↵ 6= 0, 1 are referred

to as anyons. This whole subject usually goes by the name of quantum statistics or

fractional statistics. But it has less to do with statistics and more to do with topology.

The Braid Group

Mathematically, what’s going on is that in dimensions d � 3, the exchange of parti-

cles must be described by a representation of the permutation group. But, in d = 2

dimensions, exchanges are described a representation of the braid group.

Suppose that we have n identical particles sitting along a line. We’ll order them

1, 2, 3, . . . , n. The game is that of a street-magician: we shu✏e the order of the parti-

cles. The image that their worldlines make in spacetime is called a braid. We’ll only

distinguish braids by their topological class, which means that two braids are consid-

ered the same if we can smoothly change one into the other without the worldlines

crossing. All such braidings form an infinite group which we call Bn

We can generate all elements of the braid group from a simple set of operations,

R
1

, . . . , Rn�1

where Ri exchanges the ith and (i + 1)th particle in an anti-clockwise

direction. The defining relations obeyed by these generators are

RiRj = RjRi |i� j| > 2

together with the Yang-Baxter relation,

RiRi+1

Ri = Ri+1

RiRi+1

i = 1, . . . , n� 1

This latter relation is most easily seen by drawing the two associated braids and noting

that one can be smoothly deformed into the other.
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space

time

exchange anti-clockwise exchange clockwise

• In d=2+1, these two worldline configurations cannot be continuously deformed into each other. 

• In d=2+1, it is therefore possible to have                                                   with any a

• These are called anyons. 

3.2.2 Introducing Anyons

We’re taught as undergrads that quantum particles fall into two categories: bosons

and fermions. However, if particles are restricted to move in a two-dimensional plane

then there is a loophole to the usual argument and, as we now explain, much more

interesting things can happen16.

Let’s first recall the usual argument that tells us we should restrict to boson and

fermions. We take two identical particles described by the wavefunction  (r
1

, r
2

).

Since the particles are identical, all probabilities must be the same if the particles are

exchanged. This tells us that | (r
1

, r
2

)|2 = | (r
2

, r
1

)|2 so that, upon exchange, the

wavefunctions di↵er by at most a phase

 (r
1

, r
2

) = ei⇡↵ (r
2

, r
1

) (3.21)

Now suppose that we exchange again. Performing two exchanges is equivalent to a

rotation, so should take us back to where we started. This gives the condition

 (r
1

, r
2

) = e2i⇡↵ (r
1

, r
2

) ) e2⇡i↵ = 1

This gives the two familiar possibilities of bosons (↵ = 0) or fermions (↵ = 1).

So what’s the loophole in the above argument? The weak point is the statement that

when we rotate two particles by 360� we should get back to where we came from. Why

should this be true? The answer lies in thinking about the topology of the worldlines

particles make in spacetime.

In d = 3 spatial dimensions (and, if you’re into string theory, higher), the path that

the pair of particles take in spacetime can always be continuously connected to the

situation where the particles don’t move at all. This is the reason the resulting state

should be the same as the one before the exchange. But in d = 2 spatial dimensions,

this is not the case: the worldlines of particles now wind around each other. When

particles are exchanged in an anti-clockwise direction, like this

16This possibility was first pointed out by Jon Magne Leinaas and Jan Myrheim, “On the Theory
of Identical Particles”, Il Nuovo Cimento B37, 1-23 (1977). This was subsequently rediscovered by
Frank Wilczek in “Quantum Mechanics of Fractional-Spin Particles”, Phys. Rev. Lett. 49 (14) 957
(1982).
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Quasiholes are Anyons

Claim: The quasi-hole in the quantum Hall effect is an anyon with

Fractional Statistics

To compute the statistics, we again take a particular quasi-hole — say ⌘
1

— on a

journey, this time on a path C which encloses one other quasi-hole, which we’ll take

to be ⌘
2

. The phase is once again given by (3.27) where, this time, both terms in the

expressions (3.25) and (3.26) for A⌘ and A⌘̄ contribute. The second term once again

gives the Aharonov-Bohm phase; the first term tells us about the statistics. It is

ei� = exp

✓
� 1

2m

I
C

d⌘
1

⌘
1

� ⌘
2

+ h.c.

◆
= e2⇡i/m

This is the phase that arises from one quasi-hole encircling the other. But the quantum

statistics comes from exchanging two objects, which can be thought of as a rotating by

180� rather than 360�. This means that, in the notation of (3.22), the phase above is

e2⇡i↵ = e2⇡i/m ) ↵ =
1

m
(3.29)

Note that for a fully filled Landau level, with m = 1, the quasi-holes are fermions.

(They are, of course, actual holes). But for a fractional quantum Hall state, the quasi-

holes are anyons.

Suppose now that we put n quasi-holes together and consider this as a single object.

What are its statistics? If we exchange two such objects, then each quasi-hole in the

first bunch gets exchanged with each quasi-hole in the second bunch. The net result is

that the statistical parameter for n quasi-holes is ↵ = n2/m (recall that the parameter

↵ is defined mod 2). Note that ↵ does not grow linearly with n. As a check, suppose

that we put m quasi-holes together to reform the original particle that underlies the

Hall fluid. We get ↵ = m2/m = m which is a boson for m even and a fermion for m

odd.

There’s a particular case of this which is worth highlighting. The quasi-particles in

the m = 2 bosonic Hall state have statistical parameter ↵ = 1/2. They are half-way

between bosons and fermions and sometimes referred to as semions. Yet two semions

do not make a fermion; they make a boson.

More generally, it’s tempting to use this observation to argue that an electron can

only ever split into an odd number of anyons. This argument runs as follow: if an

electron were to split into an even number of constituents n, each with statistical

parameter ↵, then putting these back together again would result in a particle with

statistical parameter n2↵. The argument sounds compelling. However, as we will see

in Section 4, there is a loop hole!
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Proof: Start with the wavefunction for N electrons and M quasi-holes
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Move one quasi-hole around the other and compute the Berry phase

However, whenever we compute the Berry phase, we should work with the normalised

states. We’ll call this state | i, defined by

| i = 1p
Z
|⌘

1

, . . . , ⌘Mi

where the normalisation factor is defined as Z = h⌘
1

, . . . , ⌘M |⌘
1

, . . . , ⌘Mi, which reads

Z =

Z Y
d2zi exp

 X
i,j

log |zi � ⌘j|2 +m
X
k,l

log |zk � zl|2 �
1

2l2B

X
i

|zi|2
!

(3.23)

This is the object which plays the role of the partition function in the plasma analogy,

now in the presence of impurities localised at ⌘i.

The holomorphic Berry connection is

A⌘(⌘, ⌘̄) = �ih | @
@⌘

| i = i

2Z

@Z

@⌘
� i

Z
h⌘| @

@⌘
|⌘i

But because |⌘i is holomorphic, and correspondingly h⌘| is anti-holomorphic, we have
@Z
@⌘

= @
@⌘
h⌘|⌘i = h⌘| @

@⌘
|⌘i. So we can write

A⌘(⌘, ⌘̄) = � i

2

@logZ

@⌘

Meanwhile, the anti-holomorphic Berry connection is

A⌘̄(⌘, ⌘̄) = �ih | @
@⌘̄

| i = +
i

2

@logZ

@⌘̄

So our task in both cases is to compute the derivative of the partition function (3.23).

This is di�cult to do exactly. Instead, we will invoke our intuition for the behaviour

of plasmas.

Here’s the basic idea. In the plasma analogy, the presence of the hole acts like

a charged impurity. In the presence of such an impurity, the key physics is called

screening18. This is the phenomenon in which the mobile charges – with positions zi
– rearrange themselves to cluster around the impurity so that its e↵ects cannot be

noticed when you’re suitably far away. More mathematically, the electric potential

due to the impurity is modified by an exponential fall-o↵ e�r/� where � is called the

Debye screening length and is proportional to
p
T . Note that, in order for us to use

this argument, it’s crucial that the artificial temperature (3.8) is high enough that the

plasma lies in the fluid phase and e�cient screening can occur.

18You can read about screening in the final section of the lecture notes on Electromagnetism.
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Figure 31: The path taken to compute

the fractional charge of the quasi-hole...

Figure 32: ...and the path to compute

the fractional statistics.

and

A⌘̄
i

= +
i

2m

X
j 6=i

1

⌘̄i � ⌘̄j
� i⌘i

4ml2B
(3.26)

where we stress that these expressions only hold as long as the quasi-holes do not get

too close to each other where the approximation of complete screening breaks down.

We can now use these Berry connections to compute both the charge and statistics of

the quasi-hole.

Fractional Charge

Let’s start by computing the charge of the anyon. The basic idea is simple. We pick

one of the quasi-holes — say ⌘
1

⌘ ⌘ — and move it on a closed path C. For now we

choose a path which does not enclose any of the other anyons. This ensures that only

the second term in the Berry phase contributes,

A⌘ =
i⌘̄

4ml2B
and A⌘̄ = � i⌘

4ml2B

After traversing the path C, the quasi-hole will return with a phase shift of ei�, given

by the Berry phase

ei� = exp

✓
�i

I
C

A⌘d⌘ +A⌘̄d⌘̄

◆
(3.27)

This gives the Berry phase

� =
e�

m~ (3.28)

where � is the total magnetic flux enclosed by the path C. But there’s a nice interpre-

tation of this result: it’s simply the Aharonov-Bohm phase picked up by the particle.

As described in Section 1.5.3, a particle of charge e? will pick up phase � = e?�/~.
Comparing to (3.28), we learn that the charge of the particle is indeed

e? =
e

m

as promised.
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More Advanced Topics: Half-Filling

http://www.damtp.cam.ac.uk/user/tong/qhe.html



The Fractional Quantum Hall Effect

At half-filling, it looks as if nothing strange is going on!

Closer examination shows that this is one of the most surprising regions of the diagram.

This is a metal!

Recent suggestion that there are relativistic Dirac fermions arising here! 



More Advanced Topics: Non-Abelian Anyons

http://www.damtp.cam.ac.uk/user/tong/qhe.html



Non-Abelian Anyons

4. Non-Abelian Quantum Hall States

The vast majority of the observed quantum Hall plateaux

Figure 39:

sit at fractions with odd denominator. As we’ve seen

above, this can be simply understood from the fermonic

nature of electrons and the corresponding need for anti-

symmetric wavefunctions. But there are some excep-

tions. Most prominent among them is the very clear

quantum Hall state observed at ⌫ = 5/2, shown in the

figure25. A similar quantum Hall state is also seen at

⌫ = 7/2.

The ⌫ = 5/2 state is thought to consist of fully filled

lowest Landau levels for both spin up and spin down

electrons, followed by a spin-polarised Landau level at

half filling. The best candidate for this state turns

out to have a number of extraordinary properties that

opens up a whole new world of interesting physics involving non-Abelian anyons. The

purpose of this section is to describe this physics.

4.1 Life in Higher Landau Levels

Until now, we’ve only looked at states in the lowest Landau level. These are charac-

terised by holomorphic polynomials and, indeed, the holomorphic structure has been

an important tool for us to understand the physics. Now that we’re talking about quan-

tum Hall states with ⌫ > 1, one might think that we lose this advantage. Fortunately,

this is not the case. As we now show, if we can neglect the coupling between di↵erent

Landau level then there’s a way to map the physics back down to the lowest Landau

level.

The first point to make is that there is a one-to-one map between Landau levels.

We saw this already in Section 1.4 where we introduced the creation and annihilation

operators a† and a which take us from one Landau level to another. Hence, given a

one-particle state in the lowest Landau level,

|mi ⇠ zme�|z|2/4l2
B

we can construct a corresponding state a†n|mi in the nth Landau level. (Note that the

counting is like the British way of numbering floors rather than the American: if you

go up one flight of stairs you’re on the first floor or, in this case, the first Landau level).
25This state was first obseved by R. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C.

Gossard and H. English “Observation of an Even-Denominator Quantum Number in the Fractional
Quantum Hall E↵ect”, Phys Rev Lett 59, 15 (1987). The data shown is from W. Pan et. al. Phys.
Rev. Lett. 83, 17 (1999), cond-mat/9907356.
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There is one more level in the quantum Hall story
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Look at the excitations above the n=5/2 state

Suppose that we have n excitations. These 
excitations do not have a unique ground state. 
Instead, the number of ground states is:
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Non-Abelian Anyons

• 2n.2 is a strange number

• If each particle had 2 different states (e.g. spin up or down) we would get 2n

The state is a global property of the system. If we only have access to a subset of the system, 
there’s no way of telling which state we’re in. 

This makes these quantum states robust…



Topological Quantum Computing

We describe a state by a 2n/2 dimensional vector y

Now move one particle around on a path
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with Upath a unitary matrix that depends on the path taken.

These particles are called non-Abelian anyons.

This allows us to do quantum computation without error!



Summary

There is a lot of interesting physics hiding in this diagram


