

Hans-H. Braun for the SwissFEL Team :: Paul Scherrer Institut

SwissFEL, the Hard X-ray Free Electron Laser Facility at PSI

ATS Seminar, CERN, 22 June 2017

PSI with accelerators, Aare river and Alps

X-ray Free Electron Laser SwissFEL the new large research facility at PSI

X-FEL principle

High energy electrons interact with periodic magnetic field of undulator magnet to build up an <u>extremely short and intense X-ray pulse</u>.

What is the X-FEL good for?

- \Rightarrow X-FEL allows for flash images with
 - space resolution on scale of atomic bonds
 - time resolution on scale of fastest chemical processes

observe structure

observe function

Louis Jacques Mandé Daguerre Portrait M. Sabatier-Blot, 1844

exposure time: few minutes

Eadweard Muybridge The Horse in Motion, 1872

Exposure time: few milliseconds

Laser at MPQ Munich

PAUL SCHERRER INSTITUT Key enabling technologies for X-FELs

Magnetic bunch compression

Free electron laser, John Madey,

Higher accelerator fields Better power to field efficiency during acceleration Restrict acceleration Better power to field efficiency during acceleration Restrict acceleration Restric

Linear collider R&D

Light source Horizontal focusing mirror Focal point Vertical focusing mirror

High precision X-ray optics

Kirkpatric-Baez(K-B) optical system (Total reflection and elliptical mirror)

Undulator magnets

SASE

=Self amplified spontaneous emission

NSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNS SNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSN

SwissFEL in a nutshell

ARAMIS

Hard X-ray FEL, $\lambda = 0.1$ -0.7 nm Linear polarization, variable gap, in-vacuum undulators First users 2017

ATHOS

Soft X-ray FEL, $\lambda = 0.7$ -7.0 nm Variable polarization, Apple II undulators First users 2020

Main parameters

Wavelength from	1 Å - 70 Å
Photon energy	0.2-12 keV
Pulse duration	1 fs - 20 fs
e ⁻ Energy	5.8 GeV
e ⁻ Bunch charge	10-200 pC
Repetition rate	100 Hz

Date of first x-rays \$280 \$1000 \$370 \$1600 \$400 Cost (in U.S. millions) \$415 6 7 9 8 3 4 Number of instruments Max. electron energy (GeV) 14.3 4.5 8.5 17.5 5.8 10 Min. pulse duration (femtoseconds) 15 15 5 2 30 10 Pulses per second 120 1,000,000 60 27.000 100 60

*SACLA is the Spring-8 Angstrom Compact free electron Laser and PAL-XFEL is the Pohang Accelerator Laboratory X-ray Free Electron Laser

SwissFEL building evolution I

May 2013 Construction site after forest clearance

SwissFEL building evolution II construction site, July 2014

SwissFEL building evolution III completed building, Jan'16

Jan'16, wild game crossing commissioned with first users

SwissFEL technical highlights II

C-band Structure Cups: production by VDL-ETG Switzerland machined "on tune"

Typical examples of metrology on a structure: on top histogram iris diameter , on bottom histogram iris cell diameter

2 m C-band structure: longitudinal field distribution

C-band BOC Pulse compressor

RF design:

- ✓ Single cavity
- ✓ Whispering gallery mode
- ✓ intrinsic high Q>200000

Mechanical design:

Simple and robust design:

- ✓ Inner body from a single piece
- ✓ Two brazing steps
- ✓ Machined on tune

PAUL SCHERRER INSTITUT

Comparison power consumption for RF plants

Cost optimization for SwissFEL linac

Advantage of C-band is in real-estate needs and electricity consumption

C-band LLRF prototype system

Two types were successfully qualified at PSI

50 MW / 3 μ s RF, 370kV / 344A / < 15 ppm voltage stability pulse to pulse @ 100 Hz

AMPEGON

13 modulators (Linac 1, Linac 2)4 in operation, 4 under commissioning5 expected July - October

- 6 K2 type in operation (injector)
- 1 K2-3 type (Linac 3) under commissioning
- 12 K2-3 expected July November

⇒ delivery schedule drives commissioning schedule

Energy recovery for SwissFEL

Grundwasserkarte

Wärmerückgewinnung

SwissFEL technical highlights III

SwissFEL installation progress

Installation of last Linac girder: Sept. 13, 2016

SwissFEL in 100 seconds

Commissioning Progress in 2016

Date	achievement
August 24	First free electrons from gun with 7.9MeV
September 7	First electrons to injector beam dump
September 8	First acceleration with one C-band module
October 7	Beam line injector to main dump completed and under vacuum
November 11	First beam transport through undulators to main dump
December 2	First lasing at 345 MeV, 24 nm
December 5	Inauguration ceremony & party

First lasing at moderate wavelength on 2.12.2016

Obtained with only 345 MeV beam energy, signal measured with Si-Diode (half the injector RF + 1 main linac C-band RF station) Mainly a systems test!

5.12.2016 SwissFEL, the Inauguration

Program 2017 & 2018

2017

Winter: Shutdown for installations

Spring: Ramp up beam energy to 3GeV

Summer: Lasing at 3 keV

Autumn: First pilot experiments at 3 keV

2018

Winter: Ramp-up beam energy to 5.8 GeV Spring: Lasing & pilot experiments at 8 keV Summer: Lasing at 12 keV Autumn: Start of regular user operation

Commissioning progress May 15, 2017

First Lasing in nominal SwissFEL wavelength range (0.1-5.0 nm)!

Establishing SASE at 4.1nm

- careful set-up of gun and cathode laser
- careful transverse optics measurement and matching in injector region
- computed optics in linac and undulators
- set-up of bunch compression in BC1 with deflecting cavity
- steering according to BPM centers
- so far no special alignment procedures were required in undulator region
- measured pulse energy is consistent with theoretical expectations
- ⇒ We are positive that with the addition of more RF stations we can proceed to shorter wavelength

Photon Beamlines and Experiments

Front-End

Optical hutch

ESA hutch

ESB hutch

ARAMIS beamline

ATHOS

Soft X-ray FEL, λ =0.65-5.0 nm

full polarization control withU38 Apple-X Undulators

Switch Yard: already installed in phase 1

Extraction done at constant energy of 3 GeV

PAUL SCHERRER INSTITUT UE38 Apple X undulator for ATHOS, prototype construction has started

SwissFEL control room photo gallery (selection)

