Introduction

SM Higgs Properties

Rare and exotic decays

BSM Searches

Conclusion

Higgs at the LHC: SM properties and BSM searches

Anne-Marie Magnan (Imperial College London) on behalf of the ATLAS and CMS Collaborations

ATLAS

17/04/2018 hird Alpine LHC Physics Summit

A.-M. Magnan

CMS

liggs @ LHC, ALPS2018

Outline			Impe Lonc	rial College Jon
ntroduction	SM Higgs Properties	Rare and exotic decays	BSM Searches	Conclusion

Introduction **SM Higgs Properties** Rare and exotic decays

- Rare decays
- Exotic decays
- Decays to lighter (pseudo)scalar particles
- **BSM Searches**
 - Low mass
 - High mass
 - Di-Higgs
 - Charged Higgs
- Conclusion

Higgs Production at the LHC

- New scalar particle discovered in 2012.
- Since then, data continue to demonstrate it is very much like the SM Higgs boson.
- 4 main production modes.
- Numerous decay channels.

Introduction

SM Higgs Properties

Rare and exotic decays

BSM Searches

Conclusion

Imperial College London

The ATLAS and CMS detectors

- Discovery with $\gamma\gamma$ and VV final states in July 2012, with 7+8 TeV data, ATLAS, Phys. Lett. B 716 (2012) 1, CMS PLB 716 (2012) 30.
- Discovery of coupling to τ leptons in Run I, JHEP 08 (2016) 045, and by single experiment in July 2017 with 7+8+13 (2016) TeV datasets: CMS Phys. Lett. B 779 (2018) 283.
- Evidence of coupling to b quarks summer 2017 with 7+8+13 (2016) TeV datasets: CMS Phys. Lett. B 780 (2018) 501, ATLAS JHEP 12 (2017) 024.
- Evidence of coupling to top quark by ATLAS in Dec 2017 with 13 (2016) TeV dataset: Phys. Rev. D 97 (2018) 072003.
- Discovery of coupling to top quarks last week by CMS with 7+8+13 (2016) TeV datasets: arXiv:1804.02610.

Introdu	uction

SM Higgs Propertie

Rare and exotic decays

BSM Searches

Conclusion

Outline

Introduction

SM Higgs Properties

- Rare and exotic decays
- Rare decays
- Exotic decays
- Decays to lighter (pseudo)scalar particles
- BSM Searches
 - Low mass
 - High mass
 - Di-Higgs
 - Charged Higgs
- Conclusion

(

Decay ch	annels		CMS	Imperial College
Introduction	SM Higgs Properties	Rare and exotic decays	BSM Searches	Conclusion

Measurements

- $\gamma\gamma$: mass, coupling, spin, differential measurements.
- I ZZ→4I: mass, spin, parity, coupling, differential measurements.
- $\tau\tau$: coupling.
- bb, WW: coupling.
- Others: rare decays like cc, $\mu\mu$, $II\gamma$, $(J/\Psi,\phi,\rho)+\gamma$.

Disclaimer

- Lots of precision measurements with 7+8 TeV datasets.
- Choice to concentrate on a subset of recent results with 2016 13 TeV data.

- decay to ZZ to 4I and $\gamma\gamma$: best resolutions and narrow mass distributions.
- Runl legacy: ATLAS+CMS combination Phys. Rev. Lett. 114 (2015) 191803
- RunII updates: ATLAS-CONF-2017-046 and CMS JHEP 11 (2017) 047.

LHC Run I	$125.09 \pm 0.21 \pm 0.11 \text{ GeV}$
ATLAS 2016	$124.98 \pm 0.19 \pm 0.21 \text{ GeV}$
CMS 2016	$125.26 \pm 0.20 \pm 0.08 \text{ GeV}$

Constraints on anomalous couplings

0

ntroduction	SM Higgs Properties	Rare and exotic decays	BSM Searches	Conclusion
Coupling	measurements			Imperial Colleg London
		Runl	I ATLAS	
Runl A	TLAS+CMS		ggF VBF VH	ttH

	ggF	VBF	VH	ttH
H→ZZ→4I	•	•	•	•
Н→үү	•	•	•	•
H→WW	•	•		•
H→bb		•	•	•
Η→ττ				•
Η→μμ	•	•		
H→inv			•	

RunII CMS					
	ggF	VBF	VH	ttH	
H→ZZ→4I	•	•	•	•	
Н→үү	•	•	•	•	
H→WW	•	•	•	•	
H→bb	•		•	•	
Η→ττ	•	•		•	
Η→μμ	•	•			
H→inv	•	•	•		

e

A few sele	ected Highlights	in H→bb		nperial College ondon
Introduction 000	SM Higgs Properties	Rare and exotic decays	BSM Searches	Conclusion

A few selected Highlights in $H \rightarrow bb$

JHEP 12 (2017) 024

- $\mu_{7.8,13TeV}^{bb} = 0.9^{+0.18}_{-0.18}(stat)^{+0.21}_{-0.19}(syst)$
- 3.5σ obs (3.0σ exp.)

Phys. Rev. Lett. 120 (2018) 071802

- Dominant QCD background from data.
- Boosted jet of pT > 450 GeV using ۰ substructure techniques.

0.0

-0.5

15 20 2 σ_{qqF} ℬ_{H→WW}* [pb] 0.8

0.7

1.4

1.1

.

Runl signal strength

 $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat)} {}^{+0.04}_{-0.04} \text{ (expt)} {}^{+0.03}_{-0.03} \text{ (thbgd)} {}^{+0.07}_{-0.06} \text{ (thsig)}$

13/41

Introduction

Rare and exotic decays

BSM Searches

Conclusion

Imperial College

London

 $H \rightarrow ZZ^* \rightarrow 4$

Combined

 $H \rightarrow \gamma \gamma$

Differential xs: $H \rightarrow \gamma \gamma$ and $H \rightarrow 4I$

- ggF, VBF, VH with Powheg-box v2, ttH, bbH with Madgraph5 aMC@NLO.
- Normalised to latest calculations (ggF N3LO,...)
- Stat uncertainties dominant: 20-30%.
- Good agreement $\gamma\gamma$ vs 4l, and with predictions.
- CMS $h \rightarrow \gamma \gamma$: HIG-16-040. HIG-17-025,
- CMS h to 4I: HIG-16-041

- From multileptons analysis, 13 TeV data.
- Targetting WW, ZZ, $\tau\tau$ decays.
- Also available for combination: bb, *γγ* decays.

- From 88 categories combined, 7, 8 and 13 TeV data combined.
- Targetting WW, ZZ, ττ, bb, γγ decays.

ttH combination results

JHEP 05 (2016) 160, Phys. Rev. D 97 (2018) 072003

16.45 by Daniele Madaffari

 $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16} (\text{stat})^{+0.17}_{-0.15} (\text{expt})^{+0.14}_{-0.13} (\text{bkg th})^{+0.15}_{-0.07} (\text{sig th})$

London arXiv:1804.02610

5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 35.9 fb⁻¹ (13 TeV)

Obergurgl, 17/04/2018 18 / 41

Higgs @ LHC, ALPS2018

_

Introduction

SM Higgs Properties

Rare and exotic decays

BSM Searches

Conclusion

VH, H(125)	$ ightarrow m car{c}$		CMS	Imperial College
Introduction	SM Higgs Properties	Rare and exotic decays	BSM Searches	Conclusion

Source	$\sigma/\sigma_{\rm tot}$
Statistical	49%
Floating Z + jets normalization	31%
Systematic	87%
Flavor tagging	73%
Background modeling	47%
Lepton, jet and luminosity	28%
Signal modeling	28%
MC statistical	6%

- Observed (exp.) upper limit $\sigma < 2.7(3.9^{+2.1}_{-1.1})$ pb.
- Observed (exp.) signal strength $\mu < 110(150^{+80}_{-40})$.

Phys. Rev. Lett. 119 (2017) 051802

- ATLAS observed (expected) upper limit is 2.8 (2.9) times the SM prediction
- CMS observed (expected) upper limit is 2.64 (1.89) times the SM prediction

смз

5% CL Upper limit on

Preliminar

 $H \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$

(5.2) times SM.

(2.0) times SM.

35.9 fb⁻¹ (13 TeV

130 m_H [GeV]

- · Expected

± 1 st. dev.

CMS

CLU

ATLAS: observed (expected) 95% upper limit 6.6

CMS: observed (expected) 95% upper limit 3.9

 Interpretation also for high mass spin-0 or spin-2 resonances.

2.5

1/N dN/d∆∲_{Zŕ.jj} [raď^{*}]

ATLAS

 $N_{iets} \ge 2$

1.5

A.-M. Magnan

√s = 13 TeV, 36.1 fb⁻¹

115 GeV < m₂₀ < 170 GeV

JHEP 10 (2017) 112

Data

Z+v

Z+jets

VBF m_H = 125 GeV ggF m_H = 125 GeV

> _____3 ∆φ_{Zγ,jj} [rad]

۲

•

CMS-PAS-HIG-17-007

 $H \rightarrow Z\gamma \rightarrow H^{+}$

35.9 fb⁻¹/13 Te

130 m₁₁ [GeV]

Observe

Expected

1 st. dev.

± 2 st. dev.

Introduction	SM Higgs Properties	Rare and exotic decays	BSM Searches	Conclusion
$\mathbf{H} \rightarrow \phi \gamma, \rho \gamma$	γ			Imperial College London
Test of a	couplings to light		arXiv:171	2.02758
quarks. Comple $H \rightarrow J/V$ Phys. R 121801 341	menting Run I $\Psi + \gamma$ searches lev. Lett. 114 (2015) , PLB 753 (2016)	h h -	\\\\ \\\	γ/Z ⊗ √ γ
	ATLAS 600 600 600 600 600 600 600 60	ATLAS GF-G Tarly, 22.3 (b ⁺) HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	$\label{eq:barrier} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Expected Observed 4.2 ^{+1.8} _{-1.2} 4.8 1.3 ^{+0.4} _{-0.4} 0.9 8.4 ^{+1.3} _{-4.4} 8.8 33 ⁺³ ₋₉ 25

Data / Fit 0

110

120 130 m_{π'πγ} [GeV]

H 1.2 / ∎ 0.8 D

120 130 m_{K'Kγ} [GeV]

95% CL limit on $B(H \rightarrow \mu \tau)$, %

uτ

A N.4	Manua	
A -IVI	Madria	111
	magne	

1000

2000

3000

4000

5000 m_{ji} [GeV]

Analysis

Cut-and-count

ATLAS PLB 776 (2017) 318 | 0.67

Shape

Observed limit

0.28

0.53

Expected limit

0.27

0.39

DM interpretation: talk by J. Butler Thu 10.10

±1 s.d.

[0.15-0.29] [0.11-0.39]

[0.20-0.38] [0.15-0.51]

|[0.28-0.56] | [0.21-0.77]|

Obergurgl, 17/04/2018 25/41

Signal composition

52% ggH, 48% ggH

81% aaH, 19% ggH

Z(II)H

A.-M. Magnan

Obergurgl, 17/04/2018 26 / 41

$H_{125} ightarrow$ aa ightarrow bbau au

CMS-PAS-HIG-17-024

Strategy

- NEW! Large BR in 2HD+S models.
- $e\mu$, $e\tau_{had}$, $\mu\tau_{had}$ channels.
- Fit $m_{\tau\tau}^{vis}$ in bins of $m_{b\tau\tau}^{vis}$.

Introdu	uction

SM Higgs Properties

Rare and exotic decays

BSM Searches

Conclusion

VBF $H_{125} \rightarrow aa \rightarrow gg \gamma \gamma$

Strategy

- NEW! Target models with fermionic decays suppressed, higher BR than 4γ channel.
- VBF production: 2 jets with M_{ij} > 500 GeV.
- Higgs decay: 2 jets + 2 γ , 100 <m $_{\gamma\gamma jj}$ < 150 GeV.
- ABCD method for background estimation.

 $32.5 \text{ GeV} < m_{\pi\pi} < 47.5 \text{ GeV}$

 $42.5 \text{ GeV} < m_{\gamma\gamma} < 57.5 \text{ GeV}$

 $52.5 \text{ GeV} < m_{\gamma\gamma} < 65.0 \text{ GeV}$

 $35 \text{ GeV} \le m_a \le 45 \text{ GeV}$

 $45 \text{ GeV} \le m_a \le 55 \text{ GeV}$

 $55 \text{ GeV} \le m_a \le 60 \text{ GeV}$

.

16

20

24

Quilling			CMS	Imperial College
Introduction	SM Higgs Properties	Rare and exotic decays	BSM Searches	Conclusion

Outline

- Rare and exotic decays
- Rare decays
- Exotic decays
- Decays to lighter (pseudo)scalar particles
- BSM Searches
 - Low mass
 - High mass
 - Di-Higgs
 - Charged Higgs
- Conclusion

London

A.-M. Magnan

4

- Extensions of SM analyses looking for high mass (pseudo)scalars.
- More on H $\rightarrow \tau \tau$ by Michaela Mlynarikova (ATLAS) and Markus Spanring (CMS) this afternoon.
- Overall: no significant excess found, limits set in various BSM models.

Channel	ATLAS	CMS
$H \rightarrow ZZ$	arXiv:1712.06386	arXiv:1804.01939
$H \rightarrow WW (II \nu \nu)$	Eur. Phys. J. C 78 (2018) 24	JHEP 10 (2015) 144 (Runl)
$H \rightarrow WW, WZ (I\nu qq)$	JHEP 03 (2018) 042	JHEP 10 (2015) 144 (Runl)
$H \rightarrow \tau \tau$	JHEP 01 (2018) 055	arXiv:1803.06553

Dedicated 2HDM (+S) searches: detailed in following slides.

Channel	ATLAS	CMS
$H \rightarrow \gamma \gamma$	-	CMS-PAS-HIG-17-013
$H/A \rightarrow ZA/H$	arXiv:1804.01126	Phys. Lett. B 759 (2016) 369 (Runl)
A→WH(125), ZH(125)	arXiv:1712.06518	-

• Local (global) significance @ 95.4 GeV : 2.8 (1.3) σ .

Higgs @ LHC, ALPS2018

Obergurgl, 17/04/2018

33/41

A to WH(125), ZH(125)

- W \rightarrow I ν , Z \rightarrow II, $\nu\nu$, and H(125) \rightarrow $b\bar{b}$.
- Resolved and merged topologies.
- Interpretations in heavy-vector-triplet and 2HDM.

A.-M. Magnan

Overview o	f di-Higgs sear	ches	CMS	mperial College ondon
Introduction	SM Higgs Properties	Rare and exotic decays	BSM Searches	Conclusion

- HH in SM: small cross sections O
 30 fb at 13 TeV.
- HH in BSM: resonant production via new particles, and non-resonant enhancements described in Effective Field Theories (EFT).
- Non-resonant SM Run I limits: ATLAS 70 (48) × SM (Phys. Rev. D 92, 092004 (2015)), CMS 43 (47) × SM (Phys. Rev. D 96, 072004 (2017).

13 TeV results

Channel	ATLAS	CMS	
4b	ATLAS-EXOT-2016-31	CMS-PAS-HIG-17-009	
4b boosted	-	arXiv:1710.04960	
2b2W		JHEP 01 (2018) 054	
2b2 au		Phys. Lett. B 778 (2018) 101	
$2b2\tau$ boosted		CMS-PAS-B2G-17-006	
$2b2\gamma$	ATLAS-CONF-16-004	CMS-PAS-HIG-17-008	
2γ2W	ATLAS-CONF-16-071	-	

m, [GeV]

37 / 41

Summary for non-resonant HH searches

Courtesy of M. Kagan, Moriond EWK

- Reaching $O(20 \times SM)$.
- Can expect O(10× SM) by end of Run II.

London

Overview o	f searches for ch	arged Higgs bosor	ıs 🎽	Imperial College London
Introduction 000	SM Higgs Properties	Rare and exotic decays	BSM Searches ○○○○○○○●	Conclusion

Search	ATLAS	CMS
$H^\pm o c ar{s}$ 8 TeV	Eur. Phys. J. C, 73 6 (2013) 2465	JHEP 12 (2015) 1
$H^\pm o car{b}$ 8 TeV	-	CMS-PAS-HIG-16-030
$H^\pm o tar{b}$ 8 TeV	JHEP 03 (2016) 127	JHEP 11 (2015) 018
$H^{\pm} ightarrow au u$ 13 TeV	Phys. Lett. B 759 (2016) 555-574	CMS-PAS-HIG-16-031
$H^\pm o tar{b}$ 13 TeV	ATLAS-CONF-2016-089	-
$H^{\pm} \rightarrow WZ$	Phys. Rev. Lett. 114, 231801 (2015)	PRL 119 (2017) 141802
$H^{\pm\pm} \rightarrow III(I)$ 13 TeV	Eur. Phys. J. C 78 (2018) 199	CMS-PAS-HIG-16-036
$H^{\pm\pm} \to W^{\pm}W^{\pm}$	-	arXiv:1709.05822

Talk by Margherita Ghezzi today 17:45

A.-M. Magnan

Higgs @ LHC, ALPS201

Conclusio	n		CMS	mperial College
Introduction	SM Higgs Properties	Rare and exotic decays	BSM Searches	Conclusion ●O

SM Higgs:

- Observations of all production modes, including ttH.
- Observations of "the 5" main decay channels 3σ evidence for bbbar.
- Completing coupling measurements in all production modes and "the 5" decay channels.
- Reaching 2.6×SM in rare decay to μμ, 4×SM in rare decay to Zγ
- Exploring decays to ccbar and meson+γ...
- ... and many exotic decay modes....
- BSM Higgs:
 - Constraints from visible decay increasingly strong.
 - Many different searches for signs of New Physics.
 - At the moment constraining more and more the parameter space.
 - In the objective "leave no stone unturned", good complementarity between ATLAS and CMS.
- Futur Prospects: see talk later this morning on "Higgs and SM at the HL-LHC" by Tae Jeong Kim.

But first 2018 stable beam LHC data expected this morning!!

BACKUPS

A.-M. Magnan

Higgs @ LHC, ALPS2018

Obergurgl, 17/04/2018 42 / 41

Imperial College

Resolved couplings in the κ framework

- Assuming no BSM contributions ٠
- ۰ κ_Z and κ_b can go negative, not κ_W .

Di-Higgs

Imperial College London

Effective couplings in the κ framework

CMS Grand combination 2016

Analysis	Reference
H→ZZ→4I	JHEP 11 (2017) 047
Н→үү	arXiv:1804.02716
H→WW	HIG-16-042
VH→bb	PLB 780 (2018) 501
Η→ττ	PLB 779 (2018) 283
H→μμ (*)	HIG-17-019
Boosted H→bb	PRL 120 (2018) 071802
ttH→WW/ZZ/ττ	arXiv:1803.05485
ttH→bb (leptonic)	HIG-17-026
ttH→bb (hadronic)	arXiv:1803.06986
H→invisible (*)	HIG-17-023

Signal strength measurements

 $\mu = 1.17^{+0.10}_{-0.10} = 1.17^{+0.06}_{-0.06} \text{ (stat.) } ^{+0.06}_{-0.05} \text{ (sig. th.) } ^{+0.06}_{-0.06} \text{ (other sys.)}$

ttH measurement in Run-1:

Production process	ATLAS+CMS	ATLAS	CMS
μ_{ttH}	$2.3 \substack{+0.7 \\ -0.6}$	$1.9 \substack{+0.8 \\ -0.7}$	$2.9^{+1.0}_{-0.9}$
	$\binom{+0.5}{-0.5}$	$\begin{pmatrix} +0.7 \\ -0.7 \end{pmatrix}$	$\begin{pmatrix} +0.9 \\ -0.8 \end{pmatrix}$

 Extremely optimistic back-of the-envelope projection of CMS expected Run-1 precision (84%) to 13 TeV luminosity and 3.8x σ_{ttH}:
 ~35%, compared to actual precision: 28%

Achieved by:

- Targeting additional final states, e.g. all-hadronic ttHbb, leptons + τ_h
- Improved analysis techniques, e.g. use of matrixelement method / deep neural networks

Best overall constraint is obtained by a combined measurement with Run-1 data...

A. Gilbert (CERN)

Production		Decay mode													
process	ş	ggH VBF			WH		ZH			ttH					
	Best fit	Uncer	tainty	Best fit	Unce	rtainty	Best fit	Uncer	rtainty	Best fit	Uncertainty		Best fit	Uncertainty	
	value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.
$H \to b b$	$2.51 \begin{array}{c} +2.44 \\ -2.01 \end{array}$	$^{+1.96}_{-1.92}$	$^{+1.46}_{-0.59}$		-		$1.73 \begin{array}{c} +0.70 \\ -0.68 \end{array}$	$^{+0.53}_{-0.51}$	$^{+0.46}_{-0.44}$	$0.99 \begin{array}{c} +0.48 \\ -0.45 \end{array}$	$^{+0.41}_{-0.40}$	$^{+0.23}_{-0.20}$	$0.91 \begin{array}{c} +0.45 \\ -0.43 \end{array}$	$^{+0.24}_{-0.24}$	$^{+0.38}_{-0.36}$
	$\binom{+2.06}{-1.86}$	$\binom{+1.86}{-1.83}$	$(^{+0.89}_{-0.33})$		-		(+0.69 -0.67	$\binom{+0.53}{-0.51}$	$\binom{+0.45}{-0.44}$	$\binom{+0.46}{-0.44}$	$\binom{+0.40}{-0.39}$	$\binom{+0.23}{-0.20}$	$\binom{+0.44}{-0.42}$	$\binom{+0.24}{-0.23}$	$\binom{+0.37}{-0.35}$
$H \to \tau \tau$	$1.05 \begin{array}{c} +0.53 \\ -0.47 \end{array}$	$^{+0.25}_{-0.25}$	$^{+0.47}_{-0.40}$	$1.12 \begin{array}{c} +0.4 \\ -0.4 \end{array}$	5 +0.37 3 -0.35	$^{+0.25}_{-0.25}$		-			_		$0.22 \ ^{+1.03}_{-0.88}$	$^{+0.80}_{-0.71}$	$^{+0.65}_{-0.52}$
	$\binom{+0.45}{-0.41}$	$\binom{+0.23}{-0.23}$	$\binom{+0.38}{-0.34}$	(+0.4	$\binom{5}{3}\binom{+0.37}{-0.35}$	$) \begin{pmatrix} +0.25 \\ -0.24 \end{pmatrix}$		-			-		$\binom{+0.98}{-0.87}$	$\binom{+0.80}{-0.73}$	$\binom{+0.56}{-0.47}$
$\mathrm{H} \to \mathrm{W}\mathrm{W}$	$1.35 \begin{array}{c} +0.20 \\ -0.19 \end{array}$	$^{+0.12}_{-0.12}$	$^{+0.17}_{-0.15}$	$0.28 \ ^{+0.6}_{-0.6}$	$\begin{array}{ccc} 4 & +0.58 \\ 0 & -0.53 \end{array}$	$^{+0.28}_{-0.28}$	$3.91 \begin{array}{c} +2.26 \\ -2.01 \end{array}$	$^{+1.89}_{-1.72}$	$^{+1.24}_{-1.05}$	$0.96 \begin{array}{c} +1.81 \\ -1.46 \end{array}$	$^{+1.74}_{-1.44}$	$^{+0.51}_{-0.22}$	$1.60 \ ^{+0.66}_{-0.59}$	$^{+0.40}_{-0.39}$	$^{+0.52}_{-0.45}$
	$\binom{+0.17}{-0.16}$	$\left(^{+0.10}_{-0.10}\right)$	$\left(^{+0.13}_{-0.12}\right)$	$(^{+0.e}_{-0.5})$	$\binom{3}{8}\binom{+0.57}{-0.53}$	$) \begin{pmatrix} +0.26 \\ -0.25 \end{pmatrix}$	$\binom{+1.47}{-1.19}$	$\binom{+1.32}{-1.06}$	$\left(^{+0.64}_{-0.54}\right)$	$\binom{+1.67}{-1.37}$	$\binom{+1.61}{-1.35}$	$\left(^{+0.45}_{-0.20} ight)$	$\binom{+0.56}{-0.53}$	$\binom{+0.38}{-0.38}$	$(^{+0.41}_{-0.38})$
$H \to Z Z$	$1.22 \ ^{+0.24}_{-0.21}$	$^{+0.20}_{-0.19}$	$^{+0.12}_{-0.10}$	-0.09 $^{+1.0}_{-0.7}$	2 +1.00 6 -0.72	+0.21 -0.22	$0.00 \begin{array}{c} +2.32 \\ +0.00 \end{array}$	$^{+2.31}_{-0.00}$	$^{+0.28}_{-0.00}$	$0.00 \begin{array}{c} +4.26 \\ +0.00 \end{array}$	$^{+4.19}_{-0.00}$	$^{+0.81}_{-0.00}$	$0.00 \begin{array}{c} +1.51 \\ +0.00 \end{array}$	$^{+1.48}_{-0.00}$	$^{+0.31}_{-0.00}$
	$\binom{+0.22}{-0.20}$	$\left(^{+0.20}_{-0.19}\right)$	$(^{+0.10}_{-0.07})$	$\binom{+1.2}{-0.9}$	$\binom{7}{9}\binom{+1.25}{-0.97}$	$) \begin{pmatrix} +0.24 \\ -0.21 \end{pmatrix}$	(+4.45	$\binom{+4.41}{-0.99}$	$\left(^{+0.57}_{-0.00}\right)$	$\binom{+7.58}{-0.99}$	$\binom{+7.46}{-0.99}$	$\left(^{+1.33}_{-0.00}\right)$	(+2.95) (-0.99)	$\binom{+2.89}{-0.99}$	$(^{+0.59}_{-0.00})$
$H \rightarrow \gamma \gamma$	$1.15 \begin{array}{c} +0.21 \\ -0.18 \end{array}$	$^{+0.17}_{-0.15}$	$^{+0.13}_{-0.10}$	$0.68 \begin{array}{c} +0.5 \\ -0.4 \end{array}$	9 +0.49 5 -0.42	$^{+0.32}_{-0.18}$	$3.71 \begin{array}{c} +1.49 \\ -1.35 \end{array}$	$^{+1.45}_{-1.33}$	$^{+0.35}_{-0.23}$	$0.00 \begin{array}{c} +1.13 \\ +0.00 \end{array}$	$^{+1.13}_{-0.00}$	$^{+0.09}_{-0.00}$	$2.14 \ ^{+0.87}_{-0.74}$	$^{+0.81}_{-0.72}$	$^{+0.31}_{-0.14}$
	(+0.17) (-0.16)	$\left(^{+0.14}_{-0.14}\right)$	$(^{+0.11}_{-0.08})$	(+0.5	$\binom{9}{8}\binom{+0.48}{-0.43}$	$) \begin{pmatrix} +0.34 \\ -0.21 \end{pmatrix}$	(+1.29 -1.16	$\binom{+1.28}{-1.16}$	$\left(^{+0.13}_{-0.06}\right)$	(+2.52)	$\binom{+2.50}{-1.04}$	$\left(^{+0.24}_{-0.00}\right)$	(+0.72) (-0.62)	$(^{+0.71}_{-0.62})$	$(^{+0.15}_{-0.06})$

							P	roducti	ion pro	cess								
g	gН			1	VBF			1	WH				ZH				ttH	
Best fit	Uncer	rtainty	Be	st fit	Uncer	rtainty	Be	st fit	Unce	rtainty	Be	st fit	Uncer	tainty	Be	st fit	Uncer	tainty
value	Stat.	Syst.	va	lue	Stat.	Syst.	V	alue	Stat.	Syst.	v	alue	Stat.	Syst.	Vá	alue	Stat.	Syst.
$1.23 \ \ {}^{+0.14}_{-0.13}$	$^{+0.08}_{-0.08}$	$^{+0.12}_{-0.10}$	0.73	$^{+0.30}_{-0.27}$	$^{+0.24}_{-0.23}$	$^{+0.17}_{-0.15}$	2.18	$^{+0.58}_{-0.55}$	$^{+0.46}_{-0.45}$	$^{+0.34}_{-0.32}$	0.87	$^{+0.44}_{-0.42}$	$^{+0.39}_{-0.38}$	$^{+0.20}_{-0.18}$	1.18	$^{+0.31}_{-0.27}$	$^{+0.16}_{-0.16}$	$^{+0.26}_{-0.21}$
$\binom{+0.11}{-0.11}$	$\binom{+0.07}{-0.07}$	$\left(^{+0.09}_{-0.08}\right)$		$\binom{+0.29}{-0.27}$	$\left(^{+0.24}_{-0.23}\right)$	$(^{+0.16}_{-0.15})$		$\binom{+0.53}{-0.51}$	$\binom{+0.43}{-0.42}$	$\binom{+0.30}{-0.29}$		$\binom{+0.42}{-0.40}$	$\left(^{+0.38}_{-0.37}\right)$	$\left(^{+0.19}_{-0.17}\right)$		$\binom{+0.28}{-0.25}$	$\binom{+0.16}{-0.16}$	$(^{+0.23}_{-0.20})$

								Deca	y mode	9								
H	$\rightarrow bb$			Н	$\rightarrow \tau \tau$			Н-	→ WW			Н	\rightarrow ZZ			Н	$\rightarrow \gamma \gamma$	
Best fit	Uncer	tainty	Be	st fit	Uncer	tainty	Be	st fit	Uncer	rtainty	Be	st fit	Uncer	tainty	Be	st fit	Uncer	rtainty
value	Stat.	Syst.	v	alue	Stat.	Syst.	va	alue	Stat.	Syst.	v	alue	Stat.	Syst.	va	alue	Stat.	Syst.
$1.12 \ ^{+0.29}_{-0.28}$	$^{+0.19}_{-0.19}$	$^{+0.22}_{-0.20}$	1.02	$^{+0.26}_{-0.24}$	$^{+0.15}_{-0.15}$	$^{+0.21}_{-0.19}$	1.28	$^{+0.17}_{-0.16}$	$^{+0.09}_{-0.09}$	$^{+0.14}_{-0.13}$	1.06	$^{+0.19}_{-0.17}$	$^{+0.16}_{-0.15}$	$^{+0.10}_{-0.08}$	1.20	$^{+0.17}_{-0.14}$	$^{+0.12}_{-0.11}$	$^{+0.12}_{-0.09}$
$\binom{+0.28}{-0.27}$	$(^{+0.19}_{-0.18})$	$(^{+0.21}_{-0.20})$		$\binom{+0.24}{-0.23}$	$\left(^{+0.15}_{-0.14}\right)$	$(^{+0.19}_{-0.17})$		$\binom{+0.14}{-0.13}$	$\left(^{+0.09}_{-0.09}\right)$	$\binom{+0.11}{-0.10}$		$(^{+0.18}_{-0.16})$	$(^{+0.15}_{-0.14})$	$(^{+0.10}_{-0.08})$		$\binom{+0.14}{-0.12}$	$\binom{+0.10}{-0.10}$	$(^{+0.09}_{-0.07})$

Uncertainty correlations between inputs

- Signal theory uncertainties, generally correlated:
 - Systematic uncertainties on cross section due to renormalisation and factorisation scales and PDFs correlated, as are those on branching ratios due to partial width uncertainties
 - Underlying event and parton shower uncertainties also correlated
- Background theory uncertainties, generally correlated:
 - When backgrounds are normalised from MC correlate uncertainties on cross section
 - E.g. tt+HF correlated between ttH→bb hadronic and leptonic analyses

• Correlation of experimental uncertainties, generally uncorrelated, except:

- Luminosity
- Pileup modelling in the MC simulation
- Jet energy scale: correlated between the channels with high sensitivity to this uncertainty (e.g. H→ττ, VH(bb), ttH(bb))
- **b-tagging**: correlated between ttH channels, but uncorrelated with VH(bb) channel which is sensitive to different kinematic regime

_

CMS. CÉRN **Contributing analyses** H→ZZ→4I (June 2017) VBF vн 35.9 tb⁻¹(13 TeV) ggF GeV Data Main systematics: H→ZZ→4I • Events / 2 H(125) qq→ZZ, Z Η→γγ . • • . 99→ZZ, Z1* 50 lepton ID efficiency H→WW • • • . theoretical uncertainties on $\hat{\mu} = 1.05^{+0.19}_{-0.17}$ H→bb • • ggH prediction Н→тт . • • Η→μμ • • H→inv • • • 90 m, (GeV) $H \rightarrow \gamma \gamma$ (April 2018) CMS 35.9 fb⁻¹ (13 TeV) H→γγ 25000 - m,=125.4 GeV, μ=1.18 All categories Data Paper submitted today, arXiv:1804.02716 • S+B fit 20000 B component 15000 .2 . Main systematics: 10000 $\mu = 1.18^{+0.17}_{-0.14}$ Photon identification and energy scale theoretical uncertainties on ggH prediction m., (GeV)

Differential measurements also performed in both channels (not covered in this talk)

10/4/18

A. Gilbert (CERN)

4

Contributing analyses

	ggF	VBF	VH	ttH
H→ZZ→4I	•	•	•	•
Н→үү	•	•	•	•
H→WW	•	•	•	•
H→bb	•		•	•
Η→ττ	•	•		•
Н→µµ	•	•		
H→inv	•	•	•	

 $H \rightarrow WW$ (March 2018)

- Dedicated event categories targeting ggH (0/1 jet), VBF and VH production, control regions to determine WW, top and DY backgrounds
- Categories for same-flavour (ee/μμ) lepton final state as well as different-flavour (eμ)

- background determination
- luminosity
- theoretical uncertainties on signal normalisation and acceptance

10/4/18

A. Gilbert (CERN)

CMS.

Contributing analyses

CÉRN

VH→bb (Sept 2017)

Data used	Significance expected	Significance observed	Signal strength observed
Run 1	2.5	2.1	$0.89^{+0.44}_{-0.42}$
Run 2	2.8	3.3	$1.19^{+0.40}_{-0.38}$
Combined	3.8	3.8	$1.06^{+0.31}_{-0.29}$

BDT-based discriminant in 0, 1 and 2 lepton categories with high $p_T(V)$ Main backgrounds from V + HF/LF jet production and $t\bar{t}$ Main systematic uncertainties from background normalisation and modelling, MC statistics, b-tagging efficiency

10/4/18

- Main experimental uncertainties from τ_h and p_T^{miss} scales, background normalisation and MC statistics
- Main theory uncertainties on signal cross section and gluonfusion category migration

10/4/18

A. Gilbert (CERN)

19

Parameterisation	p -value ($q_{\rm SM}$)	DOF	Parameters of interest
Global signal strength	6.12% (3.51)	1	μ
Production processes	9.21% (9.46)	5	$\mu_{\rm ggH}, \mu_{\rm VBF}, \mu_{\rm WH}, \mu_{\rm ZH}, \mu_{\rm ttH}$
Decay modes	43.4% (4.85)	5	$\mu^{\gamma\gamma}, \mu^{ZZ}, \mu^{WW}, \mu^{\tau\tau}, \mu^{bb}$
$\sigma_i \cdot BR^f$ products	50.4% (21.3)	22	$ \begin{array}{l} \sigma_{ggH} \cdot BR^{hb}, \ \ \sigma_{ggH} \cdot BR^{\gamma\gamma}, \ \ \sigma_{ggH} \cdot BR^{WW}, \ \ \sigma_{ggH} \cdot BR^{ZZ}, \ \ \sigma_{ggH} \cdot BR^{\gamma\gamma}, \\ \sigma_{VBF} \cdot BR^{\gamma\gamma}, \ \ \sigma_{VBF} \cdot BR^{Y\gamma}, \ \ \sigma_{VBF} \cdot BR^{\gamma\gamma}, \\ \sigma_{VBF} \cdot BR^{WW}, \ \ \sigma_{VBF} \cdot BR^{Y\gamma}, \ \ \sigma_{VBF} \cdot BR^{\gamma\gamma}, \\ \sigma_{WH} \cdot BR^{WW}, \ \ \sigma_{WH} \cdot BR^{ZZ}, \ \ \sigma_{H} \cdot BR^{ZZ}, \ \ \sigma_{H} \cdot BR^{Y\gamma}, \\ \sigma_{ZH} \cdot BR^{ZZ}, \ \ \sigma_{ZH} \cdot BR^{ZZ}, \ \ \sigma_{H} \cdot BR^{\gamma\gamma}, \ \ \sigma_{H} + BR^{Y\gamma}, \ \ \sigma_{H} + BR^{YZ}, \ \ \sigma_{H} \cdot BR^{Y\gamma}, \\ \end{array}$
Ratios of σ and BR relative to gg \rightarrow H \rightarrow ZZ	24.5% (11.5)	9	$\begin{array}{l} \mu_{\rm ggH}^{ZZ}, \ \mu_{\rm VBF}/\mu_{\rm ggH}, \ \mu_{\rm WH}/\mu_{\rm ggH}, \ \mu_{\rm ZH}/\mu_{\rm ggH}, \ \mu_{\rm tH}/\mu_{\rm ggH}, \ \mu^{\rm WW}/\mu^{ZZ}, \\ \mu^{\gamma\gamma}/\mu^{ZZ}, \ \mu^{\tau\tau}/\mu^{ZZ}, \ \mu^{\rm bb}/\mu^{ZZ} \end{array}$
Simplified template cross sections with branching fractions relative to ${\rm BR}^{\rm ZZ}$	17.2% (14.0)	10	$ \begin{array}{l} \sigma_{ggH} \cdot BR^{ZZ}, \sigma_{VBF} \cdot BR^{ZZ}, \sigma_{H+V(qq)} \cdot BR^{ZZ}, \sigma_{H+W(\ell\nu)} \cdot BR^{ZZ}, \\ \sigma_{H+Z(\ell\ell/\nu\nu)} \cdot BR^{ZZ}, \sigma_{ttH} \cdot BR^{ZZ}, BR^{bb} / BR^{ZZ}, BR^{\tau\tau} / BR^{ZZ}, BR^{WW} / BR^{ZZ}, \\ BR^{\gamma\gamma} / BR^{ZZ} \end{array} $
Couplings, SM loops	35.4% (5.54)	5	<i>к</i> _Z , <i>к</i> _W , <i>к</i> _t , <i>к</i> _т , <i>к</i> _b
Couplings vs mass	17.1% (3.54)	2	M, ¢
Couplings, BSM loops	57.7% (5.68)	7	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\gamma, \kappa_g$
Couplings, BSM loops and decays including $H \rightarrow \! inv.$ channels	78.6% (5.53)	9	$\kappa_{Z}, \kappa_{W}, \kappa_{t}, \kappa_{\tau}, \kappa_{b}, \kappa_{\gamma}, \kappa_{g}, \text{BR}_{\text{inv.}}, \text{BR}_{\text{undet}}$
Ratios of coupling modifiers	56.7% (5.77)	7	κ_{gZ} , λ_{WZ} , $\lambda_{\gamma Z}$, λ_{tg} , λ_{bZ} , $\lambda_{\tau Z}$, λ_{Zg}
Fermion and vector couplings	16.9% (3.55)	2	$\kappa_{\rm F}$, $\kappa_{\rm V}$
Fermion and vector couplings, per decay mode	63.9% (7.89)	10	$\kappa_{\rm F}^{\rm bb}, \kappa_{\rm F}^{\rm \tau\tau}, \kappa_{\rm F}^{\rm WW}, \kappa_{\rm F}^{\rm ZZ}, \kappa_{\rm F}^{\gamma\gamma}, \kappa_{\rm V}^{\rm bb}, \kappa_{\rm V}^{\rm \tau\tau}, \kappa_{\rm V}^{\rm WW}, \kappa_{\rm V}^{\rm ZZ}, \kappa_{\rm V}^{\gamma\gamma}$
Up vs down-type couplings	25.5% (4.06)	3	$\lambda_{\mathrm{Vu}}, \lambda_{\mathrm{du}}, \kappa_{uu}$
Lepton vs quark couplings	26.5% (3.97)	3	$\lambda_{\ell q}, \lambda_{Vq}, \kappa_{qq}$

- (

Coupling modifier model

- Use the LO coupling modifier or "kappa" framework to probe for deviations from the SM
- Parameters scale cross sections and partial widths relative to SM

$$\kappa_j^2 = \sigma_j / \sigma_j^{\rm SM} \qquad \kappa_j^2 = \Gamma_j / \Gamma_j^{\rm SM}$$

$$\Rightarrow \sigma_{i} \cdot BR^{f} = \frac{\sigma_{i}(\vec{\kappa}) \cdot \Gamma^{f}(\vec{\kappa})}{\Gamma_{H}} \text{ where total width } \Gamma_{H} \text{ given by } \frac{\Gamma_{H}}{\Gamma_{H}^{SM}} = \frac{\kappa_{H}^{2}}{1 - (BR_{undet} + BR_{inv.})}$$
where $\kappa_{H}^{2} = \sum_{j} BR_{SM}^{j} \kappa_{j}^{j}$

- Option to consider decay to BSM particles via $\mathsf{BR}_{\mathsf{undet}}$ and $\mathsf{BR}_{\mathsf{inv}}$ terms which also scale total width
 - BR_{inv}: Scales signal normalisation in direct H→invisible searches
 - BR_{undet}: Represents branching ratio to any final state not directly detected by analyses

10/4/18

A. Gilbert (CERN)

Coupling modifier model

 Summary of how all production and decay processes scale as a function of the κ parameters:

			Effective	
Production	Loops	Interference	scaling factor	Resolved scaling factor
$\sigma(ggH)$	~	b – t	κ_g^2	$1.04 \cdot \kappa_t^2 + 0.002 \cdot \kappa_b^2 - 0.038 \cdot \kappa_t \kappa_b$
$\sigma(VBF)$	-	-	0	$0.73 \cdot \kappa_W^2 + 0.27 \cdot \kappa_Z^2$
$\sigma(WH)$	-	-		κ_W^2
$\sigma(qq/qg \rightarrow ZH)$	-	-		κ_Z^2
$\sigma(gg \rightarrow ZH)$	\checkmark	Z - t		$2.46 \cdot \kappa_Z^2 + 0.47 \cdot \kappa_t^2 - 1.94 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	-	-		κ_t^2
$\sigma(gb \rightarrow WtH)$	-	W - t		$2.91 \cdot \kappa_t^2 + 2.40 \cdot \kappa_W^2 - 4.22 \cdot \kappa_t \kappa_W$
$\sigma(qb \rightarrow tHq)$	-	W - t		$2.63 \cdot \kappa_t^2 + 3.58 \cdot \kappa_W^2 - 5.21 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	-	-		$\kappa_{\rm b}^2$
Partial decay width				
Γ ^{ZZ}	-	-		κ_Z^2
Γ^{WW}	-	-		κ_W^2
$\Gamma^{\gamma\gamma}$	\checkmark	W - t	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.67 \cdot \kappa_W \kappa_t$
$\Gamma^{\tau\tau}$	-	-		κ_{τ}^2
Γ^{bb}	-	-		$\kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$	-	-		κ_{μ}^2
Total width for $BR_{BSM} = 0$				
				$0.58 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.08 \cdot \kappa_g^2 +$
Γ _H	\checkmark	-	κ_{H}^{2}	$+ 0.06 \cdot \kappa_{\tau}^2 + 0.026 \cdot \kappa_{\tau}^2 + 0.029 \cdot \kappa_{c}^2 +$
				$+ 0.0023 \cdot \kappa_{\gamma}^2 + 0.0015 \cdot \kappa_{Z\gamma}^2 +$
				$+ 0.00025 \cdot \kappa_8^2 + 0.00022 \cdot \kappa_{\mu}^2$
				- P

10/4/18

A. Gilbert (CERN)

42

.

Coupling modifier model

 Contrary to signal strength model have interference effects in some production and decay processes:

10/4/18

A. Gilbert (CERN)

43

4

ttH combination

$\mu_{\rm t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16} ({\rm stat})^{+0.17}_{-0.15} ({\rm expt})^{+0.14}_{-0.13} ({\rm bkg \ th})^{+0.15}_{-0.07} ({\rm sig \ th})$

- Each of the four uncertainty components of comparable magnitude
- More detailed breakdown into sources reveals the specific uncertainties that dominate
- Signal theory mainly from inclusive ttH prediction
- Background theory mainly from tt+heavy flavour prediction in ttH(bb)
- Experimental more varied, but lepton efficiencies, lepton misid, b-tagging and MC stats all important

Uncertainty source	Δ	μ
Signal theory	+0.15	-0.07
Inclusive ttH normalisation (cross section and BR)	+0.15	-0.07
ttH acceptance (scale, pdf, PS and UE)	+0.004	-0.004
Other Higgs boson production modes	+0.002	-0.003
Background theory	+0.14	-0.13
tt + bb/cc prediction	+0.13	-0.11
tt + V(V) prediction	+0.06	-0.06
Other background uncertainties	+0.03	-0.03
Experimental	+0.17	-0.15
Lepton (inc. τ_h) trigger, ID and iso. efficiency	+0.08	-0.06
Misidentified lepton prediction	+0.06	-0.06
b-Tagging efficiency	+0.05	-0.04
Jet and τ_h energy scale and resolution	+0.04	-0.04
Luminosity	+0.04	-0.03
Photon ID, scale and resolution	+0.01	-0.01
Other experimental uncertainties	+0.01	-0.01
Finite number of simulated events	+0.08	-0.07
Statistical	+0.16	-0.16
Total	+0.31	-0.26

Due to correlations in the combined fit between parameters in different sources the sum in quadrature of sources ≠total component

10/4/18

A. Gilbert (CERN)

Higgs @ LHC, ALPS2018

•

UND

CÉRN

Contributing analyses

ttH→bb (hadronic) (March 2018)

10/4/18

Η→νν

H→WW

н→ьь

Η→ττ

H→uu

H→inv

A. Gilbert (CERN)

Contributing analyses

ttH→multileptons (March 2018)

	ggF	VBF	VH	ttH
H→ZZ→4I	•	•	•	•
Н→үү	•	•	•	•
H→WW	•	•	•	•
H→bb	•		•	•
H→ττ	•	•		•
Н→µµ	•	•		
H→inv				

- Six search categories based on number of light (e/ $\!\mu\!)$ leptons and hadronic taus
- Discrimination from main backgrounds (ttW, ttZ, lepton fakes) via a mixture of BDT and matrix element method techniques
- Main systematic uncertainties: lepton efficiencies, lepton mis-id., normalisation of irreducible backgrounds

.

02

10

10

10⁻²

300

400

σ(gg→H)×BR(H→hh) [pb]

Imperial College

London

17.9-19.7 fb⁻¹ (8 TeV)

- Observed ---- Expected

$hh \to bb\gamma\gamma \ CMS$

- Event Selection
 - Two γ 's and two jets
 - $m_{\gamma\gamma}$ and m_{jj} in Higgs mass window
 - BDT classifier, including b-tagging information, used to define high/low signal-purity events
 - Classify "mass region" with corrected total mass: $\tilde{M}_X = m_{jj\gamma\gamma} m_{jj} m_{\gamma\gamma} + 250$
- Main background from QCD
- Signal estimates
 - Likelihood fits simultaneous to m_{bb} and $m_{\gamma\gamma}$ with parametric functions

PAS-HIG-17-008

- (

$hh \rightarrow bb\tau\tau$ CMS

- Final states: $(e/\mu/\tau_h + \tau_h)+2$ jets or 1 large-R jet
 - Low / high mass resolved, and a boosted selection
 - For $\mathrm{m}_{\mathrm{HH}}{>}1$ TeV: dedicated boosted di- τ reconstruction
 - Categorize by 2/1 b-tags
 - − Main backgrounds: Top, $Z \rightarrow \tau \tau$, Multijet
- Selection:
 - Likelihood fit to estimate $m_{\tau\tau},$ including ${p_T}^{miss}$
 - m_{bb} and $m_{\tau\tau}$ in Higgs mass window
 - BDT used to reduce top events in (e/ μ + $\tau_{\rm h}$) channels
- Signal estimates in likelihood fit to discriminant:
 - Resonant: m_{HH}^{KinFit}
 - Non-resonant: m_{T2}

Di-Higgs 000€000

$\mathbf{CMS} \ \mathbf{hh} \rightarrow \mathbf{bbbb}$

- Resolved
 - 4 b-jets, combination of Higgs candidates with smallest χ² when compared with expected Higgs mass
 - Parametric fit to m_{4b} distribution constrained from mass and b-tag sidebands
- Boosted
 - Two large-R jets, passing N-subjettiness substructure requirements
 - Dedicated MVA "double-btagger" used to identify Higgs candidates
 - Parametric fit to m_{hh} distribution

$hh \rightarrow bbbb$ ATLAS

- Selection:
 - Resolved: 4 b-tagged jets
 - Boosted: 2 larger-R jets, with 2/3/4 small-R b-tagged jets
- Signal region:
 - Both Higgs candidate masses consistent with expected $m_{\rm h}$ within resolution
- Background 90% QCD

 Estimated from data with fewer b-tags
- Signal Estimation
 - Binned fit to $m_{hh} \mbox{ distribution}$

Systematics

- ATLAS 4b [ATLAS-EXOT-2016-31]
 - B-tagging: 12-14%
 - Jet energy scale: 6-7%
 - Background model: 2-6%
- CMS bbtt [Phys. Lett. B 778 (2018) 101]
 - Tau energy scale, Jet energy scale, b-tagging: 2-10%
- CMS bbγγ [PAS-HIG-17-008]
 - Jet energy resolution, b-tagging: 3-5%

$hh \rightarrow WW\gamma\gamma$ and $hh \rightarrow bbVV(\rightarrow l\nu l\nu)$

- ATLAS WW $\gamma\gamma$
 - Require 2 γ 's and 0/1 lepton (e/ μ)
 - Parameterized fit to $m_{\gamma\gamma}$ to for signal search
- CMS bblvlv
 - Require 2 leptons (e/ μ) and 2 b-jets
 - Parameterized Deep Neural Network output distribution fit for signal

DNN output at x₁ = x₂ = 1 (SM), m_ bins