The physical spectrum of theories with a Brout-Englert-Higgs effect

Pascal Törek with Axel Maas and René Sondenheimer University of Graz

Alps 2018, Obergurgl, 18th of April, 2018

[1709.07477 and 1804.04453]

- Physical observable particles need to be manifestly gauge invariant
 - Elementary fields of gauge theories:
 gauge variant

- Physical observable particles need to be manifestly gauge invariant
 - Elementary fields of gauge theories: gauge variant
- Not obvious that W/Z, Higgs, fermions, etc., are physical particles from theoretical p.o.v.

- Physical observable particles need to be manifestly gauge invariant
 - Elementary fields of gauge theories: gauge variant
 - Not obvious that W/Z, Higgs, fermions, etc., are physical particles from theoretical p.o.v.
 - Does not matter in the SM
 - Can matter in BSM theories

- Physical observable particles need to be manifestly gauge invariant
 - Elementary fields of gauge theories: gauge variant
 - Not obvious that W/Z, Higgs, fermions, etc., are physical particles from theoretical p.o.v.
 - Does not matter in the SM
 - Can matter in BSM theories
- Problems can be treated using gauge-invariant perturbation theory [Maas, 1712.04721 ← Review]

Consider bosonic weak-Higgs sector of SM $\mathcal{L} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi^{\dagger}\phi)$

□ Full symmetry: $SU(2)_{gauge} \times SU(2)_{custodial}$

□ Minimize action classically: Higgs vev $\langle \phi^{\dagger} \phi \rangle = v^2$

Consider bosonic weak-Higgs sector of SM $\mathcal{L} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi^{\dagger}\phi)$

 \Box Full symmetry: SU(2)_{gauge}×SU(2)_{custodial}

- Standard approach
 - $\Box \quad \text{Minimize action classically: Higgs vev } \langle \phi^{\dagger}\phi \rangle = v^{2}$ $\Box \quad \text{Perform gauge transformation such that}$ $\phi(x) = \frac{v}{\sqrt{2}}n + \varphi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi_{1}(x) + i \varphi_{2}(x) \\ v + h(x) + i \varphi_{3}(x) \end{pmatrix} , \ \langle \phi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$

Consider bosonic weak-Higgs sector of SM $\mathcal{L} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi^{\dagger}\phi)$

 \Box Full symmetry: SU(2)_{gauge}×SU(2)_{custodial}

Standard approach

□ Minimize action classically: Higgs vev $\langle \phi^{\dagger}\phi \rangle = v^2$ □ Perform gauge transformation such that $\phi(x) = \frac{v}{\sqrt{2}}n + \varphi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi_1(x) + i \varphi_2(x) \\ v + h(x) + i \varphi_3(x) \end{pmatrix}$, $\langle \phi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$ □ Masses of Higgs, W/Z, depend on vev

Consider bosonic weak-Higgs sector of SM $\mathcal{L} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi^{\dagger}\phi)$

 \Box Full symmetry: SU(2)_{gauge}×SU(2)_{custodial}

Standard approach

Minimize action classically: Higgs vev \$\lap{\phi^{\phi}\phi} = v^2\$
 Perform gauge transformation such that
 \$\phi(x) = \frac{v}{\sqrt{2}}n + \varphi(x) = \frac{1}{\sqrt{2}} \binom{\varphi_1(x) + i \varphi_2(x)}{v + h(x) + i \varphi_3(x)} , \$\lap{\phi\rangle} = \binom{0}{v} \binom{\varphi}{v}\$
 Masses of Higgs, W/Z, depend on vev
 Perform PT (small fluctuations \$\varphi\$)

There are gauges where ⟨φ⟩ = 0 ⇒ PT not sensible
 Symmetry is not manifest (hidden)

Physical states

Elementary fields (h, W, \ldots) depend on the gauge

 \Rightarrow Cannot be observable

Physical states

- Elementary fields (h, W, ...) depend on the gauge \Rightarrow Cannot be observable
- Gauge-invariant states in gauge theories are composite objects:

Physical states

- Elementary fields (h, W, ...) depend on the gauge \Rightarrow Cannot be observable
- Gauge-invariant states in gauge theories are composite objects:

- Why does perturbation theory work so well?
- What is the mass spectrum?

Weak-Higgs sector of SM - Spectrum

Lattice spectroscopy \Rightarrow Spectrum of bound states

[Maas, MPL A28 (2013) / Maas and Mufti, JHEP (2014)]

Fix to a gauge with non-vanishing vev $\langle \phi \rangle = rac{v}{\sqrt{2}}n$

 Fix to a gauge with non-vanishing vev ⟨φ⟩ = ^v/_{√2} n
 Expand correlator in Higgs fluctuations φ (FMS mechanism)

$$\left\langle O(x)O(y)^{\dagger} \right\rangle \stackrel{\varphi = \frac{\sqrt{2}}{\sqrt{2}}h(\varphi)}{=} \frac{v^{4}}{4} + \frac{v^{3}}{2} \left\langle h(x) + h(y) \right\rangle + v^{2} \left\langle h(x)h(y) \right\rangle$$
$$+ \frac{v^{2}}{2} \left\langle h(x)(\varphi^{\dagger}\varphi)(y) + (\varphi^{\dagger}\varphi)(x)h(y) \right\rangle + \left\langle (\varphi^{\dagger}\varphi)(x)(\varphi^{\dagger}\varphi)(y) \right\rangle$$

 Fix to a gauge with non-vanishing vev ⟨φ⟩ = ^v/_{√2} n
 Expand correlator in Higgs fluctuations φ (FMS mechanism)

 $\left\langle O(x)O(y)^{\dagger} \right\rangle \stackrel{\phi = \frac{v}{\sqrt{2}}n + \varphi}{=} \frac{v^{4}}{4} + \frac{v^{3}}{2} \left\langle h(x) + h(y) \right\rangle + v^{2} \left\langle h(x)h(y) \right\rangle$ $+ \frac{v^{2}}{2} \left\langle h(x)(\varphi^{\dagger}\varphi)(y) + (\varphi^{\dagger}\varphi)(x)h(y) \right\rangle + \left\langle (\varphi^{\dagger}\varphi)(x)(\varphi^{\dagger}\varphi)(y) \right\rangle$ = Exact identity

Fix to a gauge with non-vanishing vev ⟨φ⟩ = ^v/_{√2} n
 Expand correlator in Higgs fluctuations φ
(FMS mechanism)

 $\left\langle O(x)O(y)^{\dagger} \right\rangle \stackrel{\phi=\frac{v}{\sqrt{2}}n+\varphi}{=} \frac{v^{4}}{4} + \frac{v^{3}}{2} \left\langle h(x) + h(y) \right\rangle + v^{2} \left\langle h(x)h(y) \right\rangle$ $+ \frac{v^{2}}{2} \left\langle h(x)(\varphi^{\dagger}\varphi)(y) + (\varphi^{\dagger}\varphi)(x)h(y) \right\rangle + \left\langle (\varphi^{\dagger}\varphi)(x)(\varphi^{\dagger}\varphi)(y) \right\rangle$ = Exact identity

Sum on r.h.s. is gauge-invariant but each term individually is gauge-variant

$$\langle O(x)O(y)^{\dagger} \rangle = \frac{v^4}{4} + v^2 \langle h(x)h(y) \rangle_{tl} + \langle h(x)h(y) \rangle_{tl}^2 + O(\varphi^3, g, \lambda)$$

$$\langle O(x)O(y)^{\dagger}\rangle = \frac{v^4}{4} + v^2 \langle h(x)h(y)\rangle_{tl} + \langle h(x)h(y)\rangle_{tl}^2 + \mathcal{O}(\varphi^3, g, \lambda)$$

Compare poles on both sides: States at tree-level Higgs mass and at twice this mass (scattering state)

$$\left\langle O(x)O(y)^{\dagger}\right\rangle = rac{v^4}{4} + v^2 \left\langle h(x)h(y)\right\rangle_{\mathsf{tl}} + \left\langle h(x)h(y)\right\rangle_{\mathsf{tl}}^2 + \mathcal{O}(\varphi^3, g, \lambda)$$

- Compare poles on both sides: States at tree-level Higgs mass and at twice this mass (scattering state)
 - FMS mechanism + standard PT = GIPT

$$\left\langle O(x)O(y)^{\dagger}\right\rangle = rac{v^4}{4} + v^2 \left\langle h(x)h(y)\right\rangle_{\mathsf{tl}} + \left\langle h(x)h(y)\right\rangle_{\mathsf{tl}}^2 + \mathcal{O}(\varphi^3, g, \lambda)$$

- Compare poles on both sides: States at tree-level Higgs mass and at twice this mass (scattering state)
 - FMS mechanism + standard PT = GIPT
 - Similar procedure for the W bosons

$$\left\langle O(x)O(y)^{\dagger}\right\rangle = rac{v^4}{4} + v^2 \left\langle h(x)h(y)\right\rangle_{\mathsf{tl}} + \left\langle h(x)h(y)\right\rangle_{\mathsf{tl}}^2 + \mathcal{O}(\varphi^3, g, \lambda)$$

- Compare poles on both sides: States at tree-level Higgs mass and at twice this mass (scattering state)
- FMS mechanism + standard PT = GIPT
- Similar procedure for the W bosons
 - Confirmed on the lattice

[Maas, MPL A28 (2013) / Maas and Mufti, JHEP (2014)]

Status of the standard model

- Physical states are bound states
 - Experimentally observable
 - Description by gauge-invariant perturbation theory based on FMS mechanism
 - □ Mostly the same as ordinary perturbation theory

Status of the standard model

- Physical states are bound states
 - Experimentally observable
 - Description by gauge-invariant perturbation theory based on FMS mechanism
 - Mostly the same as ordinary perturbation theory

Does not always work

[Maas, MPL A28 (2013) / Maas and Mufti, JHEP (2014)]

- □ Fluctuations can invalidate the mechanism
- Local and global multiplet structure must fit

Status of the standard model

- Physical states are bound states
 - Experimentally observable
 - Description by gauge-invariant perturbation theory based on FMS mechanism
 - Mostly the same as ordinary perturbation theory

Does not always work

[Maas, MPL A28 (2013) / Maas and Mufti, JHEP (2014)]

- □ Fluctuations can invalidate the mechanism
- Local and global multiplet structure must fit

Has to be checked for BSM theories

SU(N) + fundamental scalar - Toy GUT

[Maas, Sondenheimer and Törek, 1709.07477]

GUT inspired theories:

Gauge group is larger than global symmetry group

SU(N) + fundamental scalar - Toy GUT

[Maas, Sondenheimer and Törek, 1709.07477]

GUT inspired theories:

Gauge group is larger than global symmetry group

Same logic as in SM leads to a conflict

SU(N) + fundamental scalar - Toy GUT [Maas, Sondenheimer and Törek, 1709.07477] **GUT** inspired theories: Gauge group is larger than global symmetry group Same logic as in SM leads to a conflict Consider SU(N > 2) gauge theory with one fundamental scalar ϕ Global symmetry: U(1)

SU(N) + fundamental scalar - Toy GUT [Maas, Sondenheimer and Törek, 1709.07477] **GUT** inspired theories: Gauge group is larger than global symmetry group Same logic as in SM leads to a conflict Consider SU(N > 2) gauge theory with one fundamental scalar ϕ \Box Global symmetry: U(1) Perturbative construction: $SU(N) \xrightarrow{\langle \phi \rangle} SU(N-1)$ \square 2(N - 1) + 1 massive and N(N - 2) massless gauge bosons 1 massive real scalar field

Global U(1) symmetry \Rightarrow gauge-invariant U(1)-singlet and non-singlet bound states

- Global U(1) symmetry \Rightarrow gauge-invariant U(1)-singlet and non-singlet bound states
- U(1)-singlet channels
 - □ Scalar : 1 state with mass of elementary scalar
 - \Box Vector: 1 state with mass of heaviest g.b.

- Global U(1) symmetry \Rightarrow gauge-invariant U(1)-singlet and non-singlet bound states
- U(1)-singlet channels
 - □ Scalar : 1 state with mass of elementary scalar
 - \Box Vector: 1 state with mass of heaviest g.b.
- U(1)-non-singlet channels
 - □ Scalar and vector channels: 2 states each with ground-state masses = $(N 1) \times$ perturbative lightest massive gauge boson

- Global U(1) symmetry \Rightarrow gauge-invariant U(1)-singlet and non-singlet bound states
- U(1)-singlet channels
 - □ Scalar : 1 state with mass of elementary scalar
 - \Box Vector: 1 state with mass of heaviest g.b.
- U(1)-non-singlet channels
 - □ Scalar and vector channels: 2 states each with ground-state masses = $(N 1) \times$ perturbative lightest massive gauge boson

Focus on N = 3 and vector channel in the following

Implications for GUTs

Qualitative disagreement to standard PT but good agreement to GIPT for SU(3)×U(1) case

Implications for GUTs

Qualitative disagreement to standard PT but good agreement to GIPT for SU(3)×U(1) case

Disagreement generic

[Maas, Sondenheimer and Törek, 1709.07477 and work in progress]

\Box Lattice support for SU(2) with an adjoint scalar

[Lee and Shigemitsu, NP B263 (1986)]

Implications for GUTs

Qualitative disagreement to standard PT but good agreement to GIPT for SU(3)×U(1) case

Disagreement generic

[Maas, Sondenheimer and Törek, 1709.07477 and work in progress]

\Box Lattice support for SU(2) with an adjoint scalar

[Lee and Shigemitsu, NP B263 (1986)]

Conventional GUTs unlikely to reproduce low-energy spectrum according to GIPT

□ Larger custodial groups needed (?)

Physical spectrum consists of gauge-invariant states

Physical spectrum consists of gauge-invariant states
 Relation between physical states and elementary fields by FMS mechanism / GIPT

- Physical spectrum consists of gauge-invariant states
- Relation between physical states and elementary fields by FMS mechanism / GIPT
- Collections of verifications/supports of mechanism
 - □ Gauge-Higgs sector of SM
 - [Maas, MPL A28 (2013); Maas and Mufti, JHEP (2014)]
 - □ SU(2)×U(1) with Higgs (no direct verification) [Shrock, various publications (1980's)]
 - □ SU(2) with adjoint scalar (no direct verification) [Lee and Shigemitsu, NP B263 (1986)]
 - SU(3) with fundamental scalar [Maas and Törek, PRD95, 014501 (2017)]

- Physical spectrum consists of gauge-invariant states
- Relation between physical states and elementary fields by FMS mechanism / GIPT
 - Collections of verifications/supports of mechanism
 - □ Gauge-Higgs sector of SM
 - [Maas, MPL A28 (2013); Maas and Mufti, JHEP (2014)]
 - □ SU(2)×U(1) with Higgs (no direct verification) [Shrock, various publications (1980's)]
 - □ SU(2) with adjoint scalar (no direct verification) [Lee and Shigemitsu, NP B263 (1986)]
 - SU(3) with fundamental scalar [Maas and Törek, PRD95, 014501 (2017)]

Procedure can be used to build or rule out BSM theories (e.g. std. SU(5)-GUT construction)

Thank you!

GIPT works well!

SU(5) GUT - Bosonic sector

- E Fundamental scalar φ and adjoint scalar σ
- Custodial group: $U(1) \times \mathbb{Z}_2$
 - GUT-scale: w

elementary spectrum

gauge-invariant spectrum

J^P	Field	Mass	Deg.	$(U(1),\mathbb{Z}_2)$	Mass	NI.	Deg.
0+	h	m _h	1	(0,+)	$m_{ m h}$	\sim w	1
	$\varphi_{1,,6}$	$m_{arphi_{1,\ldots,6}}$	6	(0, -)	$m_{ m h}$	\sim w	1
	$\sigma^{1,,8}$	$m_{\sigma^{1,,8}}$	8	$(\pm 1, +)$	\sim w	\sim w	1
	$\sigma^{21,22,23}$	m_{σ}	3	$(\pm 1, -)$	\sim w	\sim w	1
	σ^{24}	M_{σ}	1				
1-	A_{μ}	$m_{\rm A}=0$	1	(0,+)	m _A	m _Z	1
	W^{\pm}_{μ}	m_W	2	(0, -)	m _A	m_Z	1
	Z_{μ}	mZ	1	$(\pm 1, +)$	\sim w	\sim w	1
	$A^{9,,14}_{\mu}$	m_L	6	$(\pm 1, -)$	\sim w	\sim w	1
	$A^{15,,20}_{\mu}$	M_L	6				