LQCD payloads/PanDA status update

P. Svirin, S. Panitkin

Introduction

- Work with LQCD groups is part of the SCiDAC-4 project
- Currently we are working with groups from BNL (S. Mukherjee) and TJlab (R. Edwards)
 - Different codes, different resources, different schedules, etc
- The goal is to integrate computing resources used by the LQCD groups with PanDA and provide support and tools to use the resources effectively
- Currently we use PanDA server at EC2 for this project

Currently available resources

- Harvesters that for LQCD payloads configured on front nodes of:
 - Titan
 - BNL Institutional GPU cluster
 - Thomas Jefferson Laboratory
 - NERSC

Production at BNL

- Input data: 127 data sets, each 51 GB, packed; total: 6.5 TB
- Every input is analyzed with 7 sets => 889 different worker jobs
- It is possible to have up to 50 submitted jobs in "long" queue
- Scratch disk space is limited to 1 TB, thus, it is possible to have up to 8 input data sets simultaneously
- LQCD uses PASCAL GPUs, walltime per each job: 12 hours

Production at BNL: setup

Harvester

(icsubmit01.sdcc.bnl.gov)

SAGA SLURM executor

SAGA monitor

SAGA shell executor

ANALY_BNL_IC_LQCD

ANALY_BNL_LOCAL_LQCD

Production at BNL: workflow

Two-level payloads management:

- per workflow
- per worker job (resubmit individual worker if it fails, cleanup can be called even if workers fail several times)

Thomas Jefferson Lab

Jefferson Lab LQCD

Welcome to the Jefferson Lab Lattice QCD computing home page. New users start here.

Tip: Offsite Data Transfers Use Globus to transfer large data; see document for detail.

Last updated: Tue Apr 24 2018 10:33:05 GMT-0400 (EDT)

Feedback (suggestions for new material, links to be added, etc.).

Thomas Jefferson Lab

- Harvester was installed and configured by TJLab team using our instructions
- Now they are working on their own interface with custom logic to local batch system
- Workloads differ from the ones used by the BNL group

LQCD projects at TJLab with PanDA

- Quark line contractions (3-6 months):
 - O(10^6) of independent single node jobs, walltime: 2 hours
 - validation script for jobs output to be run, ~30 minutes, may be run per each job or per bunch
 - Input data: gauge fields configurations, O(1000) files,~2GB each
 - Output: ~100 MB per job
 - X86 (Infiniband) cluster will be used
- Perambulation calculations:
 - 3 TJLab clusters+NERSC will be used with dynamic balancing between them
 - O(10^6) jobs + same validation script
 - Job sizes will be larger and depends on cluster (~160 cores) per job, linear scaling with cores change (cores count must be a multiple of 16)
 - Input and output data characteristics: same as above

Summary and next steps

- Harvesters installed at 4 sites
 - Also an instance of Harvester was installed on SummitDev front node, was tested with dummy jobs. LQCD groups do have payloads for Summit - part of the early science program
- Production started at BNL Institutional Cluster
- Globus online data transfers from OLCF have been tested with Globus Online tools in Harvester
- Both teams (TJLab and BNL) will be provided with necessary documentation and client tools (to be presented during the talk "Harvester Beyond ATLAS") so they can manage payloads themselves
- CHEP2018: a poster about PanDA/LQCD integration

Next steps

- Finish production run at BNL May?
 - Move PanDA@EC2 to a new VM as soon as there is a break in LQCD production
- Get Thomas Jefferson Laboratory clusters fully integrated with panda and run production. May?
- Production on Titan if LQCD receives an allocation again
- Test Harvester on Summit as a part of Early Science program - July -August