

Harvester

Tadashi Maeno (BNL)
on behalf of Harvester team

BigPanDA TIM,
26 April 2018, BNL, USA

2

Schematic View
PanDA Server

subset of pilot
components

compute nodes

HPC center

Edge node

submit,
monitor,
kill pilot

Harvester

get, update, kill job
request job or pilot

pilot

pilot scheduler
or CEsubmit pilot

Grid site

increase or throttle or
submit pilots

request job
or pilot

get/update job
kill pilot

Cloud

pilot

VM

request job
or pilot

Harvester

spin-up

get/update job
kill pilot

VObox

VOboxHarvester

Worker = pilot, VM,
 MPI worker,
 batch worker

scheduler

spin-up

submit
job+pilot

Harvester

VObox

CE

submit,
monitor,
kill pilot

Harvester uses whatever
available at the resource
→ No requirement or
constraint for Harvester

3

Current Status with ATLAS Resources
N.B.

Danila’s talk for details at OLCF
Pavlo’s talk for beyond ATLAS

4

Harvester for the Grid
➢ Current status

– Successfully demonstrated to submit workers (pilots) to
hundreds of ATLAS queues except a couple of queues with
GT5 CEs which retire soon

– Successfully ran a few thousands of pilots concurrently at
CERN

– Testing a capability of dynamic resource partitioning at
CERN and Taiwan

– Migration for large scale production is ongoing at BNL
➢ Plans

– Full migration to Harvester
– Dynamic resource partitioning

in production
– A single submission engine
– Consolidation of resource-specific

queues
– Better site description

Running jobs at BNL harvester queue
for last 7 days

Cert issues in
central operation

5

Harvester for Cloud
➢ Current status

– CERN + Leibniz + Edinburgh resources with 1.2k CPU cores in production
➢ Two major developments

– Condor-based for ATLAS High Level Trigger (HLT) CPU farm, aka
Sim@P1

• With 50k cores and limited network bandwidth per node
• HLT experts have a “button”

➢ Turn it on to release the resource to PanDA when it is not used for online trigger
➢ Turn it off to immediately take the resource back when it is used for online trigger

• The resource is not always available, but it behaves like a static cluster once it
is given to PanDA

• Workload provisioning to assign enough jobs to the resource before the
resource becomes available

– Using native cloud API for GCE and EC2
• Use-cases

➢ In context of the data ocean project
➢ Pure google : GCE + Google storage

+ GCE API
➢ Openstack instance with EC2 API at Taiwan

for non-ATLAS experiments
• Embedded a mechanism in harvester for lifetime

management of VMs
• HTTP(S) based communication between harvester

and workers
• Large scale demonstration and new cloud API for bulk operation

Manual mini ramp up
exercise at GCE

6

Harvester for HPC 1/5
➢ Current status

– Theta/ALCF
• In production with ManyToOne which combines many PanDA jobs to a

single MPI payload
• Bulk data transfers with Globus online
• A separate queue for Yoda (Event Service at HPC) tests

– Titan/OLCF
• In production for ALCC
• Individual file transfers with rucio

client-based Pilot Data API
• Non-harvester for backfill

– Cori/NERSC
• In production
• Bulk data transfers with ATLAS

data management system (rucio)
• Running out of allocation as it runs

very well, and will switch to backfill soon
– KNL/BNL

• In production but the resource
availability is intermittent

• Providing test beds for HPC+CE
– ASGC

• In production for non-ATLAS VOs
– EU or NSF HPCs

• Under discussion

Contributions to ATLAS MC simulation
production for last 7 days

7

➢ Current and future developments
– Yoda/Jumbo jobs at Theta

• Goals
➢ To give large workloads to large payloads
➢ To use walltime as much as possible

w/o micromanagement of execution
time or in preemptable queues

• Processing at Thena done while
Merging at other (grid) resource
still to be done

• Further optimization
➢ Shorter initialization
➢ Optimal payload size
➢ Many small payloads sharing a jumbo workload
➢ Smart brokerage and scheduling in PanDA
➢ Optimization for IO (details in Danila’s talk)

– A common operational model among HPCs
• A single payload based on pilot 2.0
• In US, all DOE HPCs running with harvester, while NSF

HPCs to be migrated
• For non-US HPCs, harvester + CE (next page) could be used

Harvester for HPC 2/5

Yoda job at Theta with 127 nodes
 Idle, Processing events which completed,
 Processing events which didn’t complete

8

➢ Current and future developments
– HPC + CE

• Rather straightforward if the HPC can be used as a
large batch cluster which doesn’t have strong
constraint and/or preference on payload size
➢ E.g. normal PanDA jobs are running at many EU HPCs

through ARC CE w/o any special optimization
➢ No difference from grid resources especially if outbound

network connection is available from compute nodes
• More tricky if advanced workflows like ManyToOne,

OneToMany, jumbo jobs are required, which is typically
the case for large HPCs, e.g. larger payloads get higher
priorities
➢ Tight communication between harvester and workers
➢ What’s available as a communication channel?

➢ Through CE, message bus, …
• HTCondor-CE and ARC CE have been deployed at

BNL/KNL for testing

Harvester for HPC 3/5

9

➢ Current and future developments
– Backfill

• The ultimate goal for ATLAS is Yoda+Pilot2.0+Harvester,
and thus a capability to dynamically change payload size
(the number of jobs for each worker) will not be used for
ATLAS production in the future

• However, it is still useful for other experiments which
don’t have event service or Yoda-equivalent, and it is
essentially a mechanism to collect realtime information
from HPC for optimal payload scheduling

• To implement the mechanisms in harvester which is
currently used for ATLAS Titan backfill

• To be decide which HPC is used for development
➢ E.g. BNL/KNL, NERSC, Titan?

– Container integration
• Theta/ALCF and Cori/NERSC are using containers in

production
• To be used at other HPCs as well
• To define naming convention, distribution scheme, and

contents for images

Harvester for HPC 4/5

10

➢ Current and future developments
– Caching

• Currently all files in the task have to be transferred
beforehand for a jumbo job

• Would be nice to have a local cache service at HPC to avoid
full data prestaging
➢ Compute nodes could directly request data to the Svc,

or harvester could request data on behalf if direct
connection to the Svc is unavailable from compute nodes

• Could leverage ongoing developments for prefetcher + Event
Streaming service in ATLAS

Harvester for HPC 5/5

compute nodes
HPC center

Harvester Local Cache
Svc

Worker

get events

PanDA Server

get events

request data

Remote
Storage or
Cache Svc

fetch data

put data

read data

events

data

Shared FS

11

Summary
➢ Many development activities in parallel for

various resources
– Weekly roundtable in WFMS meeting
– F2F meeting in ATLAS Software and

Computing workshop every 3~4 months
➢ Already in production for various resources

– Introducing commonality layer in monitoring
and operational experience

– Further optimization
➢ A lot of challenges to come for HPCs as well

as other resources

