Harvester

Tadashi Maeno (BNL) on behalf of Harvester team

BigPanDA TIM, 26 April 2018, BNL, USA

Schematic View

Current Status with ATLAS Resources N.B.

Danila's talk for details at OLCF Pavlo's talk for beyond ATLAS

Harvester for the Grid

> Current status

- Successfully demonstrated to submit workers (pilots) to hundreds of ATLAS queues except a couple of queues with GT5 CEs which retire soon
- Successfully ran a few thousands of pilots concurrently at CERN
- Testing a capability of dynamic resource partitioning at CERN and Taiwan
- Migration for large scale production is ongoing at BNL

> Plans

- Full migration to Harvester
- Dynamic resource partitioning in production
- A single submission engine
- Consolidation of resource-specific queues
- Better site description

Harvester for Cloud

- > Current status
 - CERN + Leibniz + Edinburgh resources with 1.2k CPU cores in production
- > Two major developments
 - Condor-based for ATLAS High Level Trigger (HLT) CPU farm, aka Sim@P1
 - With 50k cores and limited network bandwidth per node
 - HLT experts have a "button"
 - > Turn it on to release the resource to PanDA when it is not used for online trigger
 - > Turn it off to immediately take the resource back when it is used for online trigger
 - The resource is not always available, but it behaves like a static cluster once it is given to PanDA
 - Workload provisioning to assign enough jobs to the resource before the resource becomes available
 - Using native cloud API for GCE and EC2
 - Use-cases
 - > In context of the data ocean project
 - > Pure google : GCE + Google storage + GCE API
 - Openstack instance with EC2 API at Taiwan for non-ATLAS experiments
 - Embedded a mechanism in harvester for lifetime management of VMs
 - HTTP(S) based communication between harvester and workers
 - Large scale demonstration and new cloud API for bulk operation

Harvester for HPC 1/5

- > Current status
 - Theta/ALCF
 - In production with ManyToOne which combines many PanDA jobs to a single MPI payload
 - · Bulk data transfers with Globus online
 - A separate queue for Yoda (Event Service at HPC) tests
 - Titan/OLCF
 - In production for ALCC
 - · Individual file transfers with rucio client-based Pilot Data API
 - Non-harvester for backfill
 - Cori/NERSC
 - In production
 - Bulk data transfers with ATLAS data management system (rucio)
 - Running out of allocation as it runs very well, and will switch to backfill soon
 - KNL/BNL
 - In production but the resource availability is intermittent
 - Providing test beds for HPC+CE
 - ASGC
 - In production for non-ATLAS VOs
 - EU or NSF HPCs
 - Under discussion

Contributions to ATLAS MC simulation production for last 7 days

Mashbeard

NEvents Processed in MEvents (Million Events) (Sum: 492.00)

http://cern.ch/go/CG80

- CONNECT STAMPEDE MCORE 7.08% (35.00)

 BNL PROD MCORE 5.46% (27.00) ■ MWT2 MCORE - 3.48% (17.00)
- INFN-T1-CINECA-SL7 MCORE 1.51% (7.00) SARA-MATRIX MCORE 1.39% (7.00)
- CERN-PROD TO SCORE SHORT 1.12% (6.00)

- NERSC_Cori_p2_mcore 9.44% (46.00)
 CERN-PROD_TO_4MCORE 5.83% (29.00)
 BOINC_MCORE 4.33% (21.00) ■ IN2P3-CC MCORE - 2.97% (15.00) ■ TOKYO MCORE ARC - 2.54% (13.00) ■ BU ATLAS Tier2 MCORE - 1.49% (7.00) ■ AGLT2 MCORE SL7 - 1.28% (6.00)
- CONNECT UIUC MCORE 1.06% (5.00)

Harvester for HPC 2/5

- > Current and future developments
 - Yoda/Jumbo jobs at Theta
 - · Goals
 - > To give large workloads to large payloads
 - > To use walltime as much as possible w/o micromanagement of execution time or in preemptable queues
 - · Processing at Thena done while Merging at other (grid) resource still to be done
 - Further optimization
 - > Shorter initialization
 - > Optimal payload size
 - > Many small payloads sharing a jumbo workloa > Smart brokerage and scheduling in PanDA

 - > Optimization for IO (details in Danila's talk)
 - A common operational model among HPCs
 - A single payload based on pilot 2.0
 - In US, all DOE HPCs running with harvester, while NSF HPCs to be migrated
 - For non-US HPCs, harvester + CE (next page) could be used

Harvester for HPC 3/5

- > Current and future developments
 - HPC + CE
 - Rather straightforward if the HPC can be used as a large batch cluster which doesn't have strong constraint and/or preference on payload size
 - > E.g. normal PanDA jobs are running at many EU HPCs through ARC CE w/o any special optimization
 - > No difference from grid resources especially if outbound network connection is available from compute nodes
 - More tricky if advanced workflows like ManyToOne, OneToMany, jumbo jobs are required, which is typically the case for large HPCs, e.g. larger payloads get higher priorities
 - > Tight communication between harvester and workers
 - > What's available as a communication channel?
 - > Through CE, message bus, ...
 - HTCondor-CE and ARC CE have been deployed at BNL/KNL for testing

Harvester for HPC 4/5

- > Current and future developments
 - Backfill
 - The ultimate goal for ATLAS is Yoda+Pilot2.0+Harvester, and thus a capability to dynamically change payload size (the number of jobs for each worker) will not be used for ATLAS production in the future
 - However, it is still useful for other experiments which don't have event service or Yoda-equivalent, and it is essentially a mechanism to collect realtime information from HPC for optimal payload scheduling
 - To implement the mechanisms in harvester which is currently used for ATLAS Titan backfill
 - To be decide which HPC is used for development
 E.g. BNL/KNL, NERSC, Titan?
 - Container integration
 - Theta/ALCF and Cori/NERSC are using containers in production
 - To be used at other HPCs as well
 - To define naming convention, distribution scheme, and contents for images

Harvester for HPC 5/5

- > Current and future developments
 - Caching
 - Currently all files in the task have to be transferred beforehand for a jumbo job
 - Would be nice to have a local cache service at HPC to avoid full data prestaging
 - > Compute nodes could directly request data to the Svc, or harvester could request data on behalf if direct connection to the Svc is unavailable from compute nodes
 - Could leverage ongoing developments for prefetcher + Event Streaming service in ATLAS

Summary

- > Many development activities in parallel for various resources
 - Weekly roundtable in WFMS meeting
 - F2F meeting in ATLAS Software and Computing workshop every 3~4 months
- > Already in production for various resources
 - Introducing commonality layer in monitoring and operational experience
 - Further optimization
- > A lot of challenges to come for HPCs as well as other resources