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Current Status with ATLAS Resources
N.B.

Danila’s talk for details at OLCF
Pavlo’s talk for beyond ATLAS
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Harvester for the Grid
➢ Current status

– Successfully demonstrated to submit workers (pilots) to 
hundreds of ATLAS queues except a couple of queues with 
GT5 CEs which retire soon

– Successfully ran a few thousands of pilots concurrently at 
CERN

– Testing a capability of dynamic resource partitioning at 
CERN and Taiwan

– Migration for large scale production is ongoing at BNL
➢ Plans

– Full migration to Harvester
– Dynamic resource partitioning

in production
– A single submission engine
– Consolidation of resource-specific

queues
– Better site description 

Running jobs at BNL harvester queue 
for last 7 days

Cert issues in 
central operation
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Harvester for Cloud
➢ Current status

– CERN + Leibniz + Edinburgh resources with 1.2k CPU cores in production
➢ Two major developments

– Condor-based for ATLAS High Level Trigger (HLT) CPU farm, aka 
Sim@P1

• With 50k cores and limited network bandwidth per node
• HLT experts have a “button”

➢ Turn it on to release the resource to PanDA when it is not used for online trigger
➢ Turn it off to immediately take the resource back when it is used for online trigger

• The resource is not always available, but it behaves like a static cluster once it 
is given to PanDA

• Workload provisioning to assign enough jobs to the resource before the 
resource becomes available

– Using native cloud API for GCE and EC2
• Use-cases

➢ In context of the data ocean project
➢ Pure google : GCE + Google storage

+ GCE API
➢ Openstack instance with EC2 API at Taiwan

for non-ATLAS experiments
• Embedded a mechanism in harvester for lifetime

management of VMs
• HTTP(S) based communication between harvester

and workers
• Large scale demonstration and new cloud API for bulk operation

Manual mini ramp up 
exercise at GCE
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Harvester for HPC 1/5
➢ Current status

– Theta/ALCF
• In production with ManyToOne which combines many PanDA jobs to a 

single MPI payload
• Bulk data transfers with Globus online
• A separate queue for Yoda (Event Service at HPC) tests

– Titan/OLCF
• In production for ALCC
• Individual file transfers with rucio

client-based Pilot Data API
• Non-harvester for backfill

– Cori/NERSC
• In production
• Bulk data transfers with ATLAS

data management system (rucio)
• Running out of allocation as it runs

very well, and will switch to backfill soon
– KNL/BNL 

• In production but the resource
availability is intermittent

• Providing test beds for HPC+CE
– ASGC

• In production for non-ATLAS VOs 
– EU or NSF HPCs

• Under discussion

Contributions to ATLAS MC simulation 
production for last 7 days
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➢ Current and future developments
– Yoda/Jumbo jobs at Theta

• Goals
➢ To give large workloads to large payloads
➢ To use walltime as much as possible

w/o micromanagement of execution
time or in preemptable queues

• Processing at Thena done while
Merging at other (grid) resource
still to be done

• Further optimization
➢ Shorter initialization
➢ Optimal payload size
➢ Many small payloads sharing a jumbo workload
➢ Smart brokerage and scheduling in PanDA
➢ Optimization for IO (details in Danila’s talk) 

– A common operational model among HPCs
• A single payload based on pilot 2.0
• In US, all DOE HPCs running with harvester, while NSF 

HPCs to be migrated
• For non-US HPCs, harvester + CE (next page) could be used  

Harvester for HPC 2/5

Yoda job at Theta with 127 nodes
      Idle, Processing events which completed,
      Processing events which didn’t complete
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➢ Current and future developments
– HPC + CE

• Rather straightforward if the HPC can be used as a 
large batch cluster which doesn’t have strong 
constraint and/or preference on payload size
➢ E.g. normal PanDA jobs are running at many EU HPCs 

through ARC CE w/o any special optimization
➢ No difference from grid resources especially if outbound 

network connection is available from compute nodes
• More tricky if advanced workflows like ManyToOne, 

OneToMany, jumbo jobs are required, which is typically 
the case for large HPCs, e.g. larger payloads get higher 
priorities
➢ Tight communication between harvester and workers
➢ What’s available as a communication channel?

➢ Through CE, message bus, …
• HTCondor-CE and ARC CE have been deployed at 

BNL/KNL for testing

Harvester for HPC 3/5
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➢ Current and future developments
– Backfill

• The ultimate goal for ATLAS is Yoda+Pilot2.0+Harvester, 
and thus a capability to dynamically change payload size 
(the number of jobs for each worker) will not be used for 
ATLAS production in the future

• However, it is still useful for other experiments which 
don’t have event service or Yoda-equivalent, and it is 
essentially a mechanism to collect realtime information 
from HPC for optimal payload scheduling

• To implement the mechanisms in harvester which is 
currently used for ATLAS Titan backfill

• To be decide which HPC is used for development
➢ E.g. BNL/KNL, NERSC, Titan?

– Container integration
• Theta/ALCF and Cori/NERSC are using containers in 

production
• To be used at other HPCs as well
• To define naming convention, distribution scheme, and 

contents for images

Harvester for HPC 4/5
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➢ Current and future developments
– Caching

• Currently all files in the task have to be transferred 
beforehand for a jumbo job

• Would be nice to have a local cache service at HPC to avoid 
full data prestaging
➢ Compute nodes could directly request data to the Svc, 

or harvester could request data on behalf if direct 
connection to the Svc is unavailable from compute nodes

• Could leverage ongoing developments for prefetcher + Event 
Streaming service in ATLAS

Harvester for HPC 5/5
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Summary
➢ Many development activities in parallel for 

various resources
– Weekly roundtable in WFMS meeting
– F2F meeting in ATLAS Software and 

Computing workshop every 3~4 months
➢ Already in production for various resources

– Introducing commonality layer in monitoring 
and operational experience

– Further optimization
➢ A lot of challenges to come for HPCs as well 

as other resources


