

Workflow Management Software

WLCG – HSF. Personal view

- LHC experiments 25+ years old
- World LHC Computing Grid: ~18 years old
 - The first WS in ~2001 (Marceille)
 - The first public understanding of the problem in 2009 (CHEP in Prague, L.Robertson talk "landscape is changed")
- HEP Software Foundation : ~5 years old
- 2014 reincarnation
 - identify inter-experiments R&D projects, to have SW&C ready for Run3/4
- 2018 reincarnation
 - Triggered by
 - Dramatic changes in computing model (thanks to BigPanDA project)
 - · Community White Paper
 - S2I2 initiative in US
 - New members of coordination (potentially next project leaders)
 - Another attempt to identify common R&D topics
 - · Or at least to identify common components/modules
 - "data lake" as one of main topics of today
 - One of key points is SW technology to be used for sites federation
 - Rucio is one of key components in Data Management SW stack
 - ATLAS R&D "data ocean" project
 - Requirements to WFM is not as hot as for Data Management
 - Thanks to PanDA/DIRAC
 - It still to be demonstrated for ALICE
 - ALICE view (more cooperation between ALICE and FAIR, than ALICE within WLCG) O²
 - many historical reasons
 - ATLAS and CMS
 - LHCb
 - Non-LHC experiments ("small" experiments)

WMS for LHC Philosophy. Retrospective

Design goals

- Achieve high level of automation to reduce operational effort for large collaboration
- Flexibility in adapting to evolving hardware, middleware and network configurations
- Insulate user from hardware, middleware, and all other complexities of the underlying system
- Unified system for data (re)processing, MC production, physics groups and user analysis
- Incremental and adaptive software development

Key features

- Central job queue
 - Unified treatment of distributed resources
 - SQL DB keeps state of all workloads
- Pilot based job execution system
 - Payload is sent only after execution begins on CE
 - Minimize latency, reduce error rates
- Fairshare or policy driven priorities for thousands of users at hundreds of resources
- Automatic error handling and recovery
- Extensive monitoring
- Modular design

DIRAC: the interware

- A software framework for distributed computing
- A complete solution to one (or more) <u>user community</u>
- Builds a layer between users and <u>resources</u>

23/10/17

From "regional" to "world" cloud

network link

classification

Workflow Management. PanDA. Production and Distributed Analysis System

https://twiki.cern.ch/twiki/bin/view/PanDA/PanDA

Global ATLAS operations

Up to ~800k concurrent jobs 25-30M jobs/month at >250 sites ~1400 ATLAS users

processing today

First exascale workload manager in HENP

1.3+ Exabytes processed in 2014 and in 2016

Exascale scientific data

BigPanDA Monitor http://bigpanda.cern.ch/

Cloud / Site summery of production jobs - Cloud view															
Cloud	Status	nJobs	defined	waiting	assigned	throffled	activated	sent	starting	nunning	holding	transferring	finished	tailed	cancelled
All clouds		213752	1	134	21884	0	38261	11	2547	26200	797	30668	72949	4400	16730
CAM	celine	15546	0	0	2044	0	656	0	163	1843	50	2505	6053	807	504
CERN (X	celine	24456	0	0	3000	0	6183	0	253	1690	129	4954	6353	602	1302
DEW	celine	7115	0	0	1067	0	168	0	50	1508	22	611	3056	271	53
By	celino	14699	0	0	2066	0	264	0	5	2254	26	1923	5611	264	456
Rix	celine	4283	0	a	34	0	1687	0	20	742	9	444	1137	134	76
πk	celine	14242	0	134	1163	0	545	0	136	2135	28	1452	3792	439	4477
MDIX	celine	25119	0	0	1235	0	8309	0	1961	6135	66	1600	5248	590	9070
ML (2	celine	56042	0	0	3600	0	12066	9	127	6423	267	11044	17906	306	4473
RUS	brokeroff	57	0	a	0	0	2	0	0	2	0	0	52	0	1
TWIE	celine	10192	0	0	2711	0	4391	٥	15	2090	71	4438	2013	130	404
UK 92	celine	8115	1	0	526	0	1133	0	23	664	34	1043	3829	202	570
use	celine	25674	0	0	1438	0	3854	2	6	1824	63	661	14399	574	3174

Social Parish and the second s

PanDA Brief Story

2005: Initiated for US ATLAS (BNL and UTA)

2006: Support for analysis 2008: Adopted ATLAS-wide 2009: First use beyond ATLAS

2011: Dynamic data caching based on usage and

demand

2012: ASCR/HEP BigPanDA project 2014: Network-aware brokerage

2014 : Job Execution and Definition I/F (JEDI) adds complex task management and fine grained dynamic

job management

2014: JEDI- based Event Service

2014:megaPanDA project supported by RF Ministry of

Science and Education

2015: New ATLAS Production System, based on

PanDA/JEDI

2015 : Manage Heterogeneous Computing Resources

2016: DOE ASCR BigPanDA@Titan project

2016:PanDA for bioinformatics

2017:COMPASS adopted PanDA, NICA (JINR)

PanDA beyond HEP: BlueBrain, IceCube, LQCD

Lessons Learned

- WMS is designed by and serves the physics community
- WMS new features are driven by experiment operational needs
- Computing model and computing landscape in general has changed
 - Tiers hierarchy relaxed (~not exist)
 - Computing resources are becoming heterogeneous
 - Dedicated (grid) sites, HPCs, commercial and academic clouds ...
 - HPCs and clouds are successfully integrated for Run 2/3
 - The mix of site capabilities and architectures
 - The mix will change with time though all will be needed
- There are several systems with very well defined roles which are integrated for distributed computing: Information system (AGIS), DDM (Rucio), WMS (ProdSys2/PanDA), meta-data (AMI), and middleware (HTCondor, Globus...). We managed to have a good integration of all of them in ATLAS.
 - Combine all functionalities in one system or separate them between systems?
 - Catalogs, layers,flexibility to add new features and to evaluate new technologies
- Monitoring and accounting are key components of Distributed SW
- Errors handling
- Scalability
 - WMS
 - Database technology
 - Monitoring
- WMS functionality is important as scalability
- Edge service is (should) be an additional layer to serve all heterogeneous resources

Future development. Harvester

- To address wide spectrum of computing resources/facilities available to ATLAS and experiments in general
- New model: PanDA server- harvester-pilot
- The project was launched in Dec 2016

Primary objectives:

- To have a common machinery for diverse computing resources
- To provide a common layer in bringing coherence to different HPC implementations To optimize workflow executions for diverse site capabilities

Harvester Status

- Architecture designed and implemented
- Harvester for cloud
 - In production : CERN+Leibniz+Edinburgh resources (1.2k CPU cores)
 - Work in progress: HLT farm @ LHC Point1, Google Cloud Platform
- Harvester for HPC
 - In production :
 - Theta/ALCF, Titan (OLCF)
 - ASGC (non-ATLAS Vos)
 - Cori+Edison / NERSC
 - KNL@BNL
- Harvester for Grid
 - Core SW is ready
 - Many scalability tests are planned in 2018 before commissioning
 - harvester is currently running at BNL (~800 jobs). Migration to full scale production is ongoing at BNL

Future Challenges

- New physics workflows
 - also new ways how Monte-Carlo campaigns are organized
- New strategies
 - "provisioning for peak"
- Integration with networks (via DDM, via IS and directly)
- Data popularity -> event popularity
- Address new computing model
- Address future complexities in workflow handling
 - Machine learning and Task Time To Complete prediction
 - Monitoring, analytics, accounting and visualization
 - Granularity and data streaming

Future Challenges. Cont'd

- Incorporating new architectures (like TPU, GPU, RISC, FPGA, ARM...)
- Adding new workflows (machine learning training, parallelization, vectorization...)
- Leveraging new technologies (containerization, no-SQL analysis models, high data reduction frameworks, tracking...)
- we have experience to enable large scale data projects for other communities, we are working through BigPanDA (DOE ASCR funded project)
 - Some components of WMS software stack could be used by others (i.e. harvester)
- Event Service and Event Streaming Service (see Torre's talk)
- WMS DDM coupled optimizations
 - WMS will evolve to enable new data models
 - Data lakes, data ocean, caching services, SDN, DDN,...
 - Data carousel (more intensive tape usage, tape/disk data exchange)
 - Another level of granularity (from datasets to events)

Industry R&D Collaboration. Google Cloud Platform

ATLAS DDM and WMS common R&D (+ CERN OpenLab +...)

- Integrate GCP(Storage and Compute) with ATLAS Distributed Computing
- Allow ATLAS to explore the use of different computing models to prepare for HL-LHC
- Allow ATLAS user analysis to benefit from the Google infrastructure
- Provide scientific use-case for Google product development and R&D
- Whitepaper: https://cds.cern.ch/record/2299146/files/ATL-SOFT-PUB-2017-002.pdf

Three initial ideas interesting to all partners:

- User analysis
 - Place copies of analysis output on GCP for reliable user access
 - Serves as cache with limited lifetime
- Data placement, replication, and popularity
 - Store the final derivation of MC and reprocessing data campaigns
 - Use Google Network to make data available globally (e.g., ingest in Europe but job reads from US)
 - Incorporate cloud access patterns into popularity measurements
- Data marshaling and streaming. Event streaming service
 - Evaluate necessary compute for generation of sub-file products (branches/events from ROOT files)
 - Job performance and network behavior for very small sample streaming

