

SPSC Meeting, June 20th, 2017

The ICARUS Collaboration at LNGS

M. Antonello^a, B. Baibussinov^b, V. Bellini^c, P. Benetti^d, F. Boffelli^d, A. Bubak^e, E. Calligarich^d, S. Centro^b, A. Cesana^f, K. Cieslik^g, A.G. Cocco^h, A. Dabrowska^g, A. Dermenevⁱ, A. Falcone^d, C. Farnese^b, A. Fava^b, A. Ferrari^j, D. Gibin^b, S. Gninenkoⁱ, A. Guglielmi^b, M. Haranczyk^g, J. Holeczek^e, M. Janik^e, M. Kirsanovⁱ, J. Kisiel^e, I. Kochanek^e, J. Lagoda^k, A. Menegolli^d, G. Meng^b, C. Montanari^{d,j}, S. Otwinowski^l, P. Picchi^m, F. Pietropaolo^{b,j}, P. Plonskiⁿ, A. Rappoldi^d, G.L. Raselli^d, M. Rossella^d, C. Rubbia^{a,j,o}, P. Sala^{f,j}, A. Scaramelli^f, F. Sergiampietri^p, D. Stefan^f, R. Sulej^e, M. Szarska^g, M. Terrani^f, M. Torti^d, F. Tortorici^c, F. Varanini^b, S. Ventura^b, C. Vignoli^a, H. Wang^l, X. Yang^l, A. Zalewska^g, A. Zani^d, K. Zarembaⁿ.

- a INFN Laboratori Nazionali del Gran Sasso Assergi, Italy
- b Dipartimento di Fisica e Astronomia, Università di Padova and INFN, Padova, Italy
- c Dipartimento di Fisica e Astronomia Università di Catania and INFN, Catania, Italy
- d Dipartimento di Fisica Nucleare e Teorica Università di Pavia and INFN, Pavia, Italy
- e Institute of Physics, University of Silesia, Katowice, Poland
- f INFN, Sezionedi Milano e Politecnico, Milano, Italy
- g Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland
- h Dipartimento di Scienze Fisiche Università Federico II di Napoli and INFN, Napoli, Italy
- i INR RAS, Moscow, Russia
- j CERN, Geneva, Switzerland
- k National Centre for Nuclear Research, Otwock/Swierk, Poland
- I Department of Physics and Astronomy, University of California, Los Angeles, USA m INFN Laboratori Nazionali di Frascati, Frascati, Italy
- n Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland
- o GSSI, Gran Sasso Science Institute, L'Aquila, Italy
- p INFN Sezione di Pisa. Pisa, Italy

The remarkable evolution of v- experiments: the LAr-TPC

- Cherenkov radiation detection has been so-far one of the key choices for exploring neutrinos with k-ton water/ice detectors.
- As an alternative, the Liquid Argon Imaging technology LAr-TPC, an "electronic bubble chamber" which permits to identify unambiguously each ionizing track in complex v events, was originally proposed by C. Rubbia [CERN-EP/77-08].
- With the continuing effort of ICARUS Collab. and INFN support, LAr-TPC technology has been taken to full maturity with the T600, the largest LAr-TPC ever built, 0.76 kt of LAr mass

T600 detector

Pavia

The path to larger LAr detectors

Cooperation with industry:

AirLiquide, Breme, Cinel, CAEN

10 m³ industrial prototype

1999-2000: Test of final industrial solutions for the

wire chamber mechanics and readout electronics.

LNGS Hall-B

ICARUS: a summary

- T600 detector concluded in 2013 a successful three year long run at LNGS taking data both with CNGS v beam and cosmic rays. Several relevant physics and technical results have been achieved:
 - > ICARUS demonstrated its excellent performance as tracking device and homogeneous calorimeter with a remarkable P.id capabilities exploiting the measurement of dE/dx vs. range.
 - > Reconstruction of v interaction vertex and measurement of e.m. showers by primary electrons and invariant mass of γ pairs, allowed to reject background in the study of $v_{\mu}-v_{e}$ transitions to unprecedented level.
- ICARUS performed a sensitive search for LSND-like anomaly with CNGS beam reducing the LSND window to a narrow region at $\Delta m_s^2 \approx 1 \text{ eV}^2$, as confirmed by OPERA. Moreover ICARUS contributed to solve the superluminal v claim.
- All these results have marked a milestone for the LAr-TPC technology with a large impact on the future neutrino and astro-particle physics projects, like the current SBN short base-line neutrino program at FNAL with three LAr-TPCs (SBND, MicroBooNE and ICARUS) and the multi-kt DUNE LAr-TPC detector.
- T600 detector underwent an overhauling at CERN before being exposed to ~0.8 GeV Booster v beam at 600 m from target to definitely test the LSND claim with a highly sensitive search for $v\mu-ve$ in the framework of SBN program.

Selected ICARUS papers - 1

- 1) F. Arneodo et al., "Observation of long ionizing tracks with the ICARUS T600 first half-module", Nucl. Instr. Meth. in Phys. Res., A508, 287 (2003).
- 2) S. Amoruso et al., "Analysis of the liquid argon purity in the ICARUS T600 TPC", Nucl. Instr. Meth. in Phys. Res. A516, 68 (2004).
- 3) S. Amoruso et al., "Study of electron recombination in liquid Argon with the ICARUS TPC", Nucl. Instr. Meth. in Phys. Res. A523, 275 (2004).
- 4) S. Amoruso et al., "Measurement of the μ decay spectrum with the ICARUS liquid Argon TPC" Eur. Phys. J. C33, 233 (2004).
- 5) S. Amerio et al., "Design, construction and tests of the ICARUS T600 detector", Nucl. Instr. Meth. in Phys. Res. A527, 329 (2004).
- 6) A. Ankowski et al., "Characterization of ETL 9357FLA photomultiplier tubes for cryogenic temperature applications", Nucl. Instr. Meth. in Phys. Res. A556, 146 (2006).
- 7) C. Vignoli et al., "ICARUS: an innovative large LAr detector for neutrino physics", Adv. in Cryog. Eng. 51, 1643 (2006).

Selected ICARUS papers - 2

- 8) A. Ankowski et al., "Measurement of through-going particle momentum by means of multiple scattering with the ICARUS T600 TPC", Eur. Phys. J. C 48, 667(2006).
- 9) F. Arneodo et al., (ICARUS and Milano Coll.s), "Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam", Phys. Rev. D74, 112001 (2006).
- 10) A. Ankowski et al., "Energy reconstruction of electromagnetic showers from πO decays with the ICARUS T600 liquid argon TPC", Acta Phys. Pol. B41, 103 (2010).
- 11) C. Rubbia et al., "Underground operation of the ICARUS T600 LAr-TPC: First results", J. Instr.6, P07011 (2011).
- 12)M. Antonello et al., "A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS", Phys. Lett. B 711, 270 (2012).
- 13)M. Antonello et al., "Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam", Phys. Lett. B713, 17 (2012).
- 14)M. Antonello et al., "Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam", J. H.E.P., 2012 (11), art. no. 049 (2012).

Selected ICARUS papers- 3

- 15)M. Antonello et al., "Experimental search for the "LSND anomaly" with the ICARUS detector in the CNGS neutrino beam", Eur. Phys. J. C,73, art. no. 2345, 1 (2013).
- 16)M. Antonello et al., "Search for anomalies in the ve appearance from a vµ beam", Eur. Phys. J. C73, art. no. 2599, 1 (2013).
- 17)M. Antonello et al., "Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector", Adv. in H.E.P. 260820 (2013).
- 18)M. Antonello et al., "The trigger system of the ICARUS experiment for the CNGS beam", J. Inst. 9, P08003 (2014).
- 19)M. Antonello et al., "Experimental observation of an extremely high electron lifetime with the ICARUS-T600 LAr-TPC", J. Inst. 9, P12006 (2014).
- 20)M. Antonello et al., "Operation and performance of the ICARUS T600 cryogenic plant at Gran Sasso underground Laboratory", J. Inst. 10, P12004 (2015).
- 21)M. Antonello et al., "Muon momentum measurement in ICARUS-T600 LAr-TPC via multiple scattering in few-GeV range", J. Inst., 12 P04010 (2017).

ICARUS-T600 plant @ LNGS Hall B: 0.77 kton LAr-TPC

Electronics ch. (54000 low noise charge amplifiers + digitizers, S/N > 7)

A superb Cryogenic plant: excellent performance, & safe operation guaranteed by the local group

Electronic racks

The ICARUS T600 detector

LN2 storage + cryo (behind)

Cathode

Warm Electronics

TPC wires (anodes)

Two identical modules, 4 wire chambers

- 3.6 \times 3.9 \times 19.6 m \approx 275 m³
- Total active mass ≈ 476 ton
- 2 TPCs per module, with common central cathode -> 1.5 m drift length
- E_{drift} = 0.5 kV/cm, v_{drift} = 1.55 mm/ μ s) (sub-mm resolution in drift direction).

TPC Warm Electronics

 Continuous read-out, digitization, waveform recording, 0.4 µs sampling time (sub-mm resolution in drift direction).

Charge and light detectors

- 3 "non-distructive" readout wire planes per TPC, wires at 0°, ±60° (Ind1, Ind2, Coll. View)
- •≈54000 wires (150 μm Ø, 3 mm pitch)
- •54+20 photomultipliers (8" Ø) + wls (TPB), sensitive at 128 nm (VUV)

Cryogenics

- Liquid and gas Ar recirculation;
- Passive insulation + dual phase N₂ shield
- High purity ~ 20 ppt O_2 equiv. (τ_e > 16 ms).

A key feature of LAr imaging: very long e⁻ mobility

- Level of electronegative impurities in LAr must be kept exceptionally low to ensure ~m long drift path of ionization e⁻ signal without attenuation;
- New industrial/lab purification methods have been developed to continuously filter and re-circulate both liquid (2.5 m³/hour) and gas (100 Nm³/day) phases;

• e⁻ lifetime τ_{ele} > 7 ms (<40 p.p.t [O2] eq. impurities) measured with cosmic μ 's : 12% max. charge attenuation on 1.5 m drift.

With a new not-immersed pump on East cryostat: τ_{ele} >15 ms!

ICARUS demonstrated the effectiveness of single phase LAr-TPC technique paving the way to huge detectors with longer drift distances as required for LBNF/DUNE project.

ICARUS experiment at LNGS

• Exposed to CNGS \vee beam ICARUS concluded in 2013 a successful-3 years long run, collecting 8.6 \times 10¹⁹ pot statistics with a remarkable detector live time > 93%, recording also c-rays induced events (0.73 kt y effective exposure).

Several physics and technical results were achieved, including detailed studies
of all technical aspects of LAr-TPC detection technique and the development of

advanced reconstruction algorithms.

Different operating conditions have been successfully tested in last months of run proving that ICARUS can safely stand up to $\sim 1 \text{ kV/cm}$ drift field without any discharges. Measured e- drift velocity $v_{DRTFT} \sim \sqrt{E}$

Collected CNGS $vs + \mu s$ normalized to 10^{17} pot: $3.4 vs + 12 \mu s$ on average. Data statistics consistent within 6% with predictions

E=500 V/cm

 $F\sim1 \text{ kV/cm}$

ICARUS-T600 trigger system - 1

• ICARUS-T600 relies on its self-triggering capability by both scintillation light and charge signals by ionizing particles in LAr to detect CNGS and c-ray events, spanning a wide range of $E_{DEP} \sim 100$ MeV \div 10 GeV, with event topologies significantly different from each other.

- T600 exploited a GPS time-base shared at CERN & LNGS to open on-line a 60 ms gate at v bunch arrival time, as predicted by SPS "early warning" proton extraction (+2.44 ms CERN /LNGS v tof):
 - Few mHz trigger for CNGS events by coincidence of PMT sum signal in at least one TPC with CNGS gate guaranteeing a ~ full detection eff. E_{DEP} >300 MeV;
 - Charge recognition on TPC wires by Super Daedalus chip (SD) to further increase efficiency at low E_{DEP} by detecting wire signals with a majority logic: 99% (91%) efficiency for vCC (vNC).

ICARUS-T600 trigger system - 2

- The SD trigger allowed also to directly qualify PMT trigger on the basis of a "minimum bias" request, i.e. the presence of a ~5 cm long track in the TPC.
- The analysis of $\sim 2.5 \cdot 10^{19}$ pot event statistics collected with the SD trigger proved the ~full PMT trigger efficiency for both v interactions in the LAr active volume and crossing muon. The SD trigger allowed to significantly increase the detection efficiency below 500 MeV energy deposition.
- Cosmic-ray induced events have been triggered with > 90% efficiency for E_{DEP} > 500 MeV requiring the coincidence of PMT sum signals in two adjacent chambers or a single SD minimum bias signal, out of CNGS spill.

M. Antonello et al. J. Inst. 9, P08003 (2014)

Successful operation of ICARUS T600 trigger system: high reliability, efficiency and live-time: a robust baseline for next ICARUS exp. at FNAL and future developments in multi-kt LAr-TPC

ICARUS LAr-TPC performance

- From the analysis of CNGS v and of c-ray induced events:
 - > Tracking device: precise 3D event topology with ~1 mm³ resolution for any ionizing particle;
 - \succ Global calorimeter: full sampling homogeneous calorimeter; total energy reconstructed by charge integration with excellent accuracy for contained events; momentum of non contained μ by Multiple Coulomb Scattering with $\Delta p/p \sim 15\%$ in 0.4-4 GeV/c range;
 - Measurement of local energy deposition dE/dx: remarkable e/γ separation (0.02 X_0 sampling, X_0 =14 cm, particle id. by dE/dx vs range):

```
Low energy electrons:

\sigma(E)/E = 11\%/J E(MeV)+2\%

Electromagnetic showers:

\sigma(E)/E = 3\%/J E(GeV)

Hadron showers:

\sigma(E)/E \approx 30\%/J E(GeV)
```


Muon momentum measurement via multiple Coulomb scattering

- •Muon momentum measurement by *Multiple Coulomb Scatt*. has been validated comparing p_{MCS} with corresponding calorimetric measurement p_{CAL} for ~500 stopping μs produced by CNGS v_{μ} interactions in upstream rock;
- • p_{MCS} is well correlated with p_{CAL} .

 Unexpected p_{MCS} under-estimation is detected at p >3 GeV/c for μ s travelling close to TPC cathode, due to its $\Delta y \sim \pm 25$ mm non-perfect planarity which affect electron drift velocity (percent E_D distortions)
- These effects have been accounted for applying the actual computed electric field to MC events to extract average corrections to p_{MCS} as a function of μ momentum and distance from cathode.

 $p_{MCS} \sim p_{CAL} data$ within ~5%.

Resolution of muon momentum measurement via MCS

- The resolution on p_{MCS} measurement depends from the muon momentum and from the track length used for the MCS measurement.
- For 4 m muon track length, the resolution of the method is ~15% in 0.4-4 GeV /c momentum range.
- Moreover a better resolution on μ momentum measurement by MCS is expected after the T600 overhauling at CERN:
 - the cathode has been flattened with few mm residual non-planarity.
 - > the new TPC read-out electronics will provide a fully synchronized digitization of the wire signals.

The method is applicable to momentum range of interest of the proposed short/long baseline experiments.

M. Antonello et al., J. Inst., 12 P04010 (2017)

Tools for event reconstruction in LAr

- Bubble chamber like reconstruction of the event topology in conjunction with calorimetric measurement of global and local energy deposits perfectly suitable for detailed visual analysis of the event.
- The large amount of data collected with CNGS-vs and cosmic rays required the use of automatic tools, to assist and complement the visual scanning.
- Innovative approach: direct 3D reconstruction with simultaneous optimization and matching of hits identified in the different 2D views.
- > All available information is used
- > Applied to reconstruction of tracks, shower objects, interaction vertices and to global event analysis
- > Improves the PID

a) Collection & b) Induction2 views;

c) 3D reconstruction; d). PID

v, CC events in CNGS neutrino beam

- v_{μ} CC/anti- v_{μ} CC were selected, with a ~70% efficiency and a rejection factor ~60 for NC events, requiring the μ track to be longer than 2.5 m.
- Globally 1285 v_{μ} and anti- v_{μ} CC events have been selected in a 6.7 x 10¹⁹ pot event statistics (2011 and 2012 runs). All these events have been visually measured and reconstructed in detail separating μ tracks from hadronic jet.

The reconstructed hadronic energy in agreement with expectations

The μ length matches its expected distribution

Unique feature of ICARUS: e/ γ separation, π^0 reconstruction

primary vertex

Crucial for NC rejection in v_e-physics

Towards automatic neutrino search: atmospheric v -1

- Cosmic ray events recorded in \sim 0.48 kton y exposure (2012-2013 run), are being analyzed to study atmospheric \vee events, of interest since they cover the energy range of the upcoming SBN experiment at FNAL.
- Incoming c-rays are rejected (by factor ~100) and \vee candidates pre-selected by two automatic procedures, then validated by visual scanning:
 - a) reconstruction of vertex of multi-prong candidates (~30% MC eff.for vCC);
 ~42% of the exposure analyzed;
 - b) selection optimized for v_eCC rejecting straight incoming tracks with ~70%, ~18% MC eff. for v_eCC and v_uCC respectively); ~65% of sample analyzed;
- Globally 7 $v_{\mu}CC$ and 8 $v_{e}CC$ atmospheric v events have been so far identified.

Towards automatic neutrino search: atmospheric v - 2

Upward-going v_uCC:

- E_{Dep}= 1.7 GeV.
- 4 m escaping muon.
- Muon momentum = 1.8 ± 0.3 GeV/c. from multiple scattering.

- Quasi-elastic v_eCC with E_{Dep} = 0.9 GeV.
- Proton identified by dE/dx.

• Clear primary electron initiating (single m.i.p.) shower.

Towards automatic neutrino search: atmospheric v - 3

- By-product: addressing nucleon decay search in selected channels involving kaons (competitive with PGD limits):
 - study on a single event basis with virtually zero background: $n \rightarrow K^+e^-$;
 - a first study of MC events indicates an overall ≈80% selection and identification efficiency of the automatic pre-filter.

Search for superluminal neutrinos

- Search of effects of v energy loss by analogous to the Cherenkov rad. emission (Cohen, Glashow, PRL 107 2011)
- No distortion in the measured deposited v energy, no observed e^+e^- pair $\rightarrow \delta = (v_n^2-c^2)/c^2 < 2.5 \cdot 10^{-8} \cdot 0.90\% CL$ [$\delta < 1.4 \cdot 10^{-8} \cdot (5K \cdot atmosph. v)$; $\delta < 4 \cdot 10^{-9} \cdot (5N1987A)$]

M. Antonello et al., Phys. Lett. B., 711, 270-275 (2012)

Direct measurement of CERN to T600 v t.o.f. with special bunched beam:

M. Antonello et al., JHEP 049 (2012)

- First measurement in 2011: $7 \vee \text{events} \rightarrow \delta t = \text{tof}_c \text{tof}_v = 0.3 \pm 4.9_{\text{stat}} \pm 9.0_{\text{syst}} \text{ ns}$ M. Antonello et al., Phys. Lett. B., 713, 17-22 (2012)
- Precision measurement in 2012: 25 v events (new precision geodesy, 4 timing systems, special PMT DAQ)

 $\delta t = +0.10 \pm 0.67_{stat} \pm 2.39_{syst}$ ns

Demonstration of ICARUS capability to measure the event absolute time with ns resolution, a key feature for the next shallow depth operation

Persisting anomalies in the neutrino sector

• Neutrino oscillations established a coherent picture with the mixing of physical v_e, v_μ, v_τ with small mass difference. However three main classes of anomalies have been reported, namely the observation of:

The LSND Anomaly $\frac{8}{8}$ 17.5 • Some Excess

- Electron-v excess signals from muon-v at accelerators by LSND (3.8σ) + MiniBooNE
- \triangleright Disappearance of anti- v_e by near-by nuclear reactor experiments (event rate R = 0.938±0.023).
- \triangleright Disappearance of v_e hinted by solar v_e experiments in the calibration with Mega-Curie v sources (R=0.86±0.05).

Saw an excess of $\overline{\nu}_e$: $87.9 \pm 22.4 \pm 6.0$ events. With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

- Other anomalies have been recently risen from reactors (NEOS anti-ve spectrum), atmospheric v (IceCube latest results on $v\mu$ disappearance), CMB (constraint of massive sterile v to m_s <0.26 eV at 95% CL).
- All these independent signals may all point out to the possible existence of at least a 4th non standard/heavier "sterile" v state driving oscillations at small distances, with Δm^2_{new} < 1 eV² and relatively small $\sin^2(2\theta_{new})$ mixing angles.
- ICARUS addressed the LSND anomaly with the CNGS beam performing a sensitive search for a possible LSND-like $v_u \rightarrow v_e$ oscillations.

v_eCC identification in CNGS beam

 The unique detection properties of the LAr-TPC allow to identify unambiguously individual e-events with high efficiency in Collection and Induction2

Wire number along track direction

Single m.i.p.

LSND-like search by the ICARUS experiment at LNGS

- ICARUS searched for v_e excess related to L/E_v~1 m/MeV LSND anomaly on CNGS v_u beam (~1% intrinsic v_e) in 10-30 GeV E_v range at L=732 km;
- At CNGS L/E, ~36.5m/MeV: LSND-like oscillation signal averages to $\sin^2(1.27\Delta m^2_{new}\ L/E)\sim1/2$. Compared to MINOS and T2K, ICARUS operated in L/E, range where contributions from standard oscillations not yet relevant.
- Globally 7 e-like events found in 7.93x10¹⁹ pot statistics consistent with the 8.4±1.1 expectation from intrinsic ve beam + standard oscill. providing the limits in 2 v oscillation framework:

 $P(v\mu \rightarrow ve) \le 3.92 \times 10^{-3} \text{ at } 90 \% CL$ $P(v\mu \rightarrow ve) \le 7.83 \times 10^{-3} \text{ at } 99 \% CL$

M. Antonello et al., Eur. Phys. J. C 73 2345(2013)

M. Antonello et al., Eur. Phys. J. C 73 2599(2013)

ICARUS, and OPERA, results constrained the allowed parameters to a narrow region at $\Delta m^2 < 1 \text{ eV}^2$, where all the experimental results can be coherently accommodated at 90% C.L, calling for a definitive experiment.

Conclusions

- The LAr-TPC detection technique has been taken to full maturity with ICARUS T600. It is a result of many years of R&D with continuous support of INFN.
- ICARUS completed in 2013 a successful continuous three year run at LNGS exposed to CNGS v's and c-rays obtaining remarkable physics and technical achievements and proving the effectiveness of the single phase LAr-TPC technology for v physics.
- The ability in reconstructing v interactions with complex topologies in a broad energy range, combined with an efficient identification of primary electrons and an unique e/γ separation, allows rejecting backgrounds in the search for $v_u \rightarrow v_e$ transitions at an unprecedented level.
- ICARUS performed a sensitive search for a potential v_e excess related to LSND-like anomaly with CNGS defining, with the other experimental results, a narrower region at $\Delta m^2 < 1 \text{ eV}^2$, which has to be investigated to definitively settle the LSND hint of sterile v. Atmospheric neutrinos have been identified in the ongoing data analysis.
- ICARUS underwent a major overhauling at CERN before to be exposed to FNAL BNB aiming at a definitive experiment covering with 5σ the LSND hint for sterile v's.

