SPS Cavity Results

Nominal $V_{kick} = 3.4$ MV, $R_s = 10 n\Omega$

		DQW #1 (CERN)	DQW #2 (CERN)	DQW #1 (USLARP)	DQW #2 (USLARP)	RFD #1 (USLARP)	RFD #2 (USLARP)
Max Volt	[MV]	5.04	4.8	5.8		4.4	5.75
E_p , B_p [MV/m, mT]		56, 109	54, 103	65, 125		42, 73	56, 96
R_s min	[nΩ]	10	10	9		11	7.6
<i>R_s</i> , 3.4MV	[nΩ]	15	18	15		13	8.2
FE onset	[MV]	4.0	3.5	4.5		No FE	4.5

Tested USLARP DQW #1 with HOM coupler which quenched at 2.8 MV (cause under investigation)

CERN DQW

USLARP DQW & RFD

RF Power with Offsets

- Installed power is limited to 40 kW after C&S review
- If orbit transients are in the $10 100 \ \mu s$ level, then the power system can compensate them.

2

Electrical Center Measurements

- 3-axis bead-pull for electrical centre measurement and azimuthal analysis for RF multipoles + Metrology of the capacitive plated
- Symmetry of the poles very good and within the measurement accuracy. The cavities will be aligned in the CM after final metrology & cross with beadpull measurements
- We expect to be better than 0.5mm

Multi-axis bead-pull test stand

