

Emittance growth due to crab cavity noise and expected orbit spread at the crab cavity

X. Buffat, J. Barranco*, T. Pieloni*

*EPFL

WP2 meeting – 13.06.2017

Content

- ➢ Effect of noise on colliding beams : weak-strong and strong-strong models
- ➢ Experimental results
- ➢ Tolerance for phase noise
- ➢ Bunch length effect in the presence of chromaticity
- ➢ Summary
- ➢ Orbit effects at the CC due to long-range beam-beam interactions

- ➢ Noise around the betatron frequency leads to emittance growth through decoherence :
- ➢ Considering kicks that do not vary on the bunch length and considering the other beam as a fixed lens (weak-strong model) one can derive an analytical formula, taking into account the effect of the feedback acting on the center of mass oscillation (V. Lebedev)
- ➢ Taking into account the coherent motion of the other beam (strong-strong) model, the decohrence is different and its effect on the emittance can be reduced w.r.t W-S model predictions (Y. Alexahin)
- ➢ This beneficial impact can only be achieved if the coherent modes are outside of the incoherent spectrum (Y. Alexahin)

Example : Mirrored tune

- ➢ With mirrored tune, the single particle (incoherent) dynamic is identical for each beam
- ➢ The coherent dynamics, and consequently the decoherence is modified
	- \rightarrow For identical tunes, the σ and π mode are visible in both planes

 \rightarrow For mirrored tunes the coherent beam-beam modes have intermediate frequencies that are in the incoherent spectrum

- ➢ LHC features a complicated scheme of beam-beam interactions, most coherent modes are inside the incoherent spectrum (T. Pieloni, PhD thesis, EPFL)
- ➢ The chromaticity creates an interplay between sidebands, affecting the decoherentce in a similar way even in simple configurations of beam-beam interactions
	- \rightarrow The W-S model is accurate enough for most relevant LHC and HL-LHC configurations

- ➢ Past studies at injection energy showed worrying results (interplay with other sources of noise, tune ripple?) (J. Barranco, CERN-ACC-NOTE-2016-0020)
	- \rightarrow Designed an experiment at top energy allowing for a scan of ADT gain / beam-beam tune shift within reasonable amount of time profiting from ADT flexibility (D. Valuch)
- > The results indicated a good agreement with the W-S model, assuming a large error on the assumed ADT gain

Measurement of the ADT damper gain

- ➢ The reduced gain for single bunches was confirmed by re-analysing another test of single bunch tune measurement at flat top
- ➢ The comparison with COMBI simulations suggest that the ADT damping time is shadowed by the chromatic decoherence \rightarrow the gain is about 4 times smaller than expected

- ➢ The variation of the emittance growth rate as a function of the injected noise amplitude follows the W-S model predictions in most cases. In others, the measured variation lies in between the W-S and S-S model, as can be expected depending on phase advance between IPs in the two beams
- ➢ Next step : Understand the contribution of the ADT in the measured growth without artificial noise (MD2155)

Experimental results

าFRI \blacktriangleright

➢ The impact of chromaticity seemed non-trivial, as expected within S-S model, but not the W-S The impact of chromaticity seems non-anylatical as
expected within S-S model, but not the W-S
 \rightarrow This experiment confirms the difficulty to achieve the

S-S mechanism for the reduction of the emittance growth, even in the S-S regime

 \rightarrow HL-LHC design should be based on the W-S model

Tolerance for phase noise

➢ From J. Qiang, et al, BEAM-BEAM SIMULATION OF CRAB CAVITY WHITE NOISE FOR LHC UPGRADE, IPAC 2015 : ΔФ<10-5 \rightarrow 1.8 \cdot 10⁻¹⁴ rad²/Hz PSD at Q^{*}f_{rev} for 2.6 % emittance growth per hour

➢ New baseline with half the crab cavites (max crab angle 380 μrad) and allowing for 4 %/h $\rightarrow \Delta \Phi$ < 2.10-5 \rightarrow 6.5 \cdot 10⁻¹³ rad²/Hz PSD at Q^{*f}_{rev}

- ➢ The feedback based on the centroid motion is inffective in mitigating noise without centroid motion, from the phase noise with RF curvature and the amplitude noise \to 5·10-15 rad²/Hz targeting 4 %/h (P. Baudrenghien and T. Mastoridis @ HL-LHC meeting 2015)
- > Relaxed settings with the new baseline (factor 1.5 on the noise amplitude) \rightarrow 1.1.10-14 rad2/Hz PSD at Q*f_{rev}
- ➢ In the presence of chromaticity, head-tail modes do have a center of mass oscillation, but it seems too weak to recover the efficiency of the ADT against emittance growth \rightarrow details to be worked out

Summary

- ➢ The models describing the emittance growth due to external sources of noise were tested experimentally, showing a good agreement with the W-S theory
- ➢ Signs of the mitigation predicted by Y. Alexahin in the S-S regime were observed, but are not robust enough to be included in the HL-LHC baseline \rightarrow further investigations needed
- ➢ The feedback is less effective as a mitigation of the emittance growth when the effect of the CC RF curvature is strong or for amplitude noise, even in the presence of chromaticity

- ➢ Long-range beam-beam interactions (or offset interactions) modify the orbit of the two beams due to their dipolar component
- ➢ Each bunch experiencing different number of interactions will have different closed orbits (PACMAN effect)
- \rightarrow The average effect can be corrected, but a bunch by bunch spread remains
- \rightarrow The orbit effect depends on 1/d, the normalised separation between the beams, whereas the tune shift and spread depend on $1/d^2$ and $1/d^4$ respectively \rightarrow The orbit effect is stronger in the HL-LHC w.r.t. LHC

Orbit effect

- Based on the analytical formula, one expects an orbit spread at the CC in the order of :
- 0.2 σ in the two transverse planes due to long-range interaction in IP1 and 5
- 0.15 σ due to long-range interactions in IP2 and 8
- 0.1 σ in the two transverse plane due to offset collision in IP2 and 8
- \rightarrow Total spread of 0.45 σ in the worst configuration of phase advances

scheme, all beambeam interactions, including offset levelling in IPs 2 and 8

Nominal filling scheme, long-range in IPs 1 and 5 Ξ 0.05 $\Xi^ 0.00$ $\overline{\mathbb{E}}$ Vertical Offset at CC -0.05 -0.10 -0.15 non-colliding bunches $-0.20\frac{1}{0}$ 0.5 2.0 2.5 3.0 3.5 15 $\times 10^3$ 'iii"iii! Small impact of IP8 levelling with the current 3.0

Effect of the filling scheme

➢ The orbit spread is different for the different scheme, but the RMS remains similar

 \rightarrow Analysis of the effect on the CC load and on the impact on the orbit tolerance on-going by R. Calaga

BACKUP : Effect of non-linear coupling

➢ The presence of the vertical π-mode in the horizontal incoherent spectrum leads to a large growth in the horizontal plane

 \rightarrow The effect is mitigated by increasing the tune split between the planes

