Neutrinos and Symmetries

C. Hagedorn

CP³-Origins, SDU, Odense, Denmark

Neutrino Platform Week, 29.01.-02.02.2018, CERN, Geneva, Switzerland

observation of three generations of elementary particles

non-abelian flavor symmetry as reason for three generations

- observation of three generations of elementary particles
- strong mass hierarchy among charged fermions

log scale

Froggatt-Nielsen symmetry $U(1)_{FN}$ parametrizes mass hierarchy

- observation of three generations of elementary particles
- strong mass hierarchy among charged fermions
- solar (much) smaller than atmospheric mass splitting

$$\frac{\Delta m_{21}^2}{\Delta m_{31}^2} \approx 0.03 \text{ [NO]}$$

(NuFIT ('18))

SO(2) can explain partially degenerate neutrino masses

(Hernandez/Smirnov ('13))

- observation of three generations of elementary particles
- strong mass hierarchy among charged fermions
- solar (much) smaller than atmospheric mass splitting
- very different mixing among quarks and leptons

$$||V_{CKM}|| = \begin{pmatrix} 0.97 & 0.23 & 3.6 \cdot 10^{-3} \\ 0.22 & 0.97 & 0.041 \\ 8.8 \cdot 10^{-3} & 0.040 & 0.999 \end{pmatrix} ||U_{PMNS}|| = \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.33 & 0.60 & 0.73 \\ 0.46 & 0.58 & 0.67 \end{pmatrix}$$

$$||W_{DG}('17 \text{ update})) ||U_{PMNS}('18)|| = \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.46 & 0.58 & 0.67 \end{pmatrix}$$

different (residual) flavor symmetries for quarks and leptons

- observation of three generations of elementary particles
- strong mass hierarchy among charged fermions
- solar (much) smaller than atmospheric mass splitting
- very different mixing among quarks and leptons
- $\theta_{13} \ll \theta_{12}, \, \theta_{23}$ in the lepton sector

$$\sin^2 \theta_{13} = 0.02206$$
, $\sin^2 \theta_{12} = 0.307$, $\sin^2 \theta_{23} = 0.538$ [NO]

(NuFIT ('18))

certain values of θ_{ij} from discrete flavor symmetries well-known: tri-bi-maximal mixing (Harrison et al. ('02), Xing ('02))

- observation of three generations of elementary particles
- strong mass hierarchy among charged fermions
- solar (much) smaller than atmospheric mass splitting
- very different mixing among quarks and leptons
- $\theta_{13} \ll \theta_{12}, \ \theta_{23}$ in the lepton sector
- non-observation of e.g. charged lepton flavor violation

BR
$$(\mu^+ \to e^+ \gamma) < 2.55 \times 10^{-13}$$

(MEG ('16))

protection of flavor sector in BSM theories needed

 μ_R μ_L

 e_L

Exotic gauge boson in loop

 $\delta \hat{z}$ parametrizes boundary kinetic terms

(H/Serone ('11))

 $\delta \hat{z}$ parametrizes boundary kinetic terms

(H/Serone ('11))

 relation between strong quark mass hierarchy and small quark mixing?

$$|V_{us}| = |V_{cd}| = \sqrt{\frac{m_d}{m_s}}$$

(Gatto/Sartori/Tonin ('68))

- relation between strong quark mass hierarchy and small quark mixing?
- relation between origin of neutrino masses and large lepton mixing? Possibly mass hierarchy?
 Majorana nature of neutrinos

- relation between strong quark mass hierarchy and small quark mixing?
- relation between origin of neutrino masses and large lepton mixing? Possibly mass hierarchy?
- maximal atmospheric mixing, $\theta_{23} = \frac{\pi}{4}$?

$$\sin^2 \theta_{23} = 0.538^{+0.033}_{-0.069} \text{ [NO]}$$

(NuFIT ('18))

discrete flavor symmetries usually predict certain value of θ_{23}

- relation between strong quark mass hierarchy and small quark mixing?
- relation between origin of neutrino masses and large lepton mixing? Possibly mass hierarchy?
- maximal atmospheric mixing, $\theta_{23} = \frac{\pi}{4}$?
- maximal CP violation in neutrino oscillations, $\delta = 90^{\circ}$ or $\delta = 270^{\circ}$?

$$\delta = (234^{+43}_{-31})^{\circ}$$
 [NO]

(NuFIT ('18))

flavor and CP symmetries combined predict non-trivial δ $\mu-\tau$ exchange symmetry which predicts θ_{23} and δ maximal

(Harrison/Scott ('02,'04), Grimus/Lavoura ('03))

- relation between strong quark mass hierarchy and small quark mixing?
- relation between origin of neutrino masses and large lepton mixing? Possibly mass hierarchy?
- maximal atmospheric mixing, $\theta_{23} = \frac{\pi}{4}$?
- maximal CP violation in neutrino oscillations?
- correlation among lepton mixing angles?
 e.g. (Di lura/H/Meloni ('15), Li/Ding ('15), Ballett/Pascoli/Turner ('15))
 flavor and CP symmetries combined can lead to sum rules

$$\sin^2 \theta_{12} = \frac{\sin^2 \varphi}{1 - \sin^2 \theta_{13}} \approx \frac{0.276}{1 - \sin^2 \theta_{13}} \gtrsim 0.276$$

$$\sin^2 \theta_{23} \approx \frac{1}{2} \left(1 \pm (1 - \sqrt{5}) \sin \theta_{13} \right) \approx 0.5 \mp 0.618 \sin \theta_{13} \approx \begin{cases} 0.409 \\ 0.591 \end{cases}$$

- relation between strong quark mass hierarchy and small quark mixing?
- relation between origin of neutrino masses and large lepton mixing? Possibly mass hierarchy?
- maximal atmospheric mixing, $\theta_{23} = \frac{\pi}{4}$?
- maximal CP violation in neutrino oscillations?
- correlation among lepton mixing angles?
 e.g.

complementarity between mixing angles has been proposed

$$\theta_{13} + \theta_{12} \approx 45^{\circ}$$
 or θ_{23}

(Zhang/Ma ('12), Zheng/Ma ('12))

- relation between strong quark mass hierarchy and small quark mixing?
- relation between origin of neutrino masses and large lepton mixing? Possibly mass hierarchy?
- maximal atmospheric mixing, $\theta_{23} = \frac{\pi}{4}$?
- maximal CP violation in neutrino oscillations?
- correlation among lepton mixing angles?
- complementarity between lepton and quark mixing angles?

$$\theta_{12}^q + \theta_{12} \approx 45^\circ$$
 and $\theta_{23}^q + \theta_{23} \approx 45^\circ$

(Minakata/Smirnov ('04), Raidal ('04), ...)

points towards (grand) unified theory where charged leptons have mixing like down-type quarks and neutrinos a certain mixing pattern e.g. *Antusch/King/Mohapatra ('05)*

- relation between strong quark mass hierarchy and small quark mixing?
- relation between origin of neutrino masses and large lepton mixing? Possibly mass hierarchy?
- maximal atmospheric mixing, $\theta_{23} = \frac{\pi}{4}$?
- maximal CP violation in neutrino oscillations?
- correlation among lepton mixing angles?
- complementarity between lepton and quark mixing angles?
- correlation between low and high energy CP violation?

- relation between strong quark mass hierarchy and small quark mixing?
- relation between origin of neutrino masses and large lepton mixing? Possibly mass hierarchy?
- maximal atmospheric mixing, $\theta_{23} = \frac{\pi}{4}$?
- maximal CP violation in neutrino oscillations?
- correlation among lepton mixing angles?
- complementarity between lepton and quark mixing angles?
- correlation between low and high energy CP violation? can we correlate low energy CP phases δ , α , β and baryon asymmetry of the Universe?

- relation between strong quark mass hierarchy and small quark mixing?
- relation between origin of neutrino masses and large lepton mixing? Possibly mass hierarchy?
- maximal atmospheric mixing, $\theta_{23} = \frac{\pi}{4}$?
- maximal CP violation in neutrino oscillations?
- correlation among lepton mixing angles?
- complementarity between lepton and quark mixing angles?
- correlation between low and high energy CP violation? can we correlate low energy CP phases δ , α , β and baryon asymmetry of the Universe? yes, if leptogenesis is responsible for baryon asymmetry

• correlation between low and high energy CP violation? can we correlate low energy CP phases δ , α , β and baryon asymmetry of the Universe? yes, if leptogenesis is responsible for baryon asymmetry several interesting studies in the literature e.g.

$$|\sin\delta\sin\theta_{13}| \gtrsim 0.11$$

if only δ non-trivial and flavor effects relevant

(Pascoli/Petcov/Riotto ('06))

 correlation between low and high energy CP violation? unflavored leptogenesis in scenario with flavor and CP symmetries

• (nearly) massless lightest neutrino? protection of lightest neutrino mass from symmetry, e.g. Majorana neutrinos and Z_N symmetry with N>2 (Joshipura/Patel ('14))

(nearly) massless lightest neutrino?
 "economic" approach (Occam's razor):
 type I seesaw with only two right-handed neutrinos

e.g. Harigaya/lbe/Yanagida ('12)

- (nearly) massless lightest neutrino?
- quasi-degenerate neutrino masses? underlying symmetry [S]O(3)

(Hernandez/Smirnov ('13), Alonso et al. ('13))

- (nearly) massless lightest neutrino?
- quasi-degenerate neutrino masses?
- correlations among lepton mixing angles and CP phase δ ? e.g. certain mixing for neutrinos and certain correction from charged leptons

$$U_{PMNS} = U_e^{\dagger} \Psi U_{\nu}(\theta_{12}^{\nu})$$
 with $U_e = R_{23} (\theta_{23}^e) R_{12} (\theta_{12}^e)$ and Ψ phases

which leads to

$$\cos \delta = \frac{\tan \theta_{23} \sin^2 \theta_{12} + \frac{\sin^2 \theta_{13} \cos^2 \theta_{12}}{\tan \theta_{23}} - \sin^2 \theta_{12}^{\nu} \left(\tan \theta_{23} + \frac{\sin^2 \theta_{13}}{\tan \theta_{23}} \right)}{\sin 2\theta_{12} \sin \theta_{13}}$$

(Petcov ('14), Ballett et al. ('14), Girardi et al. ('14))

(Girardi et al. ('14))

(Ballett et al. ('14))

• correlations among lepton mixing angles and CP phase δ ? flavor and CP symmetries combined predict mixing patterns with only one real free parameter example:

adjusting mixing angles to experimental data leads to

$$|\sin \delta| \gtrsim 0.71$$

and both Majorana phases α , β depend on CP symmetry X(s) only

$$|\sin \alpha| = |\sin \beta| = |\sin 6 \phi_s|$$
 with $\phi_s = \frac{\pi s}{n}$ and $s = 0, ..., n-1$

(H/Meroni/Molinaro ('14))

(H/Meroni/Molinaro ('14))

S	$\sin^2 \theta_{13}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{23}$	$\sin \delta$	$\sin \alpha = \sin \beta$
s = 1	0.0220	0.318	0.579	0.936	$-1/\sqrt{2}$
	0.0220	0.318	0.421	-0.936	$-1/\sqrt{2}$
s=2	0.0216	0.319	0.645	-0.739	1
s=4	0.0220	0.318	0.5	= 1	0

- (nearly) massless lightest neutrino?
- quasi-degenerate neutrino masses?
- correlations among lepton mixing angles and CP phase δ ?
- Majorana phases from neutrinoless double beta decay?
 e.g. flavor and CP symmetries combined can predict them

(H/Molinaro ('16))

- (nearly) massless lightest neutrino?
- quasi-degenerate neutrino masses?
- correlations among lepton mixing angles and CP phase δ ?
- Majorana phases from neutrinoless double beta decay?
 caveats:
 - only one combination of phases can be determined, maybe unlucky to suffer from cancellation, there might well be more than one mechanism

- (nearly) massless lightest neutrino?
- quasi-degenerate neutrino masses?
- correlations among lepton mixing angles and CP phase δ ?
- Majorana phases from neutrinoless double beta decay?
- lepton number violation at LHC?

- (nearly) massless lightest neutrino?
- quasi-degenerate neutrino masses?
- correlations among lepton mixing angles and CP phase δ ?
- Majorana phases from neutrinoless double beta decay?
- lepton number violation at LHC?
- possibility to rule out classes of theories?

Flavor symmetry: reasons from theory

 symmetries are an efficient tool for reducing number of free parameters

- symmetries are an efficient tool for reducing number of free parameters
- symmetries have proven very useful to describe gauge interactions

- symmetries are an efficient tool for reducing number of free parameters
- symmetries have proven very useful to describe gauge interactions
- symmetries can protect certain features

- symmetries are an efficient tool for reducing number of free parameters
- symmetries have proven very useful to describe gauge interactions
- symmetries can protect certain features
- possibility to combine gauge and flavor symmetry in more fundamental theory?

- symmetries are an efficient tool for reducing number of free parameters
- symmetries have proven very useful to describe gauge interactions
- symmetries can protect certain features
- possibility to combine gauge and flavor symmetry in more fundamental theory?
- in BSM theories new particles also carry flavor
 e.g. supersymmetric theories, extra-dimensional theories
 with fermions in the bulk, extended dark sector

• understanding of features of leptons and/or quarks? lepton mixing seems to prefer unification of generations in 3 quarks seem to prefer to decouple third generation: $\mathbf{2} + \mathbf{1}$

understanding of features of leptons and/or quarks?
 refining questions:
 are leptons and quarks governed by the same flavor symmetry?

if not, what about grand unification?

- understanding of features of leptons and/or quarks?
- understanding of masses and/or mixing patterns?
 often uncorrelated for leptons
 charged lepton mass hierarchy from Froggatt-Nielsen
 symmetry
 lepton mixing from discrete non-abelian symmetry

- understanding of features of leptons and/or quarks?
- understanding of masses and/or mixing patterns?
- what shall the symmetry describe at all? current best fit values for lepton mixing angles? or "simple" mixing pattern at leading order like tri-bi-maximal mixing?

- understanding of features of leptons and/or quarks?
- understanding of masses and/or mixing patterns?
- what shall the symmetry describe at all?
 actually, this question entails further ones like:
 at which scale shall the symmetry predict masses and mixing parameters?
 what corrects "simple" mixing pattern?
 and how model-dependent are such corrections?

• non-abelian vs abelian SU(3), discrete subgroups of SU(3) vs Z_N , U(1)

non-abelian vs abelian

or in other words: mixing vs masses

or in other words: predicted values vs orders of magnitude

- non-abelian vs abelian
- continuous vs discrete SU(3) vs discrete subgroups of SU(3)

- non-abelian vs abelian
- continuous vs discrete

or in other words: a few vs many symmetries

or in other words: gross structures vs predicted values

- non-abelian vs abelian
- continuous vs discrete
 - if continuous, should it be gauged?
 - if discrete, what about gauging it?

- non-abelian vs abelian
- continuous vs discrete
- choice of residual symmetries are there any?

Features of models: choice

- framework
 - supersymmetric or not
 - with extra dimension or not/composite theories
 - grand unified theories
 - string theory

Features of models: choice

- framework
- flavor symmetry breaking
 - spontaneous
 - with which type of fields?
 - at which scale?
 - to residual symmetries?
 - soft (arbitrary?)
 - explicit (arbitrary?)

Features of models: choice

- framework
- flavor symmetry breaking
- neutrino masses
 - Dirac vs Majorana
 - tree level vs loop level

these choices also influence choice of flavor symmetry

- uniqueness of flavor symmetry?
 - many symmetries lead to very similar results
 - how to find the "correct" symmetry?

- uniqueness of flavor symmetry?
 - many symmetries lead to very similar results
 - how to find the "correct" symmetry?
 - be "economical" and use smallest symmetry? there are very many models with ${\cal A}_4$ or ${\cal S}_4$ as flavor symmetry

- uniqueness of flavor symmetry?
 - many symmetries lead to very similar results
 - how to find the "correct" symmetry?
 - be "economical" and use smallest symmetry?
 - use further input on symmetries from theory?
 - gauge (discrete/continuous) flavor symmetry

e.g. Araki et al. ('08)

try to derive flavor symmetry

e.g. Altarelli/Feruglio ('06)

- uniqueness of flavor symmetry?
 - many symmetries lead to very similar results
 - how to find the "correct" symmetry?
 - be "economical" and use smallest symmetry?
 - use further input on symmetries from theory?
 - shall we rely on further data (in BSM theory)?
 - suppression of charged lepton flavor violation
 e.g. Antusch/King/Malinsky, Feruglio et al. ('08)
 - include Dark Matter, when choosing flavor symmetry

e.g. Hirsch et al. ('10)

- uniqueness of flavor symmetry?
- corrections
 - do always exist, are always model-dependent
 - enter usually in several places: corrections to vacuum alignment, mixing of symmetry breaking sectors, ...
 - might be highly relevant and/or need to be strongly suppressed
 - arise from RG running and can be large

- uniqueness of flavor symmetry?
- corrections
- "technical" problems, like vacuum alignment

• fermion masses are stable under quantum corrections

- fermion masses are stable under quantum corrections
- no clear pattern visible: is θ_{13} really much smaller than $\theta_{12,23}$ in the lepton sector? (semi-)anarchy for neutrinos OK

(Buchmüller/Domcke/Schmitz ('11), de Gouvea/Murayama ('12), Ding/Morisi/Valle ('12), Altarelli et al. ('12), Bergström/Meloni/Merlo ('14), Brdar/König/Kopp ('15), ...)

- fermion masses are stable under quantum corrections
- no clear pattern visible
- we only have few data:
 fermion masses, mixing angles, two CP phases

- fermion masses are stable under quantum corrections
- no clear pattern visible
- we only have few data
- interpretation of data is too difficult:
 hard to decide what indicates symmetry, what not

- fermion masses are stable under quantum corrections
- no clear pattern visible
- we only have few data
- interpretation of data is too difficult
- CP phase in quark sector is large, no good explanation yet one reason: all quark mixing angles are small for recent attempt see Li/Lu/Ding ('17)

- fermion masses are stable under quantum corrections
- no clear pattern visible
- we only have few data
- interpretation of data is too difficult
- CP phase in quark sector is large, no good explanation yet
- models are sophisticated, yet incomplete

What happens, if something new shows up?

confirmation of light sterile neutrino?

e.g. Merle/Morisi/Winter ('14)

• NSIs found?

e.g. Wang/Zhou ('18)

charged lepton flavor violation detected?

for $h o \mu au$ e.g. Heeck et al. ('14)

a new particle directly detected?

In the end something beyond flavor symmetry

can one get correct lepton mixing from RG flow?

(Casas/Espinosa/Ibarra/Navarro ('99), Chankowski/Krolikowski/Pokorski ('00), Feruglio ('16))

could asymptotically safe theories be the solution?
 first steps, see Pelaggi et al. ('17)

In the end something beyond flavor symmetry

can one get correct lepton mixing from RG flow?

(Casas/Espinosa/Ibarra/Navarro ('99), Chankowski/Krolikowski/Pokorski ('00), Feruglio ('16))

could asymptotically safe theories be the solution?
 first steps, see Pelaggi et al. ('17)

I hope this presentation triggers some discussion.

Thank you for your attention.