DUNE: Physics program and status

Ryan Patterson
Caltech

Neutrino Platform Week
CERN

January 29, 2018
Primary physics program of DUNE

- **Oscillation physics**
 - Search for leptonic CP violation
 - Determine the neutrino mass hierarchy
 - Precision PMNS measurements

- **Supernova physics**
 - Observation of time and flavor profile provides insight into collapse and evolution of supernova
 - DUNE will have unique sensitivity to ν_e flavor

- **Baryon number violation**
 - Prediction of many BSM theories
 - LAr TPC technology well-suited to certain proton decay channels ($e.g., p \rightarrow K^+\bar{\nu}$)
 - $\Delta(B-L) \neq 0$ channels accessible ($e.g., n \rightarrow \bar{n}$)
Neutrinos have mass

But they are very light! See-saw mechanism? – Heavy (possibly GUT-scale) RH neutrinos alongside light LH neutrinos:

\[m_\nu \sim \frac{m_{\text{EW}}^2}{m_{\text{GUT}}} \sim \frac{(10^2 \text{ GeV})^2}{10^{15} \text{ GeV}} \]

\[\sim 10^{-11} \text{ GeV} \]

Would imply that the physics of neutrino mass is connected to extremely high energy scales (or at least new physics of some kind).

Potential new physics signatures in oscillation expts:
- non-unitarity, non-standard interactions, >3 neutrinos, large extra dimensions, effective CPTv, decoherence, neutrino decay, ...

Now textbook material, the see-saw mechanism goes back to P. Minkowski (1977); M. Gell-Mann, P. Ramond and R. Slansky (1979); and T. Yanagida (1979)
Neutrino mixing

$|U_{e3}| \neq 0$
(recent discovery)

$|U_{\mu3}| = |U_{\tau3}|$?
(“maximal mixing”)

\approx 1:1:1 ratio

Experimental question:
$\star \quad \sin^2 \theta_{23} \neq 0.5$?

Non-maximal mixing?
If so, which way does it break?

Standard parametrization of PMNS matrix:

$U = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix} \times \begin{pmatrix}
c_{13} & 0 & s_{13} e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13} e^{i\delta} & 0 & c_{13}
\end{pmatrix} \times \begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \times \begin{pmatrix}
e^{i\alpha_1/2} & 0 & 0 \\
0 & e^{i\alpha_2/2} & 0 \\
0 & 0 & 1
\end{pmatrix}$
New source of \(CP \) violation required to explain baryon asymmetry of universe

\[\text{part-per-billion level of matter/antimatter asymmetry in early universe} \]

Neutrino \(CPv \) allowed in \(\nu SM \), but not yet observed

\(\ldots \text{due so far to the experimental challenge, not physics!} \)

Leptogenesis\(^1\) is a workable solution for the baryon asymmetry, but need to first find any leptonic (neutrino) \(CPv \)

\[\sin \delta \neq 0 \? \]

\(\text{Leptonic } CP \text{ violation?} \)

\(^1\) M. Fukugita and T. Yanagida (1986); rich history since then.
ν mass hierarchy

Are the electron-rich states $ν_1$ & $ν_2$
heavier or lighter than $ν_3$?

Far-reaching implications for such
a simple question:

- $0νββ$ and Majorana nature of $ν$
- Experimental approach to and
 interpretation of $m_β$
- Cosmology and astrophysics
- Theoretical frameworks for
 flavor and mass generation

Notice:
An inverted hierarchy implies
$<$1.5% mass degeneracy.
→ Would hint at...?? (cf.: $π^+$/π⁰)

P. Guzowski et al., PRD 92, 012002 (2015)
Flavor: A core problem for 21st century particle physics

What flavor symmetry can produce the observed pattern of mixings and masses, and how is that symmetry broken?

More broadly: what are the dynamical origins of fermion masses, mixings, and CP violation?

Tackling this problem requires theoretical and experimental progress.

Flurry of exciting theoretical work in recent years with emphasis on predictive power and connections between low energy observables and leptogenesis.
DUNE
Deep Underground Neutrino Experiment

A next generation experiment for neutrino science, nucleon decay, and supernova physics
\(\nu_\mu \) survival (or “disappearance”):

\[
P(\nu_\mu \to \nu_\mu) \approx 1 - \sin^2 2\theta_{23} \sin^2 (\Delta m^2_{32} L / 4E)
\]

Experimental data consistent with unity (i.e., maximal mixing).
Generic long-baseline experiment

![Diagram showing neutrinos traveling from near detector to far detector, with text indicating hundreds of kilometers separation.]

\[P(\nu_\mu \rightarrow \nu_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 (\Delta m_{32}^2 L/4E) \]

\(\nu_e\) appearance:

plus potentially large CPv and matter effect modifications!

* \(\nu_e\) see different potential than \(\nu_{\mu,\tau}\) when propagating through matter (here, the earth) ⇒ a hierarchy-dependent effect
Importance of Near Detector

Observation:

\[
\left[\phi(E) \, \sigma(E) \, \varepsilon(E) \, P_{\nu_\mu \rightarrow \nu_x}(E) + \text{background} \right] \otimes \{\text{detector effects}\}(E, \ldots)
\]

\[
\begin{array}{cccc}
20-50\% & 20-50\% & 5-50\% & 5-50\% \\
\end{array}
\]

← **typical starting uncertainties**

ND allows massive reduction in these uncertainties since they are largely correlated between detectors (esp. if similar detectors)
Long Baseline Neutrino Facility (LBNF)

- **DUNE**: The international scientific collaboration
- **LBNF**: DOE/Fermilab-hosted facilities project, with international participation
- **Horn-focused beamline** similar to NuMI beamline
 - 60 – 120 GeV protons from Fermilab’s Main Injector
 - 200 m decay pipe at -5.8° pitch, angled at South Dakota (SURF)
 - Initial power 1.1 MW, upgradable to 2.4 MW
Beamline optimization

- The **LBNF beam design** has evolved since the DUNE CDR nominal.
- Genetic algorithm used to explore space of 2- and 3-horn options.
- Result is an **engineered design** with flux and ultimate CPv reach similar to earlier “idealized” optimized design. (*Sensitivities here use the latter.*)
The LBNF beam design has evolved since the DUNE CDR nominal.

Genetic algorithm used to explore space of 2- and 3-horn options.

Result is an engineered design with flux and ultimate CPv reach similar to earlier “idealized” optimized design. (Sensitivities here use the latter.)
DUNE Near Detector

- **DUNE will have a Near Detector**
 - Constrain systematic uncertainties in neutrino flux, neutrino scattering cross sections, and (to some extent) detector response
 - *Also*: allow a program of neutrino-nucleus scattering measurements and BSM searches
- **Hybrid designs under development**
 - LAr TPC plus a downstream magnetized high-pressure GAr TPC or fine-grained tracker
 - Laterally movable detector? (“DUNE-PRISM”)
DUNE Far Detector

- 40-kt (fiducial) LAr TPC
- Installed as four 10-kt modules at 4850’ level of SURF

- First module will be a single phase LAr TPC
- Modules installed in stages. Not necessarily identical
Single phase (SP) and dual phase (DP) designs

Single phase
- Ionization readout via Anode Plane Assemblies (APA)
- 3 wire planes (2 induction + 1 collection views)
- Four 3.6-m drift regions per TPC
- Scintillation light collected by SiPMs

Dual phase
- Ionization electrons extracted, amplified through gas phase
- Charge readout by 2D segmented anode plane
- Single 12-m drift volume per TPC
- Scintillation light collected by PMTs
DUNE: Key design features

Very long baseline
→ no osc. parameter ambiguities

Large detector and powerful beam
→ high event rate

Highly capable LAr TPC
→ excellent background rejection

Low energy threshold
→ rich underground physics program

3m×1m×1m DP prototype data
(raw output; no noise filtering)

Neutrino event in ArgoNeuT detector
High resolution detectors

- permits broadband neutrino beam
- e-γ shower separation via both event topology and early dE/dx

Simulated and reconstructed ν_ℓ CC event in DUNE

e/γ separation with R&D detector

ArgoNeuT, arXiv:1610.04102
Event reconstruction and PID

LAr TPC event reconstruction and particle identification continues to enjoy rapid evolution across experiments

- On DUNE, exploring both traditional and modern approaches, including convolutional neural networks and deep learning

CNNs: network of weights describing kernel operations, convolving that kernel across the entire image to exaggerate useful features. Inspired by the architecture of the visual cortex.
Observation of leptonic CP violation

5σ near $\delta = \pi/2$
3σ for 65% of δ range

Definitive hierarchy determination

>5σ regardless of other parameter choices

(move quickly to potential discovery)
Sensitivity vs. time

→ **Significant milestones** throughout beam-physics program
→ **A few examples** below

Mass hierarchy sensitivity

![Graph showing mass hierarchy sensitivity with significant milestones at 1 year, 3 years, and 6 years.]

CP\text{v} sensitivity

![Graph showing CP\text{v} sensitivity with significant milestones at 4 years, 6 years, and 10 years.]

Ryan Patterson
Precision PMNS

→ E.g.: δ_{CP} to $\sim 10^\circ$; θ_{13}, θ_{23} to $\sim 0.2^\circ$
→ A suite of oscillation parameter measurements in a single experiment

(ultimate precision depends on parameter values themselves)
νMH and CP_v reach with no external constraint on θ_{13} or θ_{23}

→ Neither depends critically on external constraints, though it obviously helps to include them.
νMH and CP_v reach with varying assumptions about systematic uncertainties

Supernova neutrinos

- 99% of energy released in a core-collapse supernova is carried away by neutrinos (cf.: 0.01% carried away by light)
- Rich information embedded in neutrino signal:
 - **Supernova physics**: core-collapse mechanism, black hole formation, shock stall/revival, nucleosynthesis, cooling, …
 - **Particle physics**: flavor transformations in core, collective effects, mass hierarchy, sterile neutrinos, extra dimensions, …

Argon target:
Unique sensitivity to ν_e flux

DUNE at 10 kpc:
~3000 ν_e events over 10 seconds

with 5%–10% energy resolution & sub-μs time resolution
Supernova neutrinos

- **99% of energy** released in a core-collapse supernova is carried away by neutrinos *(cf.: 0.01% carried away by light)*

- **Rich information** embedded in neutrino signal:
 - **Supernova physics:** core-collapse mechanism, black hole formation, shock stall/revival, nucleosynthesis, cooling, …
 - **Particle physics:** flavor transformations in core, collective effects, mass hierarchy, sterile neutrinos, extra dimensions, …

Diffuse supernova neutrino background

Should be there. *Not yet observed.*

DUNE: Potential for DSNB discovery and rate measurement

(a challenge; stay tuned)

* Present limit from Super-K:
Baryon number violation

Processes with $\Delta B \neq 0$, including proton decay, are a general prediction of grand unified theories

- An effective proton decay search requires (and DUNE has)
 - Large exposure: 40 kton, 20+ yr program
 - Low background rates: Deep underground location
 - High signal efficiency: Precision LAr TPC tracking

LAr TPC technology particularly shines for complex p decay modes or modes with final state kaons, as favored by SUSY GUTs

At right: $K^\pm \rightarrow \mu \rightarrow e$ decay sequence
Clear signature in DUNE
Baryon number violation

Processes with $\Delta B \neq 0$, including proton decay, are a general prediction of grand unified theories

- An effective proton decay search requires (and DUNE has)

 - Large exposure: 40 kton, 20+ yr program
 - Low background rates: Deep underground location
 - High signal efficiency: Precision LAr TPC tracking

LAr TPC technology particularly shines for complex p decay modes or modes with final state kaons, as favored by SUSY GUTs

At right:

$K^{\pm} \rightarrow \mu \rightarrow e$ decay sequence

Clear signature in DUNE
Baryon number violation

Processes with $\Delta B \neq 0$, including proton decay, are a general prediction of grand unified theories

- **An effective proton decay search** requires (and DUNE has)
 - **Large exposure:**
 - 40 kton, 20+ yr program
 - **Low background rates:**
 - Deep underground location
 - **High signal efficiency:**
 - Precision LAr TPC tracking

LAr TPC technology particularly shines for complex p decay modes or modes with final state kaons, as favored by SUSY GUTs

At right:

$n-\bar{n}$ oscillation \rightarrow intranuclear $\bar{n}n$ annihilation

Spherical spray of hadrons with $E \approx 2M_n$ and net momentum $\leq p_F \sim 300$ MeV

10-yr sensitivity: $\tau_{\text{free}} > 1.6 \times 10^9$ s @ 90% C.L. (5× current limit)
More of the physics program beyond “3ν”

Some of the **new physics signatures** accessible with DUNE:

- **Light sterile neutrinos**
 Various experimental anomalies persist. Multiple channels for investigation in a LBL setup.

- **Non-standard interactions**
 Beam and atmospheric neutrinos passing through matter provide access to non-standard couplings. Unique search features: long baselines; appearance channel.

- **Dark matter**
 Astrophysical (*e.g.*, annihilation in the sun; at DUNE, look for up-going neutrinos), beam-induced light dark matter (*e.g.*, $qq \to V^* \to \chi\bar{\chi}$ at target), and boosted dark matter

- **And more…**
 Lorentz violation, effective CPT_v, large extra dimensions, non-unitarity, neutrino tridents (Z' and muon $g-2$)

Plus **millions of interactions** in the Near Detector for exploring ν-nucleus scattering: final state interactions, nuclear structure, MEC/2p2h channels, …
Note: The experiments use a **mix of assumptions** for oscillation parameters, systematic uncertainties, and other relevant quantities. Comparisons should assume **10%-ish uncertainties on stated sensitivities** to absorb such effects.

<table>
<thead>
<tr>
<th></th>
<th>(10 yrs, staged deployment)</th>
<th>T2HK</th>
<th>DUNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP violation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ resolution</td>
<td>7° – 21°</td>
<td>7° – 15°</td>
<td></td>
</tr>
<tr>
<td>3σ coverage</td>
<td>78%</td>
<td>74%</td>
<td></td>
</tr>
<tr>
<td>5σ coverage</td>
<td>62%</td>
<td>54%</td>
<td></td>
</tr>
<tr>
<td>γMH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sens. range</td>
<td>5σ – 7σ</td>
<td>8σ – 20σ+</td>
<td></td>
</tr>
<tr>
<td>octant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sens. @ 0.45</td>
<td>5.8σ</td>
<td>5.1σ</td>
<td></td>
</tr>
<tr>
<td>5σ outside of...</td>
<td>[0.46, 0.56]</td>
<td>[0.45, 0.57]</td>
<td></td>
</tr>
<tr>
<td>p decay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(90% C.L.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p→νK⁺</td>
<td>>2.8e34 yrs</td>
<td>>3.6e34 yrs</td>
<td></td>
</tr>
<tr>
<td>p→e⁺π⁰</td>
<td>>1.2e35 yrs</td>
<td>>1.6e34 yrs</td>
<td></td>
</tr>
<tr>
<td>supernova ν</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10 kpc or relic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNB ν̅_e</td>
<td>130k evts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNB ν_e</td>
<td>3k evts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relic ν̅_e</td>
<td>100 evts, 5σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relic ν_e</td>
<td>30 evts, 6σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSI (90% C.L.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ε₁e₁</td>
<td><0.34</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>ε₁μτ</td>
<td><0.27</td>
<td><0.08</td>
</tr>
<tr>
<td></td>
<td>ε₁eₜ</td>
<td><0.98</td>
<td><0.25</td>
</tr>
</tbody>
</table>

Similar

DUNE superior

Mode dependent

Complementary channels

(ν_e vs. ν̅_e, though Hyper-K has more SN events total)

DUNE superior
DUNE Timeline

2017: Far Site Construction Began

2018: ProtoDUNE at CERN

2021: Far Detector Installation Begins

2024: Physics Data Begins (20 kt)

2026: Neutrino Beam Available

40 kton + 2 MW beam to follow in subsequent years

The CERN Neutrino Platform
DUNE is a top priority of the international HEP community

Highly internationalized:
- 1061 collaborators
- 175 institutions
- 31 countries

Full-scale component prototypes under construction at CERN

Single- and dual-phase designs
DUNE in the current neutrino oscillation landscape

(Why you should be excited about DUNE)

The slides that follow aren’t DUNE slides. Just me sharing some thoughts…
DUNE’s oscillation physics program in an evolving landscape

• A question:
 How does DUNE’s neutrino oscillation program connect to the current long-baseline program, given the impressive performance of and projections for the latter?

• Indeed, the current operating program is impressive:
 - Recent $\nu + \bar{\nu}$ results from T2K $\Rightarrow 2\sigma$ evidence for CPv reported
 - First $\nu + \bar{\nu}$ results from NOvA to come this summer
 - Aggressive plans for exposure increases for both experiments
 - Large atmospheric ν samples in hand or possible (Super-K, ν telescopes)

• Currently favored parameters offer highest sensitivities for CPv and νMH
Latest from NOvA, T2K, and one global fitting effort

Inverted hierarchy and \(CP \) conservation each showing some tension with data

\[
T2K \nu+\bar{\nu}, \ PRD \ 96, \ 092006 \ (2017)
\]

\[
\text{NuFIT 3.2} \ (2018), \ www.nu-fit.org, \ JHEP \ 01 \ (2017) \ 087
\]
Projections for NOvA and T2K

Both forecasts assume reasonable accelerator upgrades.

Prior to DUNE start, possibility of 3σ and 4σ sorts of C.L.s for νMH and CPv, assuming best fits don’t drift away.

And, can then combine T2K and NOvA results.
Main caveat to these projections: sensitivities depend greatly on the parameters nature has actually chosen. Current best-fit parameters are rather favorable – good! but tenuous.

- **However**: regardless of the final outcome of current experiments, there is so much more left to do!

All possible outcomes have required next steps:

- if ambiguities \rightarrow aim for clarity
- if evidence \rightarrow aim for discovery
- if discovery \rightarrow aim for characterization

To expand on each line of this “triptych”...
1) If ambiguities → aim for clarity

• Applies to all questions of “texture”:
 - ν_{MH} is [normal | inverted]
 - mixing is [maximal | non-maximal]
 - octant is [upper | lower]
 - CP sym. is [violated | (maybe) respected]

• There is ample phase space still allowed to end up with ambiguities in any of these binary questions.

• ν_{MH} has well-known “parameter degeneracies” at 810 km that are still in play. $T2K$ data can help break these degeneracies, but not overwhelmingly.

• Recent tension regarding maximal mixing has relaxed somewhat, making this question wide open again.

• Octant determination highly dependent on how non-maximally mixed ν_3 is.
2) If evidence \rightarrow aim for discovery

- Applies to all questions of “texture”.
- Nominally an obvious thing: we want to discover $CPv, \nu MH$, etc…

Is $2\sigma / 3\sigma / X\sigma$ enough?

- Enough for what purpose?
 - Enough to guide model building?
 - Enough to motivate experiment directions (e.g., direct ν mass measurements)?
 - Enough to rule out Majorana neutrinos (e.g., when interpreting $0\nu\beta\beta$ results)?
 - Enough to declare leptogenesis viable / non-viable?
 - Enough to hold up to, say, future tension with ΛCDM fits or SNν data?

There will come a time when each piece of our understanding will need to be trusted at a very high confidence level ($>5\sigma$).

Lower confidence levels are invaluable and actionable in many contexts, but not all, especially when confronting the full field of questions.
3) If discovery → aim for characterization

• Applies to all 3ν parameters (nevermind BSM)
• This is the precision program that is inarguably beyond the current experiments.

• Can compare goals to the level of precision achieved in quark flavor physics.
 - But quark precision measurements are easily connected to specific BSM searches. Same with neutrinos, just not usually in the form of loop effects.
 - We haven’t learned anything new from quark flavor precision, per se. Maybe not in the past 10 years, but over the past 50 we sure have.
 - It’s a false analogy since leptons and quarks seem to behave very differently. All the more reason to measure neutrinos well!
Flavor: A core problem for 21st century particle physics

What flavor symmetry can produce the observed pattern of mixings and masses, and how is that symmetry broken?

More broadly: what are the dynamical origins of fermion masses, mixings, and CP violation?

Tackling this problem requires theoretical and experimental progress.

→ DUNE will be at the heart of this.
Conclusions

DUNE gearing up

- ProtoDUNE installation underway now at CERN
- Far Detector site prep work underway now at SURF

A broad physics program

- DUNE will determine the νMH and can measure leptonic CP at 5σ
- Precision PMNS: a new era for understanding flavor
- Nucleon decay
- Supernova neutrinos
- And a rich BSM physics program both inside and outside the neutrino sector

Yates shaft at SURF