DUNE: Physics program and status

Ryan Patterson Caltech

Neutrino Platform Week CERN

January 29, 2018

Primary physics program of DUNE

Oscillation physics

- Search for leptonic *CP* violation
- Determine the neutrino mass hierarchy
- Precision PMNS measurements

Supernova physics

- Observation of time and flavor profile provides insight into collapse and evolution of supernova
- DUNE will have unique sensitivity to v_e flavor

Baryon number violation

- Prediction of many BSM theories
- LAr TPC technology well-suited to certain proton decay channels $(e.g., p \rightarrow K^+ \overline{\nu})$
- $\Delta(B-L) \neq 0$ channels accessible $(e.g., n \rightarrow \overline{n})$

Neutrinos have mass

But they are very light! See-saw mechanism? – Heavy (possibly GUT-scale) RH neutrinos alongside light LH neutrinos:

$$m_{\nu} \sim \frac{m_{\rm EW}^2}{m_{\rm GUT}} \sim \frac{(10^2 \,\,{\rm GeV})^2}{10^{15} \,\,{\rm GeV}}$$

~ $10^{-11} \,\,{\rm GeV}$

Would imply that the **physics of neutrino mass** is connected to **extremely high energy scales** (or at least new physics of some kind).

Potential new physics signatures in oscillation expts:

non-unitarity, non-standard interactions, >3 neutrinos, large extra dimensions, effective CPTv, decoherence, neutrino decay, ...

Now textbook material, the see-saw mechanism goes back to P. Minkowski (1977); M. Gell-Mann, P. Ramond and R. Slansky (1979); and T. Yanagida (1979)

Ryan Patterson

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Ryan Patterson

CP violation

New source of *CP* violation required to explain baryon asymmetry of universe

part-per-billion level of matter/antimatter asymmetry in early universe

Neutrino CPv allowed in vSM, but not yet observed ...due so far to the experimental challenge, not physics!

$$\underset{Leptonic CP \text{ violation}? }{ \text{ sin } \delta \neq 0 ? }$$

¹ M. Fukugita and T. Yanagida (1986); rich history since then.

<u>v mass hierarchy</u>

Are the electron-rich states $v_1 \& v_2$ heavier or lighter than v_3 ?

Far-reaching implications for such a simple question:

- $0\nu\beta\beta$ and Majorana nature of ν
- Experimental approach to and interpretation of m_{β}
- Cosmology and astrophysics
- Theoretical frameworks for flavor and mass generation

Notice:

An inverted hierarchy implies <1.5% mass degeneracy.

 \rightarrow Would hint at...?? (cf.: π^+/π^0)

Flavor: A core problem for 21st century particle physics

What **flavor symmetry** can produce the observed pattern of mixings and masses, and how is that symmetry broken?

More broadly: what are the **dynamical origins** of fermion masses, mixings, and *CP* violation?

Tackling this problem requires theoretical and <u>experimental</u> progress.

Flurry of exciting theoretical work in recent years with emphasis on predictive power and connections between low energy observables and leptogenesis.

DUNE Deep Underground Neutrino Experiment

A next generation experiment for **neutrino science**, **nucleon decay**, and **supernova physics**

DUNE

Generic long-baseline experiment

 ν_{μ} survival (or "disappearance"): $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2(\Delta m_{32}^2 L/4E)$...to leading order Experimental data consistent with unity (*i.e.*, maximal mixing).

Generic long-baseline experiment

 ν_e appearance:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \, \sin^{2}2\theta_{13} \, \sin^{2}(\Delta m_{32}^{2}L/4E)$$

...plus potentially large CPv and matter effect* modifications!

* v_e see different potential than $v_{\mu,\tau}$ when propagating through matter (here, the earth) \Rightarrow a hierarchy-dependent effect

Generic long-baseline experiment

Importance of Near Detector

Observation:

ND allows massive reduction in these uncertainties since they are largely correlated between detectors (esp. if similar detectors)

Long Baseline Neutrino Facility (LBNF)

- **DUNE:** The international scientific collaboration
- LBNF: DOE/Fermilab-hosted facilities project, with international participation
- Horn-focused beamline similar to NuMI beamline
 - 60 120 GeV protons from Fermilab's Main Injector
 - 200 m decay pipe at -5.8° pitch, angled at South Dakota (SURF)
 - Initial power 1.1 MW, upgradable to 2.4 MW

Beamline optimization

- The LBNF beam design has evolved since the DUNE CDR nominal
- Genetic algorithm used to explore space of 2- and 3-horn options.
- Result is an **engineered design** with flux and ultimate *CP*v reach similar to earlier "idealized" optimized design. *(Sensitivities here use the latter.)*

Beamline optimization

- The LBNF beam design has evolved since the DUNE CDR nominal
- Genetic algorithm used to explore space of 2- and 3-horn options.
- Result is an **engineered design** with flux and ultimate *CP*v reach similar to earlier "idealized" optimized design. *(Sensitivities here use the latter.)*

Ryan Patterson

DUNE Near Detector

- DUNE will have a Near Detector
 - Constrain systematic uncertainties in neutrino flux, neutrino scattering cross sections, and (to some extent) detector response
 - *Also:* allow a program of neutrino-nucleus scattering measurements and BSM searches

Hybrid designs under development

- LAr TPC plus a downstream magnetized high-pressure GAr TPC or fine-grained tracker
- Laterally movable detector? ("DUNE-PRISM")

30-ton LAr TPC ("ArgonCube")

Magnetized Straw Tube Tracker

Ryan Patterson

DUNE Far Detector

- 40-kt (fiducial) LAr TPC
- Installed as four 10-kt modules at 4850' level of SURF

Sanford Underground Research Facility (SURF)

- First module will be a single phase LAr TPC
- Modules installed in stages. Not necessarily identical

One 10-kt single-phase FD module

Single phase (SP) and dual phase (DP) designs

Dual phase Anode and Readout Large Electron gas Multiplier Extraction Grid E liquid Cathode PMT

- Ionization readout via Anode Plane Assemblies (APA)
- 3 wire planes (2 induction + 1 collection views)
- Four 3.6-m drift regions per TPC
- Scintillation light collected by SiPMs

- Ionization electrons extracted, amplified through gas phase
- Charge readout by 2D segmented anode plane
- Single 12-m drift volume per TPC
- Scintillation light collected by PMTs

Ryan Patterson

DUNE: Key design features

Very long baseline

→ no osc. parameter ambiguities
 Large detector and powerful beam
 → high event rate
 Highly capable LAr TPC
 > argellent background rejection

\rightarrow excellent background rejection

Low energy threshold

 \rightarrow rich underground physics program

3m×1m×1m DP prototype data (raw output; no noise filtering)

Neutrino event in ArgoNeuT detector

High resolution detectors

- permits broadband neutrino beam
- $e-\gamma$ shower separation via both event topology and early dE/dx

Normalized

Area

Event reconstruction and PID

- LAr TPC event reconstruction and particle identification continues to enjoy rapid evolution across experiments
- On DUNE, exploring both traditional and modern approaches, including convolutional neural networks and deep learning

CNNs: network of weights describing kernel operations, convolving that kernel across the entire image to exaggerate useful features. Inspired by the architecture of the visual cortex.

(after 7 years, staged deployment)

Observation of leptonic *CP* violation 5σ near $\delta = \pi/2$ 3σ for 65% of δ range

Definitive hierarchy determination

 $>5\sigma$ regardless of other parameter choices

Move quickly to **potential discovery**

Sensitivity vs. time

- → Significant milestones throughout beam-physics program
- → A few examples below

Precision PMNS

(ultimate precision depends on parameter values themselves)

- $\rightarrow E.g.: \delta_{CP} \text{ to } \sim 10^{\circ}; \quad \theta_{13}, \theta_{23} \text{ to } \sim 0.2^{\circ}$
- \rightarrow A suite of oscillation parameter measurements in a single experiment

vMH and *CP*v reach with no external constraint on θ_{13} or θ_{23}

→ Neither depends critically on external constraints, though it obviously helps to include them.

Ryan Patterson

vMH and *CP*v reach with varying assumptions about systematic uncertainties

→ Some movement in *CP*v reach. More sophisticated systematic error treatments under development for upcoming Technical Design Report.

Supernova neutrinos

- 99% of energy released in a core-collapse supernova is carried away by neutrinos (cf.: 0.01% carried away by light)
- Rich information embedded in neutrino signal:
 - **Supernova physics:** core-collapse mechanism, black hole formation, shock stall/revival, nucleosynthesis, cooling, ...
 - **Particle physics:** flavor transformations in core, collective effects, mass hierarchy, sterile neutrinos, extra dimensions, ...

S. Woosley and T. Janka Nature Physics 1, 147 (2005)

DUNE

Ryan Patterson

26

Supernova neutrinos

- 99% of energy released in a core-collapse supernova is carried away by neutrinos (cf.: 0.01% carried away by light)
- Rich information embedded in neutrino signal:
 - **Supernova physics:** core-collapse mechanism, black hole formation, shock stall/revival, nucleosynthesis, cooling, ...
 - **Particle physics:** flavor transformations in core, collective effects, mass hierarchy, sterile neutrinos, extra dimensions, ...

Ryan Patterson

Woosley

Janka

Baryon number violation

- Processes with $\Delta B \neq 0$, including **proton decay**, are a general prediction of **grand unified theories**
- An effective proton decay search requires (and DUNE has)
 - Large exposure: 40 kton, 20+ yr program
 - Low background rates: Deep underground location
 - High signal efficiency: Precision LAr TPC tracking

LAr TPC technology **particularly shines** for complex *p* decay modes or modes with **final state kaons**, as **favored by SUSY GUTs**

<u>At right:</u>

 $K^{\pm} \rightarrow \mu \rightarrow e$ decay sequence Clear signature in DUNE

DUNE

Ryan Patterson

Baryon number violation

- Processes with $\Delta B \neq 0$, including **proton decay**, are a general prediction of **grand unified theories**
- An effective proton decay search requires (and DUNE has)
 - Large exposure: 40 kton, 20+ yr program
 - Low background rates: Deep underground location
 - High signal efficiency: Precision LAr TPC tracking

LAr TPC technology **particularly shines** for complex *p* decay modes or modes with **final state kaons**, as **favored by SUSY GUTs**

<u>At right:</u>

 $K^{\pm} \rightarrow \mu \rightarrow e$ decay sequence Clear signature in DUNE

Ryan Patterson

Baryon number violation

- Processes with $\Delta B \neq 0$, including **proton decay**, are a general prediction of **grand unified theories**
- An effective proton decay search requires (and DUNE has)
 - Large exposure: 40 kton, 20+ yr program
 - Low background rates: Deep underground location
 - High signal efficiency: Precision LAr TPC tracking

LAr TPC technology **particularly shines** for complex *p* decay modes or modes with **final state kaons**, as **favored by SUSY GUTs**

<u>At right:</u>

 $n-\bar{n}$ oscillation \rightarrow intranuclear $n\bar{n}$ annihilation

Spherical spray of hadrons with $E \approx 2M_n$ and **net momentum** $\leq p_F \sim 300 \text{ MeV}$ 10-yr sensitivity: $\tau_{\text{free}} > 1.6 \times 10^9 \text{ s}$ @ 90% C.L. (5× current limit)

DUNE

More of the physics program beyond " 3ν "

Some of the **new physics signatures** accessible with DUNE:

Light sterile neutrinos

Various experimental anomalies persist. Multiple channels for investigation in a LBL setup.

Non-standard interactions

Beam and atmospheric neutrinos passing through matter provide access to nonstandard couplings. Unique search features: long baselines; appearance channel.

Dark matter

Astrophysical (*e.g.*, annihilation in the sun; at DUNE, look for up-going neutrinos), beam-induced light dark matter (*e.g.*, $qq \rightarrow V^* \rightarrow \overline{\chi}\chi$ at target), and boosted dark matter

And more...

Lorentz violation, effective CPTv, large extra dimensions, non-unitarity, neutrino tridents (Z and muon g-2)

Plus **millions of interactions** in the Near Detector for exploring ν -nucleus scattering: final state interactions, nuclear structure, MEC/2p2h channels, ...

Ryan Patterson

T2HK and DUNE Comparison

Note: The experiments use a **mix of assumptions** for oscillation parameters, systematic uncertainties, and other relevant quantities. Comparisons should assume **10%-ish uncertainties on stated sensitivities** to absorb such effects.

(10 yrs, staged deployment)		T2HK	DUNE	
CP violation	δ resolution	7° – 21°	7° – 15°	ו
	3σ coverage	78%	74%	► similar
	5σ coverage	62%	54%	J
vMH	sens. range	5σ – 7σ	8σ – 20σ+	> DUNE superior
octant	sens. @ 0.45	5.8σ	5.1σ	} similar
	5σ outside of	[0.46, 0.56]	[0.45, 0.57]	
p decay (90% C.L.)	p→⊽K+	>2.8e34 yrs	>3.6e34 yrs	<pre>} mode dependent</pre>
	p→e⁺π ⁰	>1.2e35 yrs	>1.6e34 yrs	
supernova ∨ (10 kpc or relic)	SNB \overline{v}_{e}	130k evts		ו
	SNB v_e		3k evts	complementary channels
	relic $\overline{\nu}_{e}$	100 evts, 5 σ		 (v_e vs. v̄_e, though Hyper-K has more SN events total)
	relic v _e		30 evts, 6 σ	
NSI (90% C.L.)	ε _{μe}	<0.34	<0.05	ן ן
	$ \varepsilon_{\mu\tau} $	<0.27	<0.08	DUNE superior
	$ \varepsilon_{\tau e} $	<0.98	<0.25	J

DUNE Timeline

DUNE is a top priority of the international HEP community

Highly internationalized: 1061 collaborators 175 institutions 31 countries

Full-scale component prototypes under construction at CERN Single- and dual-phase designs

DUNE in the current neutrino oscillation landscape

(Why you should be excited about DUNE)

The slides that follow aren't DUNE slides. Just me sharing some thoughts...

DUNE's oscillation physics program in in an evolving landscape

• A question:

How does DUNE's neutrino oscillation program connect to the current long-baseline program, given the impressive performance of and projections for the latter?

- Indeed, the current operating program is impressive:
 - Recent $\nu + \overline{\nu}$ results from $\mathbf{T2K} \Rightarrow 2\sigma$ evidence for *CP*v reported
 - First $v + \overline{v}$ results from **NOvA** to come this summer
 - Aggressive plans for exposure increases for both experiments
 - Large **atmospheric** ν **samples** in hand or possible (Super-K, ν telescopes)
- Currently favored parameters offer highest sensitivities for *CP*v and vMH

Latest from NOvA, T2K, and one global fitting effort

Inverted hierarchy and *CP* conservation each showing some tension with data

NOvA v only, FNAL seminar Jan 2018, A. Radovic

Projections for NOvA and T2K

Both forecasts assume reasonable accelerator upgrades

Prior to DUNE start, possibility of 3σ and 4σ sorts of C.L.s for ν MH and CPv, assuming best fits don't drift away.

And, can then combine T2K and NOvA results.

Main caveat to these projections: sensitivities **depend greatly** on the parameters nature has actually chosen. *Current best-fit parameters are rather favorable – good! but tenuous.*

• **However**: regardless of the final outcome of current experiments, there is so much more left to do!

All possible outcomes have required next steps:

if ambiguities \rightarrow **aim for clarity** if evidence \rightarrow **aim for discovery** if discovery \rightarrow **aim for characterization**

To expand on each line of this "triptych"...

<u>1) If ambiguities \rightarrow aim for clarity</u>

- Applies to all questions of "texture":
 - ν MH is [normal | inverted]
 - mixing is [maximal | non-maximal]
 - octant is [upper | lower]
 - *CP* sym. is [violated | (maybe) respected]
- There is **ample phase space** still allowed to end up with ambiguities in any of these binary questions.
- vMH has well-known "**parameter degeneracies**" at 810 km that are still in play. *T2K data can help break these degeneracies, but not overwhelmingly.*
- Recent tension regarding **maximal mixing** has relaxed somewhat, making this question wide open again.
- Octant determination highly dependent on how non-maximally mixed v_3 is.

2) If evidence \rightarrow aim for discovery

- Applies to all questions of "texture".
- Nominally an obvious thing: we want to discover *CP*v, vMH, etc...

Is $2\sigma / 3\sigma / X\sigma$ enough?

- Enough for what purpose?
 - Enough to guide model building?
 - Enough to motivate experiment directions (*e.g.*, direct ν mass measurements)?
 - Enough to rule out Majorana neutrinos (*e.g.*, when interpreting $0\nu\beta\beta$ results)?
 - Enough to declare leptogenesis viable / non-viable?
 - Enough to hold up to, say, future tension with ΛCDM fits or SN ν data?

There will come a time when each piece of our understanding will need to be trusted at a very high confidence level (>5 σ).

Lower confidence levels are **invaluable** and **actionable** in many contexts, but not all, especially when confronting the full field of questions.

3) If discovery → aim for characterization

- Applies to all 3v parameters (nevermind BSM)
- This is the precision program that is **inarguably beyond the current experiments**.
- Can compare goals to the level of precision achieved in quark flavor physics.
 - But quark precision measurements are easily connected to specific BSM searches. Same with neutrinos, just not usually in the form of loop effects.
 - *We haven't learned anything new from quark flavor precision, per se.* Maybe not in the past 10 years, but over the past 50 we sure have.
 - It's a false analogy since leptons and quarks seem to behave very differently. All the more reason to measure neutrinos well!

Flavor: A core problem for 21st century particle physics

What **flavor symmetry** can produce the observed pattern of mixings and masses, and how is that symmetry broken?

More broadly: what are the **dynamical origins** of fermion masses, mixings, and *CP* violation?

Tackling this problem requires theoretical and <u>experimental</u> progress.

 \rightarrow **DUNE** will be at the heart of this.

Conclusions

DUNE gearing up

- **ProtoDUNE** installation underway now at CERN
- Far Detector site prep work underway now at SURF

A broad physics program

- DUNE will determine the ν MH and can measure leptonic *CP*v at 5σ
- Precision **PMNS**: a new era for understanding flavor
- Nucleon decay
- Supernova neutrinos
- And a rich **BSM physics** program both inside and outside the neutrino sector

DUNE