Cross-sections and systematics at DUNE:

S. Manly University of Rochester

Neutrino platform week CERN Jan. 29, 2018

- > No attempt at a systematic overview ... or ... an overview of systematics
- Concerns about Xsecs and systematics driving DUNE ND design
- > Potential advances in the state-of-art which are under study/consideration

Oscillations for the naïve optimist

Use high statistics, unoscillated, precision measurement of numu flux in ND and beam model/geometry

*Quote from author Joyce Rachelle

Electron neutrino appearance

Ignore backgrounds lincluding

intrinsic beam vel for now

The Good

If use the same target material and detectors are identical and flavor differences in lepton reconstruction are negligible and/or well understood, then nuclear and detector effects largely cancel in the systematic error.

Oscillations for the realist

The Bad

Detectors never perfect Must unfold observations to get "truth"

> CCQE, CC1pi, 2p2h Usually we use "topology" when describing different event types. "Morphology" is a better word.

"The secret of happiness is to face the fact that the world is horrible, horrible, horrible."*

*Quote from philosopher **Bertrand Russell**

What, Me Worry?*

*Quote from Alfred E. Neuman (MAD magazine)

 $\int \frac{dN_{v_e}}{dE_{rec}} D_{v_e}^{far}(E_{rec}, E_v) \frac{1}{\sigma_{v_e}^{Ar}(E_v)} dE_v$ $P_{\nu_{\mu} \rightarrow \nu_{e}}(E_{\nu})$ $\int \frac{dN_{\nu_{\mu}}^{near}}{dE_{rec}} D_{\nu_{\mu}}^{near}(E_{rec}, E_{\nu}) \frac{1}{\sigma_{\nu_{\mu}}^{X}(E_{\nu})} F_{far/near}^{\nu_{\mu}}(E_{\nu}) dE_{\nu}$

DUNE approach: optimistic realism

DUNE ND LArTPC option: ArgonCUBE ... ≠ FD

ROGEN WILS HILL HADER CERA FRANCO MCBRIDE

A hero will rise

A peak at how the sausage is made

From the DUNE near detector task force studies

Final-				Prin	nary Ha	dronic Sy	ystem			
State	$0\pi X$	$1\pi^0 X$	$1\pi^+X$	$1\pi^-X$	$2\pi^0 X$	$2\pi^+X$	$2\pi^-X$	$\pi^0\pi^+X$	$\pi^0\pi^-X$	$\pi^+\pi^-X$
$0\pi X$	293446	12710	22033	3038	113	51	5	350	57	193
$1\pi^0 X$	1744	44643	3836	491	1002	25	1	1622	307	59
$1\pi^+X$	2590	1065	82459	23	14	660	0	1746	5	997
$1\pi^-X$	298	1127	1	12090	16	0	46	34	318	1001
$2\pi^0 X$	0	0	0	0	2761	2	0	260	40	7
$2\pi^+ X$	57	5	411	0	1	1999	0	136	0	12
$2\pi^-X$	0	0	0	1	0	0	134	0	31	0
$\pi^0\pi^+X$	412	869	1128	232	109	106	0	9837	15	183
$\pi^0\pi^-X$	0	0	1	0	73	0	8	5	1808	154
$\pi^+\pi^-X$	799	7	10	65	0	0	0	139	20	5643

Much smearing of initial state into other final states. Information and sensitivity in this mess.

DUNE NDTF used the VALOR framework

Calculations done assuming the straw tube tracker design (FGT)

Events per bin

Figure 27: The far detector electron-like error envelope in the neutrino-mode beam using the FGT. The total event rate uncertainty from flux and interaction systematics in the range 1-6 GeV is 2.35%.

• ν_{μ} CC

1. 1-track 0π (μ^- only) 2. 2-track $0\pi (\mu^- + \text{nucleon})$ 3. N-track 0π (μ^- + (>1) nucleons) 4. 3-track Δ -enhanced ($\mu^- + \pi^+ + p$, with $W_{reco} \approx 1.2 \text{ GeV}$) 5. $1\pi^{\pm} (\mu^{-} + 1\pi^{\pm} + X)$ 6. $1\pi^0 (\mu^- + 1\pi^0 + X)$ 7. $1\pi^{\pm} + 1\pi^{0} (\mu^{-} + 1\pi^{\pm} + 1\pi^{0} + X)$ 8. Other • Wrong-sign ν_{μ} CC 9. $0\pi (\mu^+ + X)$ 10. $1\pi^{\pm} (\mu^{+} + \pi^{\pm} + X)$ 11. $1\pi^0 (\mu^+ + \pi^0 + X)$ 12. Other

• $\nu_e \ CC$

13. $0\pi (e^- + X)$ 14. $1\pi^{\pm} (e^{-} + \pi^{\pm} + X)$ 15. $1\pi^0 (e^- + \pi^0 + X)$ 16. Other

- Wrong-sign ν_e CC 17. Inclusive
- NC
 - 18. 0π (nucleon(s)) 19. $1\pi^{\pm} (\pi^{\pm} + X)$
 - 20. $1\pi^0 (\pi^0 + X)$
 - 21. Other

• *v*-e

22. $\nu_e + e^-$ elastic

ND

experimental

data sets

considered

Errors of fit parameters reduced with ND input

Reduction in flux errors at the FD demonstrated

Figure 26: The far detector muon-like error envelope in the neutrino-mode beam using the FGT. The total event rate uncertainty from flux and interaction systematics in the range 1-6 GeV is 0.97%.

State of the art with T2K

ND280 sample

ND constraint reduces systematic error and adjusts normalization of flux

Source of uncertainty	ν_e CCQE-like	$ u_{\mu}$	$\nu_e \operatorname{CC1} \pi^+$
-	$\delta N/N$	$\delta N/N$	$\delta N/N$
Flux	3.7%	3.6%	3.6%
(w/ND280 constraint)			
Cross section	5.1%	4.0%	4.9%
(w/ ND280 constraint)			
Flux+cross-section			
(w/o ND280 constraint)	11.3%	10.8%	16.4%
(w/ND280 constraint)	4.2%	2.9%	5.0%
FSI+SI+PN at SK	2.5%	1.5%	10.5%
SK detector	2.4%	3.9%	9.3%
All			
(w/o ND280 constraint)	12.7%	12.0%	21.9%
(w/ ND280 constraint)	5.5%	5.1%	14.8%

Systematics from beamline configuration and hadron production

Note importance of hadron production model and input of external data from NA61 and other hadron production experiments.

11D200 Bampie	rotar by btematic					
	uncertainty (%)					
ν-mode						
FGD1 ν_{μ} CC-0 π	1.7					
FGD1 ν_{μ} CC-1 π^+	3.3					
FGD1 ν_{μ} CC-Other	6.5					
FGD2 ν_{μ} CC-0 π	1.7					
FGD2 ν_{μ} CC-1 π^+	3.9					
FGD2 ν_{μ} CC-Other	5.9					
$\bar{\nu}$ -mod	le					
FGD1 $\bar{\nu}_{\mu}$ CC-1-Track	5.4					
FGD1 $\bar{\nu}_{\mu}$ CC-N-Tracks	s 10.4					
FGD1 ν_{μ} CC-1-Track	2.5					
FGD1 ν_{μ} CC-N-Tracks	s 4.8					
FGD2 $\bar{\nu}_{\mu}$ CC-1-Track	3.5					
FGD2 $\bar{\nu}_{\mu}$ CC-N-Tracks	s 7.3					
FGD2 ν_{μ} CC-1-Track	2.0					
FGD2 ν_{μ} CC-N-Tracks	s 4.0					

Total evetematic

Systematic uncertainty of the total event rates affecting the ND samples. Current largest contribution is in the pion re-interaction rate (data-**GEANT4** disagreement)

Magnetized

- > Data on CH, C, He, water, Pb, Fe, Ar
- Many differential results
- $\succ v_{\mu}$, CC and NC, muon and proton variables, pion production
- $\succ v_e$ CC measurements

 \triangleright

 \triangleright

 \triangleright

- Recent progress on using transverse momentum balance variables to enhance sensitivity to nuclear and FSI effects
- Neutrons?! Really?

Meant to provide a coherent framework for comparing neutrino generators to external data. Also useful for tuning cross-section parameters to data.

https://nuisance.hepforge.org/

The neutron problem

Neutrons are difficult. Bounce around and then:

- a) Deposit no energy (observable)
- b) Leave a little energy
- c) Leave much energy

- Event morphology confusion (modeling, unfolding)
- Problems with energy reconstruction (resolution and modeling)
- Compromise use of transverse momentum balance for reconstruction
- Hurt ability to use transverse momentum balance for CC/NC separation

Can we use neutron tag to improve neutrino reconstruction in the CCQE-like sample?

NDTF: Final states used by VALOR for the ND

Can neutron tagging be used to improve our ability to use transverse momentum balance variables?

E, < 1 GeV

Remove neutrons

1

0.4 0.6 0.8

Separation between cyan (CC) and pink (NC) is reduced dramatically with missing neutrons

1.2 1.4 1.6 1.8 2

Missing p_ (GeV/c)

°

0.2

Recent MINERvA results on neutrons

presented at Fermilab Wine and Cheese talk on Nov. 3, 2017 by Rik Gran (Much progress on algorithm done as part of Miranda Elkins' MS thesis work)

Map of where we do and do not look for neutrons

Expectation from MINERvA GENIE/GEANT simulation

MINERvA data

- MINERvA seems to see the neutrons.
- Dominated by the low energy (2-6 MeV) candidates in this analysis
- Data-MC agreement not so bad (surprisingly?)
- MINERvA only able to get Z position for the low energy candidates
- Can get 3D reconstruction for higher energy candidates
- 3DST expected to get 3D position for these candidates

DUNE 3DST/T2K superFGD

1 cm³

From Yuri Kudenko

- > Statistics
- > Timing
- > 3D position
- Sensitive to small energy deposits

Early studies indicate 3DST should be , able to tag FS neutrons with ~50% efficiency and have good resolution on the FS neutron direction. Studies in progress

"I do so relish these times of peril."*

The ND/FD flux shape difference problem

- Neutrino spectra at ND and FD differ
- Leads to systematic errors arising from energy reconstruction, efficiencies, unfolding, modeling, etc.

S. Manly, CERN neutrino platform week - Jan. 2018

NuPRISM to DUNEPRISM

Idea is under serious study/consideration for DUNE

Linear combination of fluxes at differing off-axis angles can create a flux at near detector with oscillated FD flux shape

Can use linear combinations of the different fluxes to create samples of "monochromatic" beams, from which you can create the energy smearing matrix for ND

The off-axis spectra may provide indications of problems with beam or xsec model that might be missed otherwise

M. Wilking, shown at 3rd DUNE ND workshop (Nov. 2017)

DUNE ND studies underway

Conclusions/discussion

Cartoon from User's Guide to the Universe (Dave Goldberg and Jeff Blomquist)

- Neutrinos have been difficult
- Concepts under discussion for DUNE contain many elements to minimize potential systematic errors:
 - ND and FD have same target nucleus and similar-ish detectors
 - External hadron production using replica target and horns
 - Plan to include low density detector to give excellent resolution
 - PRISM concept to use map E_{recon} to E_{true} and create ND flux in same shape as FD flux
 - May include 3DST, neutrons and connection with plastic data and low energy T2K superFGD data
 - Will build on experience of T2K, NOvA
 - Will start with models consistent with (hopefully) massive data sets of MiniBooNE, MINERvA, T2K, NOvA, SBN program, etc.
- Neutrons! Multiplicity and direction measurements possible
- Neutrinos will continue to be difficult

Backups

A VERY preliminary look at neutrons in 3DST simulations

- Look at MC truth (numu CC sample), neutron interactions with energy deposits > 2MeV
- Sum energy deposited in 10 cm box centered on true neutron interaction position (and >3x non-neutron energy in box)

Rate at which a FS neutron is seen as a candidate per FS neutron as function of neutron KE

Neutron candidate energy versus FS neutron KE

What does MINERvA see according to GEANT4?

Different bins of momentum transfer

MINERvA Preliminary - Simulation

Neutrons leave deposits of 3-6 MeV, flat with neutron true energy Recent follow-on study indicates the deposits often come from charged particles coming out of a nucleus broken up by the neutron.

S. Manly, CERN neutrino platform week - Jan. 2018

$$P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) \simeq \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{far,unosc}(E_{\nu})} = \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{near}(E_{\nu})F_{far/near}^{\nu_{\mu}}(E_{\nu})}$$

$$\frac{dN_{\nu}^{\text{det}}}{dE_{\nu}} = \phi_{\nu}^{\text{det}}(E_{\nu})\sigma_{\nu}^{X}(E_{\nu})$$

$$\frac{dN_{v}^{\text{det}}}{dE_{rec}} = \int \phi_{v}^{\text{det}}(E_{v}) \sigma_{v}^{X}(E_{v}) D_{v}^{\text{det}}(E_{v}, E_{rec}) dE_{v}$$

Detector effects lead to reconstructed spectrum

$$\frac{dN_{\nu}^{\text{det}}}{dE_{rec}} = \int \frac{dN_{\nu}^{\text{det}}}{dE_{\nu}} D_{\nu}^{\text{det}} (E_{\nu}, E_{rec}) dE_{\nu}$$

$$\frac{dN_{\nu}^{\text{det}}}{dE_{\nu}} = \int \frac{dN_{\nu}^{\text{det}}}{dE_{rec}} D_{\nu}^{\text{det}} (E_{rec}, E_{\nu}) dE_{\nu}$$

Must unfold to go from reconstructed spectrum to "truth"

If ND and FD have: Same target Same detector effects (even for the different leptons)

Then it simplifies to counting plus flux ratio calculationers neutrino platform week - Jan. 2018

$$P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) \simeq \frac{\int \frac{dN_{\nu_{e}}^{far}}{dE_{rec}} D_{\nu_{e}}^{far}(E_{rec}, E_{\nu}) \frac{1}{\sigma_{\nu_{e}}^{Ar}(E_{\nu})} dE_{\nu}}{\int \frac{dN_{\nu_{\mu}}^{near}}{dE_{rec}} D_{\nu_{\mu}}^{near}(E_{rec}, E_{\nu}) \frac{1}{\sigma_{\nu_{\mu}}^{X}(E_{\nu})} F_{far/near}^{\nu_{\mu}}(E_{\nu}) dE_{\nu}}$$

If ND and FD have: Same target Same detector effects (even for the different leptons)

Then it simplifies to counting plus flux ratio calculation

Significant irreducible v_e appearance background is intrinsic v_e content of beam. Suppose we choose to constrain that via ND measurement of v_e content of beam.

$$\frac{dN_{\nu_e}^{far,unosc}}{dE_{\nu}} = \frac{dN_{\nu_e}^{near}}{dE_{\nu}} \frac{\sigma_{\nu_e}^{Ar}(E_{\nu})}{\sigma_{\nu_e}^{X}(E_{\nu})} F_{far/near}^{\nu_e}(E_{\nu})$$

Significant irreducible v_e appearance background is intrinsic v_e content of beam. Suppose we choose to constrain that via ND measurement of v_{μ} content of beam plus v_e/v_{μ} ratio at the ND.

$$\frac{dN_{\nu_e}^{far,unosc}}{dE_{\nu}} = \frac{dN_{\nu_e}^{near}}{dE_{\nu}} \frac{\sigma_{\nu_e}^{Ar}(E_{\nu})}{\sigma_{\nu_e}^{X}(E_{\nu})} F_{far/near}^{Ve}(E_{\nu})$$

$$\frac{dN_{v_e}^{far,unosc}}{dE_v} = \frac{dN_{v_{\mu}}^{near}}{dE_v} \frac{\phi_{v_{\mu}}^{near}(E_v)}{\phi_{v_e}^{near}(E_v)} \frac{\sigma_{v_{\mu}}^X(E_v)}{\sigma_{v_e}^X(E_v)} \frac{\sigma_{v_e}^{Ar}(E_v)}{\sigma_{v_e}^X(E_v)} F_{far/near}^{Ve}(E_v)$$

$$\frac{dN_{v_{e}}^{far,unosc}}{dE_{v}} = \frac{dN_{v_{\mu}}^{near}}{dE_{v}} \frac{\phi_{v_{\mu}}^{near}(E_{v})}{\phi_{v_{e}}^{near}(E_{v})} \frac{\sigma_{v_{e}}^{Ar}(E_{v})}{\sigma_{v_{e}}^{X}(E_{v})} F_{far/near}^{v_{e}}(E_{v})$$

Assuming neutrino universality

$$\frac{dN_{v_e}^{far,unosc}}{dE_v} = \int \frac{dN_{v_{\mu}}^{near}}{dE_{rec}} D_{v_{\mu}}^{near}(E_{rec}, E_v) \frac{\phi_{v_{\mu}}^{near}(E_v)}{\phi_{v_e}^{near}(E_v)} \frac{\sigma_{v_e}^{Ar}(E_v)}{\sigma_{v_e}^{X}(E_v)} F_{far/near}^{Ve}(E_v) dE_v$$

Technical slide: steps to calorimetric reconstruction

We do not start knowing the energy of the neutrino, only the direction.

Measure the energy E_{μ} and angle θ_{μ} of the outgoing muon. Measure the detected energy attributed to hadrons $E_{visible}$.

A. turn E_{visible} into E_{available} using detector MC, discounts neutrons $E_{available}$ = Proton KE, π^{\pm} KE, π^{0} , e, γ energy (plus heavier particles) little neutrino model dependence (some anti-nu model dependence)

B. Use MC and correct to energy transfer q_0 (= E_{had} = v = ω) (unbiased, but correction has some dependence on interaction model)

B. Estimated neutrino energy $E_v = E_\mu + q_0$ C. Estimated four-momentum $Q^2 = 2 E_v (E_\mu - p_\mu \cos \theta_\mu) - M_\mu^2$ D. Estimated momentum transfer $q_3 = \text{Sqrt}(Q^2 + q_0^2)$

Super-FGD, D. Sgalaberna, A. Longhin, Yuri Kudenko

