Some Recent Developments

Joachim Kopp HEP Seminar | University of Bielefeld | January 25th, 2018

Marcelete The Reactor Anomaly: A Hint for Sterile Neutrinos?

- **Sterile Neutrinos:** Global Status
- **Cosmological Constraints** (and how to evade them)

The Reactor Anomaly A Hint for Sterile Neutrinos?

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

\overline{v}_e flux from nuclear reactors is ~ 3.5% below prediction

Mueller et al. <u>1101.2663</u>, Huber <u>1106.0687</u>

\overline{v}_e flux from nuclear reactors is ~ 3.5% below prediction

Mueller et al. <u>1101.2663</u>, Huber <u>1106.0687</u>

5

\overline{v}_e flux from nuclear reactors is ~ 3.5% below prediction

$\mathbf{\overline{M}}$ Predicting reactor $\overline{\nu}_{e}$ fluxes:

- **Ο** Use measured β spectra from ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fission
- **O** Convert to \overline{v}_e spectrum
- **o** For single β decay: $E_v = Q E_e$
- **o** Reality: thousands of decay branches, many not known precisely
- **o** Use information from nuclear data tables ...
- o ... complemented by a fit to "effective decay branches"

Mueller et al. <u>1101.2663</u>, Huber <u>1106.0687</u>

$\overline{\nu}_e$ flux from nuclear reactors is ~ 3.5% below prediction

Important corrections

- o Finite size of nucleus
- **O** Weak magnetism $\mathcal{L} \supset (\bar{e}_L \sigma^{\mu\nu} \nu_L) W_{\mu\nu}$
- **O** Screening of nuclear charge: $Z \rightarrow Z_{eff}$
- **o** Radiative corrections (y emission)
- **o** Non-equilibrium effects in measured β spectra
- o Neutron lifetime uncertainty
- See next talk by Patrick Huber for details

Mueller et al. <u>1101.2663</u>, Huber <u>1106.0687</u>

The Gallium Anomaly: A Vindication?

- Experiments with intense radioactive sources
- Meutrino detection via

 $^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^-$

- or deficit!
- v_e disappearance into sterile state?

Giunti Laveder 1006.3244

Global Fit to v_e and \overline{v}_e Disappearance

Mathebric Reactor fuel composition evolves with time ("burnup")

Isotope-Dependent Fluxes

Reactor fuel composition evolves with time ("burnup")

Mathebric Reactor fuel composition evolves with time ("burnup")

Markov Reactor fuel composition evolves with time ("burnup")

 \checkmark

Reactor fuel composition evolves with time ("burnup") Measure inverse β decay rate as function of F_{239} \checkmark

Image: Sector fuel composition evolves with time ("burnup")Image: Sector fuel composit

Markov Full analysis:

Ο Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + *sin*²2θ₁₄

$$\Delta \chi^2 = 7.9$$

Markov Full analysis:

O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + sin²2θ₁₄

 $\Delta \chi^2 = 6.3$ (with H-M uncertainties)

Markov Full analysis:

O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + sin²2θ₁₄

 $\Delta \chi^2 = 6.3$ (with H-M uncertainties)

Interpretation difficult

- Number of degrees of freedom?
- o Include uncertainties in fixed fluxes?

Fluxes within errors + $sin^2 2\theta_{14}$, Δm^2_{41} : p = 0.18Fluxes free: p = 0.73 $\Delta \chi^2$ (sterile neutrino vs. free fluxes): p = 0.007

Fixed vs. Free Flux Normalization

DANSS and NEOS

DANSS

Danilov, Moriond 2017

Ko et al. <u>1610.05134</u> Daya Bay <u>1607.05378</u>

erc

13

NEOS and DANSS

News from DANSS

plots courtesy of Álvaro Hernández Danilov, <u>Solvay Workshop Dec 2017</u> Gariazzo Giunti Laveder Li <u>1801.06467</u>

News from DANSS

plots courtesy of Álvaro Hernández Danilov, <u>Solvay Workshop Dec 2017</u> Gariazzo Giunti Laveder Li <u>1801.06467</u>

Sterile Neutrinos Global Status

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

$\nu_{\mu} \rightarrow \nu_{e}$ appearance

Dentler JK Machado Maltoni Martinez Schwetz, in preparation

$\nu_{\mu} \rightarrow \nu_{e}$ appearance

 ★ Global fit to v_e appearance data consistent
 ★ Official results by some experiments problematic (e.g. neglect background oscillations)

Dentler JK Machado Maltoni Martinez Schwetz, in preparation

Mathematical Control of Security of Control of Control of Security of Control of Con

$$\begin{aligned} P_{\nu_e \to \nu_e} \simeq 1 - 2|U_{e4}|^2 (1 - |U_{e4}|^2) \\ P_{\nu_\mu \to \nu_\mu} \simeq 1 - 2|U_{\mu 4}|^2 (1 - |U_{\mu 4}|^2) \\ P_{\nu_\mu \to \nu_e} \simeq 2|U_{e4}|^2 |U_{\mu 4}|^2 \end{aligned}$$
(for $4\pi E/\Delta m_{41}^2 \ll L \ll 4\pi E/\Delta m_{31}^2$)

Models can be over-constrained.

Global Fit in 3+1 Model

Dentler Hernandez JK Machado Maltoni Martinez Schwetz, in preparation see also works by Collin Argüelles Conrad Shaevitz, e.g. <u>1607.00011</u>, Gariazzo Giunti Laveder Li, e.g. <u>1703.00860</u>

Status of Light Sterile Neutrinos

 severe tension (p < 10-4)
 scrutinize anomalies for unknown systematics (need 4 independent effects!)
 scrutinize also null results!

Cosmological Constraints

and how to evade them

Standard picture: ν_s production via oscillation at T \ge MeV

- \mathbf{M} Hard interaction collapses v wave function
 - **O** $\frac{1}{2} \sin^2 2\theta$ of v converted to v_s
- **Matrix** Remaining $v_{e,\mu,\tau}$ start to oscillate again
- Constrained by CMB, LSS, BBN:

BSM Model Building Flowchart

\mathbf{M} Entropy production at T < MeV

• v_s diluted Fuller Kishimoto Kusenko, <u>1110.6479</u>; Ho Scherrer, <u>1212.1689</u>

$\mathbf{\overline{M}}$ New interactions in the v_s sector

o production suppressed by thermal potential

Hannestad et al. <u>1310.5926</u>; Dasgupta JK, <u>1310.6337</u>

o minimal scenario now disfavored

Cherry Friedland Shoemaker <u>1605.06506</u> Chu Dasgupta Dentler JK Saviano, in preparation

 $\mathbf{M} \mathbf{v}_{s}$ properties change in late phase transition

Bezrukov Chudaykin Gorbunov, 1705.02184

 \mathbf{M} Assume v_s charged under a new U(1) gauge group

Neutrino self-energy contributes to effective potential V^{eff}

 \mathbf{M} Assume v_s charged under a new U(1)' gauge group

Meutrino self-energy contributes to effective potential Veff

I Effective mixing angle

$$\sin^2 2\theta_{\text{eff}} = \frac{\sin^2 2\theta}{\sin^2 2\theta + \left(\cos 2\theta - \frac{2EV^{\text{eff}}}{\Delta m^2}\right)^2}$$

Suppressed v_s Production

 $\boxed{M} If V^{eff} \gg \Delta m^2 / (2T): v_s \text{ production suppressed Hannestad et al. } \frac{1310.5926}{1310.6337}$ Dasgupta JK $\frac{1310.6337}{1310.6337}$

Suppressed v_s Production

If Veff > Δm² / (2T): v_s production suppressed Hannestad et al. <u>1310.5926</u> Dasgupta JK <u>1310.6337</u>

Solution Problem: late equilibration between $v_{e,\mu,\tau}$ and v_s

Chu Dasgupta JK <u>1505.02795</u>, Cherry Friedland Shoemaker <u>1605.06506</u> Chu Dasgupta Dentler JK Saviano, *in preparation*

Basic idea

Bezrukov Chudaykin Gorbunov, 1705.02184 Chu Dasgupta Dentler JK Saviano, in preparation

- O large v_s mass at early times is production kinematically suppressed
- O late phase transition reduces mass to ~ eV

Toy model

$$V(\phi_1, \phi_2) = \frac{\lambda_1}{4} \phi_1^4 + \frac{\lambda_2}{4} \phi_2^4 + \frac{\lambda_p}{2} \phi_1^2 \phi_2^2 + \frac{\mu_1^2}{2} \phi_1^2 + \frac{\mu_2^2}{2} \phi_2^2$$
$$\mathcal{L}_{\text{Yukawa}} = -y \phi_1 \overline{\nu_{sL}} \nu_{sR} - \frac{1}{2} m_{sL} \overline{\nu_{sL}^c} \nu_{sL} - \frac{1}{2} m_{sR} \overline{\nu_{sR}^c} \nu_{sR} + h.c.$$

Possible behavior: inverse symmetry breaking Weinberg 1974

O small **T**: $\langle \phi_1 \rangle = 0, \langle \phi_2 \rangle = 0$

• large T: $\langle \phi_1 \rangle \neq 0$, $\langle \phi_2 \rangle = 0$ (V_{eff} dominated by thermal corrections)

 \rightarrow v_s mass given by m_{sL} , m_{sR}

Summary

Matrix Reactor anomaly: significant \overline{v}_e deficit

- o hint for sterile neutrinos?
- o or systematic uncertainty in the prediction?
- Daya Bay: fluxes functions of isotope composition
 - o preference for ²³⁵U misprediction
 - **O** but v_s hypothesis gives good fit as well
 - **O** even for unconstrained fluxes, preference for v_s persist
- **Global Fit:** severe tension with v_{μ} disappearance
- Cosmology: constraints evaded in non-minimal models

Thank you!

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

