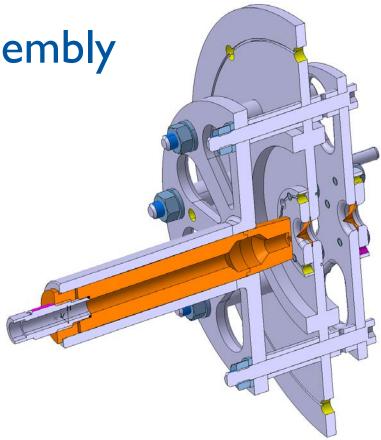
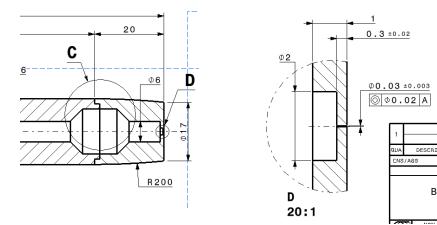

Manufacture and Alignment of the BGC Skimmer and Nozzle Assembly

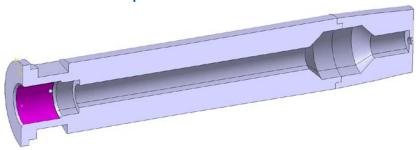

Tom Dodington 16 June 2017 BE-BI-ML

Nozzle and Skimmer Assembly

Aiming within <50µm alignment range Pins used to align the three critical parts Central skimmer position fixed



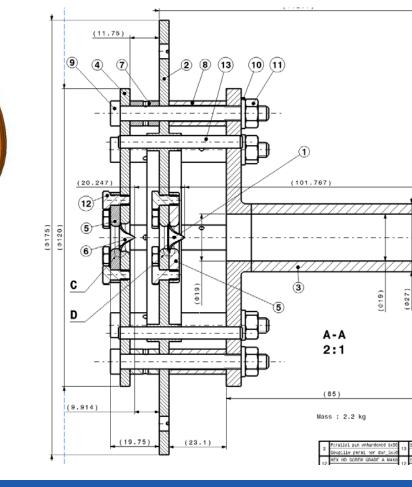
16/06/2017


Nozzle

To be machined in 2 parts at CERN Full depth weld to join parts Re-machined external diameter.

30µm hole manufacture

- Previously drilled in platinum foil, clamped between 2 Al plates. Manufacturer unknown
- Laser Micromachining, UK
- Vuichard, Fr/CH


B

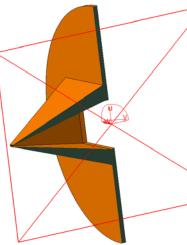
Skimmer I & 2

0.18 and 0.4mm diameters

Previously manufactured by

- Beam Dynamics Inc, US
- Any feedback welcome
- New skimmers have been purchased 10/06

Skimmer 3


Rectangular, 0.4*4mm

Previously manufactured by

- CRDM rapid prototyping
- TJW polishing

New Skimmer

- IPAC poster about 3D metal printing
- Will contact manufacturers to discuss

Study of the suitability of 3D printing for Ultra-High Vacuum applications

Stéphane Jenzer¹, Manuel Alves¹, Nicolas Delerue¹, Alexandre Gonnin¹, Denis Grasset¹, Frederic Letellier-Cohen¹, Bruno Mercier¹, Eric Mistretta¹, Christophe Prevost¹, Alexis Vion²,

Jean-Pierre Wilmes LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saciay, Orsay, France

- BV Proto, Rue de Leupe, Sévenans, France.
- AGS Fusion, 35 Route du champ Biolay, Izernore, France.

Intro in the recent year additive manufacturing 3D printing) has revolutionized mecha nical engineering by allowing the quick iroduction of mechanical component with complex shapes. So far most i onents are made in clasti and therefore can not be used in accele ator beam pipes. We have investigati moles printed using a metal 3D printe study their behavior under vacuum We report on our first tests showing that such samples are vacuum compatible an mparing pumping time.

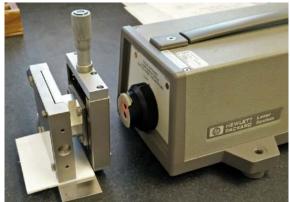
WEPVA04

Example of 3D printed pipes

Manufacturer	Part name	Surface finishing	He loak test	Limit pressure (Penning)
BV Proto	BV1	Sawing at one end	Raw: 1 × 10 ⁻⁷ mbar l/s Sawed: > 1 × 10 ⁻⁶ mbar l/s	1.7×10^{-4} mbar
	BV2	Minor processing with hand tools	> 1 × 10 ⁻³ moar l/s	8.6 × 10 ⁻⁴ mbar
	BV3	Lathing of both flanges	No leak detected	1.2 × 10 ⁻⁵ mbar*
	BV4	Lathing of both flanges and the internal surface	No leak detected	$1.2 \times 10^{-5} \text{mbar}^*$
AGS Fusion	AG1	Wire-cutting at one end	Raw: 3 × 10 ⁻⁷ mbar Vs Wire-cut: > 1 × 10 ⁻⁹ mbar Vs	$8.5 imes 10^{-8}$ mbar
	AG2	Wire-cutting at one end	2×10^{-7} mbar Vs Wire-cut: > 2.8 × 10 ⁻⁷ mbar Vs	$1.2 imes 10^{-1}$ mbar
	AG3	Lathing of both flanges	6.2 × 10 ^a mbar l/s No leak detected	1.5×10^{-5} mbar*
	AG4	Lathing of both flanges and the internal surface	No leak detected	$9.6 imes 10^{-8}$ mbar*
Vacorn	Reterance	Conventional	No leak detected	1.8 × 10 ⁻⁵ mbor*
		* This is equivalent to the	limit pressure of the test stand.	1.6 × 10 -* mbar*
		Static vac	uum pressure	
-		Test stand, DV3, BV4, A03,		
10.17			The samp	ries have been pumped a nder static vacuum for seve

All samples where the flanges have been machined show no significant difference with respect to the reference sample and the test stand left alone.




Alignment

Previous study by Ana Miarnau

Alignment of two 50 μ m holes at CERN with metrology team Original BGC alignment

Ensure documentation of everything

Drawing approval

All drawings ready to be signed

- Have begun checking all the drawings
- Hope to have signed before design review
- Manufacture to begin ASAP
- Discuss with Cockcroft Institute

References

Slide 1: Gas dynamics considerations in a non-invasive profile monitor for charged particle beams *Vasilis Tzoganis, Adam Jeff, Carsten P. Welsch*

Slide 4: Poster at IPAC, provided by Hao Zhang

Slide 5: Alignment of Beam Gas Curtain (BGC) test plates Ana Miarnau

home.cern