University of Oklahoma

Top Signature of Flavor Changing Neutral Higgs Interactions with W W at the LHC

September 30, 2017

Rishabh Jain

Outline

- (1)Introduction to Two Higgs Doublet Model
- (2)Interaction under investigation
- (3)QCD Correction and Running of tch coupling
- (4)Theoretical Constraints and Decoupling Limit
- (5)Experimental Constraints

Outline

- (6) Channel of Study and Backgrounds
- (7) Realistic Cuts and Cross section
- (8) Important Mass cuts and Cross section
- (9) Discovery Contours at 13 and 14 TeV
- (10)Conclusion and Future Works

Introduction to Two Higgs Doublet Model

- Standard Model is great but its doesn't explain everything around us.
- Two Higgs doublet model is one of the simplest extension.
- It introduces a standard model like Higgs doublet into the theory and such that every Neutral component of the doublet has its own vaccum expectation value, v_1 and v_2 .

In a general basis, Higgs doublet looks like

$$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{H_1 + v_1 + Im(\phi_1^0)}{\sqrt{2}} \end{pmatrix} \quad \phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{H_2 + v_2 + Im(\phi_2^0)}{\sqrt{2}} \end{pmatrix}$$
(1)

$$v = \sqrt{v_1^2 + v_2^2}$$

Introduction to Two Higgs Doublet Model

• A rotation of β is performed to write these doublets in Higgs Basis, such that only one neutral Component among the two higgs doublets takes the VEV (the one we know),

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \cos\beta, -\sin\beta \\ \sin\beta, \cos\beta \end{pmatrix} \begin{pmatrix} v \\ 0 \end{pmatrix} \tag{2}$$

Hence we have.

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{H + v + iG^0}{\sqrt{2}} \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{S + iA^0}{\sqrt{2}} \end{pmatrix} \tag{3}$$

• Then there is one last rotation of α which serves as a Higgs mixing angle, it rotates it into a Higgs mass basis.

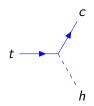
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos\alpha, -\sin\alpha \\ \sin\alpha, & \cos\alpha \end{pmatrix} = \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} \tag{4}$$

Yukawa type Lagrangian in 2HDM

 After performing all this rotation when we write our yukawa type lagrangian in Higgs mass basis in the most general 2HDM[3],

$$\begin{split} -\sqrt{2}\mathcal{L}_{I} &= \bar{U}_{i}[\kappa_{U_{i}U_{j}}cos(\beta-\alpha)-\rho_{U_{i}U_{j}}sin(\beta-\alpha)]U_{j}H \\ &+ \bar{U}_{i}[\kappa_{U_{i}U_{j}}sin(\beta-\alpha)-\rho_{U_{i}U_{j}}cos(\beta-\alpha)]U_{j}h \\ &+ \bar{D}_{i}[\kappa_{D_{i}D_{j}}cos(\beta-\alpha)-\rho_{D_{i}D_{j}}sin(\beta-\alpha)]D_{j}H \\ &+ \bar{D}_{i}[\kappa_{D_{i}D_{j}}sin(\beta-\alpha)+\rho_{D_{i}D_{j}}cos(\beta-\alpha)]D_{j}h + h.c \end{split}$$

Introduction to Two Higgs Doublet Model


- Here κ 's are the yukawa coupling of standard models, where ρ is the extra contribution from 2HDM.
- We are working in CP conserving interaction lagrangian(matter of choice), making ρ real.
- When we diagonalize the yukawa couplings in SM, there is no rule of thumb, that ρ 's will be diagonalized as well.
- Also ρ matrix is not hermitian, hence $\rho_{ij} \neq \rho_{ji}$, so we use an effective coupling,

$$\tilde{\rho_{tc}} = \frac{1}{\sqrt{2}} \sqrt{\rho_{ct}^2 + \rho_{tc}^2} \tag{5}$$

Part of Lagrangian under investigation

Our main focus of study is ,

$$-\sqrt{2}\mathcal{L} = -\bar{c}\rho_{ct}\cos(\beta - \alpha)t + h.c \tag{6}$$

QCD Corrections and Running of tch

• Branching Ratio for $t \rightarrow c$ h process is given [1] as, with LO order QCD corrections,

$$BR(t \to ch) = \frac{\lambda_{tch}^2}{\sqrt{2}m_t^2 G_F} \frac{(1 - x_h^2)^2 \kappa_{QCD}}{(1 - x_w^2)^2 (1 + 2x_w^2)}$$
(7)

- where $\kappa_{QCD}=1+0.97^*\alpha_s\approx 1.1$ is the Leading order QCD corrections to the t \rightarrow b W and t \rightarrow c h
- $\lambda_{tch} = \tilde{\rho_{tc}} \cos(\beta \alpha)/\sqrt{2}$
- $x_i = m_i/m_t$

QCD Corrections and Running of tch

The running of this FCNH coupling gives[2]

$$\lambda_{tch}(\Lambda) = \lambda_{tch}(\Lambda_0) \left(\frac{\alpha_s(\Lambda)}{\alpha_s(\Lambda_0)}\right)^{4/\beta_0}$$
 (8)

- $\beta_0 = 11 \frac{2}{3} n_f$ is the one loop coefficients of the QCD β function.
- Λ is the Energy scale of Renormalization.

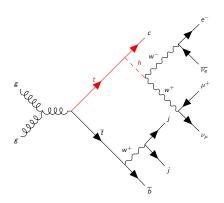
Theoretical Constraints and Decoupling Limit

- Any SM extension has one basic need, reproducing SM, in our interaction lagrangian if we put $\cos(\beta-\alpha)=0$, the all ρ coupling with light Higgs goes to zero , hence we reproduce SM, this is known as decoupling limit[3].
- So we usually take a small value, for $\cos(\beta \alpha)$ to stay close to SM, which suppresses the SM Higgs mediated FCNC.
- But this suppression behaves in opposite way for H^0 , heavy Higgs state, as it has $\sin(\beta \alpha)$ in its coupling.
- Due to lack of experimental evidence, there are some constrainted 2HDM models which suppresses these FCNC by including a symmetry.
- These models constraints the interaction of doublets with fermions to preserve FCNC at tree level.

Experimental Constraints on tch

- BR(t \rightarrow ch) < 0.56% (CMS Collaboration, Multilepton and diphoton channel)[3]
- BR(t \rightarrow ch) < 0.46% (ATLAS Collaboration)[4],
- BR(t \rightarrow ch) < (0.09 0.29)% (B Mixing , LHCb)[3]

This sets a limit to ,


- $\lambda_{tch} = \tilde{\rho}_{tc} \cos(\beta \alpha) / \sqrt{2} < 0.14[4]$
- Staying close to decoupling limit, $\cos(\beta \alpha) < 0.2$, and $\tilde{\rho_{tc}} < 1$.

Channel of Study

In this project we look at the following channel,

$$pp \rightarrow t\bar{t} + X, t \rightarrow ch, h \rightarrow e^{+} \mu^{-} \nu_{e} \bar{\nu_{\mu}}, \ \bar{t} \rightarrow b j j$$
 (9)

One of the most dominant mode of production

Dominant Backgrounds

Most dominant backgrounds we have is

- ttjj,
- bbjjww
- bbccww
- ccjjww
- jjjj ww
- j means only light jets like u d and s

Realistic basic Cuts for Selecting the events

- PT(jets) > 25 GeV
- PT(LLepton) > 25 GeV
- PT(NLLepton) > 15 GeV
- Missing ET > 25 GV
- $\Delta R(ii) > 0.4$
- $\Delta R(il) > 0.4$
- $\Delta R(II) > 0.4$
- $|\eta| < 2.4$
- |M(b i1,i2) MT| < 0.20*MT
- |M(j1,j2) MW| < 0.15*MW

1

¹arxiv 1307.1427v2 . CMS Collaboration

Cross section table at 14 TeV

Here is the cross section table after applying the basic cuts for 14 TeV, for Signal we have used $\lambda_{tch} = \sqrt{m_t \, m_c}/vev$ and CT14LLO for PDFs.

Process	With Basic Cuts(fb)
Signal	0.5048
ttjj	195.84
bbjjww	0.064
bbccww	0.000622
ccjjww	0.03972
Total Backgrounds	195.94

We have used K factors ≈ 2 , to include the leading order QCD corrections for top pair production at LHC.

Other Important Mass cuts

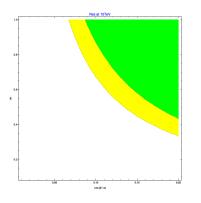
- Cluster Transverse mass cuts
 - 50 GeV < MT(I1 ,I2) < 150 GeV
 - 100 GeV < MT(c, I1, I2) < 210 GeV
- Cluster transverse mass is defined as [5]

$$M_{T cluster} = \sqrt{(\sqrt{p_{cT}^2 + M_c^2} + E_T)^2 - (p_{cT} + E_T)^2}$$
 (10)

- Where p_{cT} is the total transverse momentum of the particle to be considered in the cluster.
- M_c is the invariant mass of those particle
- E_T is the total missing transverse energy.

Results after all Cuts

Process	With all Cuts(fb)
Signal	0.463
ttjj	21.236
bbjj	0.0058
bbcc	0.000056
ссјј	0.00394
Total Backgrounds	21.25


• The statistical significance of the Signal is given as

$$Nss = \frac{N_s}{\sqrt{N_s + N_b}} = \frac{L\sigma_s}{\sqrt{L\sigma_s + L\sigma_b}}$$
 (11)

Discovery Contours at 13 and 14 TeV

Statistical Significance Nss at 3000fb⁻¹

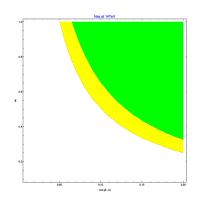


Figure: Variation of Statistical Significance while changing $0.1 < \rho_{tc} < 1$ and $0.01 < cos(\beta - \alpha) < 0.2$ at 13 and 14 TeV for 3000 fb^{-1} . Green Region is for Nss > 5, which corresponds for 5σ or more, yellow is between 3σ and 5σ .

Conclusion and Future Works

- We have large parameter region of signal that can be probed at HL-LHC in the future.
- When we go from 13 to 14 TeV the green area increases, hence at larger energies like 33 and 100 TeV, we expect LHC to probe a very low λ_{tch} .
- To accurately calculate jjjj www backgrounds to get a more clearer picture of the total background.
- We will be using TOP 2++ for NLO and NNLO contributions for the top pair production to more acurately predict the K factors.

Conclusion and Future Works

- Also include Discovery contours for $\sqrt{\hat{s}}=33$ and 100 TeV
- Include the same flavor channels as well to enhance the signal.
- Look for FCNC in g c ightarrow t ϕ_i^0 channel.

References

- [1] arXiv:1605.01179 [hep-ph].
- [2] Physical Review D 86,094014
- [3] Phys.Lett. B751,135(2015)[arxiv:1506.00651[hep-ph]]
- [4] arxiv 1601.02616v2
- [5] HEP-PH/9309250

Questions??