Quantum Tomography Finds Unexpected Vortex-like Spin Distribution in Z Boson Production

John Martens

University of Kansas

September 30, 2017

Overview

A New Resonance!

Quantum Tomography

Quantum Tomography Applied to ATLAS Z Study

A New Resonance!

Using **quantum tomography** (QT), 1707.01638: Ralston, Tapia Takaki, JM we find evidence of a new resonance-like structure associated with inclusive Z production.

QT extracts maximum polarization info from data

→ excellent exploratory tool

Inclusive Z production:

$$pp \rightarrow Z + X \rightarrow \ell^+\ell^- + X$$

Consider the cross section for the inclusive production of two final-state leptons of spin s, s' from particle intermediates:

$$d\sigma \sim \sum_{s,s'} |\sum_{J} \mathcal{M}(\chi_{J} \to f)|^2 d\Pi_{LIPS},$$

where $\sum_J \mathcal{M}(\chi_J \to f) = \sum_J \langle f | T | \chi_J \rangle \delta^4(\sum p_i)$, T is a transfer matrix, and $d\Pi_{LIPS}$ is the Lorentz-invariant phase space.

Plugging $\sum_J \mathcal{M}(\chi_J \to f) = \sum_J \langle f | T | \chi_J \rangle \delta^4(\sum p_i)$ into the expression for $d\sigma$, we find ...

$$d\sigma \sim \sum_{s,s'} [(\sum_J < f_{s,s'} | T | \chi_J >) \cdot (\sum_K < \chi_K | T^\dagger | f_{s,s'} >)] \cdot d\Pi_{LIPS}$$

$$= tr[(\sum_{s,s'} |f_{s,s'}> < f_{s,s'}|) \cdot (\sum_{J,K} T|\chi_J> < \chi_K|T^{\dagger})] \cdot d\Pi_{LIPS}$$

T, T^{\dagger} in the second set of parens ensures the overlap between the intermediate and final states is taken at 'equal time'.

 $\sum_{J,K}$ accounts for any interference between intermediate states.

We can define $d\sigma$ in terms of the density matrices ρ_f , ρ_v :

$$\begin{split} d\sigma \sim tr[(\sum_{s,s'}|f_{s,s'}> < f_{s,s'}|) \cdot (\sum_{J,K}T|\chi_{J}> < \chi_{K}|T^{\dagger})] \cdot d\Pi_{LIPS} \\ = tr(\rho_{lep} \cdot \rho_{\chi}) \cdot d\Pi_{LIPS} \end{split}$$

Note: ρ_{lep} , ρ_{χ} are OBSERVABLE since $d\sigma$ is observable.

QT deals only with ρ_{lep} , ρ_{χ} (i.e.only with observable dof).

Making use of the identity $d\Pi \sim d\Omega \cdot d^4q$, where q is the sum of the final-state four-momenta ...

We find for given q,

$$rac{d\sigma}{d\Omega}|_q \sim tr(
ho_{lep}\cdot
ho_\chi) \ \sim rac{1}{4\pi} + \sum_M
ho_M Y_M(heta,\phi), \qquad ext{--lepton matrix is a 'probe'--}$$

where ρ_{M} are the components of ρ_{χ} , Y_{M} are real-valued spherical harmonics ($\ell=1,2; m=-\ell,...\ell$), and θ , ϕ are defined with respect to rest frame of Z in a frame to be explained.

Hence ρ_M can be reconstructed from orthogonality relations of the form:

$$\rho_{\mathsf{M}} \sim \int d\Omega (d\sigma/d\Omega) \cdot Y_{\mathsf{M}}$$

Let's pause to consider what we've accomplished.

Takeaway #1

 $d\sigma/d\Omega$ has good transformation properties. ρ_M transform like spin-1 or spin-2 (depending on Y_M).

Takeaway #2

We can reconstruct ρ_{χ} , which is 3×3 Hermitian and has 8 = 9 - 1 real params. Subtracting 3 rotational freedoms leaves 5 invariants.

 ρ_{χ} has 5 invariants.

We can construct invariants of invariants.

Our favorite for present purposes... entanglement entropy:

$$\Sigma \!=\! -tr(\rho_X log \rho_X)$$

$$\Sigma_{min} = 0 \leftrightarrow pure state$$

 $\Sigma_{max} = logN = log3 \sim 1.09 \leftrightarrow unpolarized$

ATLAS 1606.0089

$$Z/\gamma^* \rightarrow e^+e^-, \quad Z/\gamma^* \rightarrow \mu^+\mu^-,$$

where
$$\sqrt{s}$$
=8 TeV,80 < \sqrt{Q}^2 < 100 GeV, $|y|$ < 3.5

 $d\sigma/d\Omega$ expanded in angular coeffs A_j

Our study:

We take $A_j \to \rho_M$ and populate ρ_{χ} .

We compute evals, evecs, entropy of ρ_{χ} .

QT Applied to ATLAS Z Study

Collins Soper frame

Evals of polz density matrix plus $30|S^{\rightarrow}|$ and < X >, < Y >, < Z >,

where $\langle Y \rangle = \langle Y | \rho_{\chi} | Y \rangle$, etc.

Entanglement entropy

Spin parameters $S_j \sim \rho_M$

Looking down beam ...

What does it mean?

Resonance-like structure associated w $\rho_3, \rho_4 \neq 0 \leftrightarrow T - odd \leftrightarrow NNLO$ ATLAS 1606.0089 finds Lam-Tung violation bigger than NNLO prediction

We understand why eigenvectors turn corner $\hat{X}
ightarrow \hat{Z}$

We don't understand near degeneracy of eigenvalues

Important point: speculation aside ... QT finds what's there.

What does it mean?

Resonance-like structure associated wi $\rho_3, \rho_4 \neq 0 \leftrightarrow T - odd \leftrightarrow NNLO$ ATLAS 1606.0089 finds Lam-Tung violation bigger than NNLO prediction

We understand why eigenvectors turn corner $\hat{X}
ightarrow \hat{Z}$

We don't understand near degeneracy of eigenvalues

Important point: speculation aside ... QT finds what's there.

Backup

Properties of Density Matrices

When $|\psi>$ is the only non-zero eigenvector of a 'density matrix' ρ (= $|\psi><\psi|$), we say ρ is a 'pure state'. Special case! Define $\psi_j=< j|\psi>$.

Then for some operator A,

$$\langle A \rangle = \langle \psi | A | \psi \rangle = \sum_{ij} \psi_i^* A_{ij} \psi_j = \sum_{ij} A_{ij} \psi_j \psi_i^*$$

$$= \sum_i [\sum_j A_{ij} \rho_{ji}] = \sum_i (A \rho)_{ii} = tr(A \rho).$$

Properties of Density Matrices

More generally, ρ is a linear combination (viz. an ensemble) of pure states,

$$\rho = \sum_{j} c_{j} |\rho_{j}\rangle \langle \rho_{j}|.$$

The $|\rho_i|$ are eigenvectors and the c_i eigenvalues of ρ .

We require $\sum_j c_j = 1$ and $c_j \ge 0$. This allows us to interpret the c_j as probabilities.

We then have

$$< A> = tr(A\rho) = \sum_{j} c_j tr(A|\rho_j> < \rho_j|) = \sum_{j} c_j < \rho_j|A|\rho_j>.$$

Properties of Density Matrices

Takeaway #1

 ρ is an $N \times N$ Hermitian matrix describing a QM system. ρ has N eigenvectors $|\rho_j>$ and N eigenvalues c_j . Pure state j is defined by $|\rho_j><\rho_j|$ and weighted within ρ by c_j .

Takeaway #2

 $< A >= tr(A\rho)$ samples ρ . Hence, with enough observations, ρ is completely observable.