Mipc//indice.cem.ct/event/646/al Intraccollargevol.com

### Observation of Ultra-High-Energy Cosmic Rays with the Telescope Array Experiment and TA Extension

**IWARA 2018** 

Kazumasa KAWATA ICRR, University of Tokyo For the TA Collaboration





### Outline

- Introduction
- Telescope Array experiment
- Recent results
  - Energy Spectrum
  - Anisotropy
  - Mass Composition (Xmax)
- TAx4 Project





#### **Telescope Array Collaboration**

R. U. Abbasi,<sup>1</sup> M. Abe,<sup>2</sup> T. Abu-Zayyad,<sup>1</sup> M. Allen,<sup>1</sup> R. Azuma,<sup>3</sup> E. Barcikowski,<sup>1</sup> J. W. Belz,<sup>1</sup> D. R. Bergman,<sup>1</sup> S. A. Blake,<sup>1</sup> R. Cady,<sup>1</sup> B. G. Cheon,<sup>4</sup> J. Chiba,<sup>5</sup> M. Chikawa,<sup>6</sup> A. Di Matteo,<sup>7</sup> T. Fujii,<sup>8</sup> K. Fujita,<sup>9</sup> M. Fukushima,<sup>8,10</sup> G. Furlich,<sup>1</sup> T. Goto,<sup>9</sup> W. Hanlon,<sup>1</sup> M. Hayashi,<sup>11</sup> Y. Hayashi,<sup>9</sup> N. Hayashida,<sup>12</sup> K. Hibino,<sup>12</sup> K. Honda,<sup>13</sup> D. Ikeda,<sup>8</sup> N. Inoue,<sup>2</sup> T. Ishii,<sup>13</sup> R. Ishimori,<sup>3</sup> H. Ito,<sup>14</sup> D. Ivanov,<sup>1</sup> H. M. Jeong,<sup>15</sup> S. Jeong,<sup>15</sup> C. C. H. Jui,<sup>1</sup> K. Kadota,<sup>16</sup> F. Kakimoto,<sup>3</sup> O. Kalashev,<sup>17</sup> K. Kasahara,<sup>18</sup> H. Kawai,<sup>19</sup> S. Kawakami,<sup>9</sup> S. Kawana,<sup>2</sup> K. Kawata,<sup>8</sup> E. Kido,<sup>8</sup> H. B. Kim,<sup>4</sup> J. H. Kim,<sup>1</sup> J. H. Kim,<sup>20</sup> S. Kishigami,<sup>9</sup> S. Kitamura,<sup>3</sup> Y. Kitamura,<sup>3</sup> V. Kuzmin,<sup>17,\*</sup> M. Kuznetsov,<sup>17</sup> Y. J. Kwon,<sup>21</sup> K. H. Lee,<sup>15</sup> B. Lubsandorzhiev,<sup>17</sup> J. P. Lundquist,<sup>1</sup> K. Machida,<sup>13</sup> K. Martens,<sup>10</sup> T. Matsuyama,<sup>9</sup> J. N. Matthews,<sup>1</sup> R. Mayta,<sup>9</sup>
M. Minamino,<sup>9</sup> K. Mukai,<sup>13</sup> I. Myers,<sup>1</sup> K. Nagasawa,<sup>2</sup> S. Nagataki,<sup>14</sup> R. Nakamura,<sup>22</sup> T. Nakamura,<sup>23</sup> T. Nonaka,<sup>8</sup> H. Oda,<sup>9</sup> S. Ogio,<sup>9</sup> J. Ogura,<sup>3</sup> M. Ohnishi,<sup>8</sup> H. Ohoka,<sup>8</sup> T. Okuda,<sup>24</sup> Y. Omura,<sup>9</sup> M. Ono,<sup>14</sup> R. Onogi,<sup>9</sup> A. Oshima,<sup>9</sup> S. Ozawa,<sup>18</sup> I. H. Park,<sup>15</sup> M. S. Pshirkov,<sup>17,25</sup> J. Remington,<sup>1</sup> D. C. Rodriguez,<sup>1</sup> G. Rubtsov,<sup>17</sup> D. Ryu,<sup>20</sup> H. Sagawa,<sup>8</sup> R. Sahara,<sup>9</sup> K. Saito,<sup>8</sup> Y. Saito,<sup>22</sup> N. Sakaki,<sup>8</sup> N. Sakurai,<sup>9</sup> L. M. Scott,<sup>26</sup> T. Seki,<sup>22</sup> K. Sekino,<sup>8</sup> P. D. Shah,<sup>1</sup> F. Shibata,<sup>13</sup> T. Shibata,<sup>8</sup> H. Shimodaira,<sup>8</sup> B. K. Shin,<sup>9</sup> H. S. Shin,<sup>8</sup> J. D. Smith,<sup>1</sup> P. Sokolsky,<sup>1</sup> B. T. Stokes,<sup>1</sup> S. R. Stratton,<sup>1,26</sup> T. A. Stroman,<sup>1</sup> T. Suzawa,<sup>2</sup> Y. Takagi,<sup>9</sup> Y. Takahashi,<sup>9</sup> M. Takamura,<sup>5</sup> M. Takeda,<sup>8</sup> R. Takeishi,<sup>15,4</sup> A. Taketa,<sup>27</sup> M. Takita,<sup>8</sup> Y. Tameda,<sup>28</sup> H. Tanaka,<sup>9</sup> K. Tanaka,<sup>29</sup> M. Tanaka,<sup>30</sup> S. B. Thomas,<sup>1</sup> G. B. Thomson,<sup>1</sup> P. Tinyakov,<sup>7,17</sup> I. Tkachev,<sup>17</sup> H. Tokuno,<sup>3</sup> T. Tomida,<sup>22</sup> S. Troitsky,<sup>17</sup> Y. Tsunesada,<sup>9</sup> K. Tsutsumi,<sup>3</sup> Y. Uchihori,<sup>31</sup> S. Udo,<sup>12</sup> F. Urban,<sup>32</sup> T. Wong,<sup>1</sup> M. Yamamoto,<sup>22</sup> R. Yamane,<sup>9</sup> H.

<sup>1</sup>High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA <sup>2</sup>The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan <sup>3</sup>Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan <sup>4</sup>Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea <sup>5</sup>Department of Physics, Tokyo University of Science, Noda, Chiba, Japan <sup>6</sup>Department of Physics, Kindai University, Higashi Osaka, Osaka, Japan <sup>7</sup>Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium <sup>8</sup>Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan <sup>9</sup>Graduate School of Science, Osaka City University, Osaka, Osaka, Japan <sup>10</sup>Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan <sup>11</sup>Information Engineering Graduate School of Science and Technology, Shinshu University, Nagano, Nagano, Japan <sup>12</sup>Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan <sup>13</sup>Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan <sup>14</sup>Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan <sup>15</sup>Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea <sup>16</sup>Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan <sup>17</sup>Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia <sup>18</sup>Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan

| <sup>19</sup> Department of Physics, Chiba University, Chiba, Chiba, Japan<br><sup>20</sup> Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| UNIST-gil, Ulsan, Korea                                                                                                                                                                           |  |
| <sup>21</sup> Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea                                                                                                                |  |
| <sup>22</sup> Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University,                                                                                    |  |
| Nagano, Nagano, Japan                                                                                                                                                                             |  |
| <sup>23</sup> Faculty of Science, Kochi University, Kochi, Kochi, Japan                                                                                                                           |  |
| <sup>24</sup> Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan                                                                                                      |  |
| <sup>25</sup> Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia                                                                                            |  |
| <sup>26</sup> Department of Physics and Astronomy, Rutgers University—The State University of New Jersey,                                                                                         |  |
| Piscataway, New Jersey, USA                                                                                                                                                                       |  |
| <sup>27</sup> Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan                                                                                                         |  |
| <sup>28</sup> Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University,                                                                                  |  |
| Neyagawa-shi, Osaka, Japan                                                                                                                                                                        |  |
| <sup>29</sup> Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan                                                                                     |  |
| <sup>30</sup> Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan                                                                                                             |  |
| <sup>31</sup> National Institute of Radiological Science, Chiba, Chiba, Japan                                                                                                                     |  |
| <sup>32</sup> CEICO, Institute of Physics, Czech Academy of Sciences Prague, Czech Republic                                                                                                       |  |
| <sup>33</sup> Department of Physics and Institute for the Early Universe, Ewha Womans University,                                                                                                 |  |
| Seodaaemun-gu, Seoul, Korea                                                                                                                                                                       |  |
| <sup>34</sup> Department of Physics, Ehime University, Matsuyama, Ehime, Japan                                                                                                                    |  |
|                                                                                                                                                                                                   |  |

3





SD : Regardless of weather condition with high duty circle and wide FoV.  $\rightarrow$  High statistical data  $\rightarrow$  Anisotropy & spectral shape

FD : limited to clear moonless night.

Longitudinal development of air shower  $\rightarrow$  Mass composition (Xmax) Measure the energy deposit calorimetrically  $\rightarrow$  Absolute energy scale



# Telescope Array (TA)



Utah, USA
 - 39.3°N, 112.9°W

- 1400m asl.

- Surface Detector (SD)
  - 3m<sup>2</sup> Scintillation det.
  - 507 detectors
  - 1.2km spacing
  - Effective area 700km<sup>2</sup>
- Fluorescence Det. (FD)
   3 stations
  - 12 telescopes/station

The TA is the largest aperture hybrid cosmic ray detectors in the northern hemisphere.







Onset time, [1200m]

7.5





### Energy Spectrum



### SD Energy Spectrum (9 years)





### Comparison with Auger



After matching energy scale at the ankle break, the location of the suppression energy is clear different. → Systematics or physics?

### **Declination Dependence**



### Anisotropy



Possible particle astronomy?



### Correlation with LSS P. Tiynakov ICRC2017



C: Centaurus SCI (60 Mpc); Co: Coma CI (90 Mpc); E: Eridanus CI (30 Mpc); F: Fornax CI (20 Mpc); Hy: Hydra SCI (50 Mpc); N: Norma SCI (65 Mpc); PI: Pavo-Indus SCI (70 Mpc); PP: Perseus-Pisces SCI (70 Mpc); UM: Ursa Major CI (20 Mpc); and V: Virgo CI (20 Mpc).

Large-Scale Structure model 2MASS Galaxy catalog (XSCz)
 Grey Pattern: Model with 6° radius circle smearing angle
 → Matter density ∝ Cosmic-ray density

We investigate correlation between arrival directions of the UHECRs and the LLS model (and isotropic model).





x-axis : smearing angle Y-axis : compatibility between the expected and the data

E>5.7×10<sup>19</sup> eV Consistent with LSS Inconsistent with isotropy



# Hotspot (>57EeV, 5 years)

-2

-3



R.U. Abbasi+2014, ApJL

- $\checkmark$  5-year observation by the TA SD
- ✓ Observed 72 events with E>57 EeV
- ✓ Indication of UHECR hotspot
- $\checkmark$  Local significance 5.1 $\sigma$
- ✓ Assuming 5 search window radii (15°, 20°, 25°, 30°, 35°),

Global significance  $3.4\sigma$ 



Almost double statistics

# Hotspot (>57EeV, 9 years)



### Mass Composition



#### Averaged X<sub>max</sub> Ap. J., 858, 76(2018) arXiv: 1801.09784

Measured by FD



- ✓ Air showers induced by the lighter composition penetrate into the deeper atmosphere.
- ✓ Consistent with proton or light components (QGSJET-II-04)
- ✓ We need more statistics for  $E > 10^{19.6} eV$



### TAx4 Experiment

 $\diamond$  Now there is hint of anisotropy at  $3\sigma$  level for northern sky.

 extend SD array by 4 times (3,000km<sup>2</sup>)

- 1. Add 500 scint. counters with 2.1 km spacing
- 2. Add two FD stations

→ Approved and under construction

Science

- 1. Anisotropy study  $\rightarrow$  Expect >5 $\sigma$
- 2. Xmax at highest energy region
- 3. UHE photon & neutrino search





### Summary

- Recent results for 9 years
  - E Spectrum : significant suppression consistent with GZK cutoff ( $7\sigma > 10^{19.8}eV$ )
  - Anisotropy : Indication of Hotspot>57EeV ( $3\sigma$ )
  - Composition : proton or light components (10<sup>18.2</sup>eV<E<10<sup>19.6</sup>eV)
- TA Extension : TAx4 (TA aperture x4)
  - Under construction

### BACK POCKETS





Commissioning now

### **BR TAx4 Shelter Installation**











### Width of $X_{max}$ distribution ( $\sigma_{Xmax}$ )

Compare shape of X<sub>max</sub> distributions of Data and MC allowing Xmax shift

Ap. J., 858, 76(2018) arXiv: 1801.09784





 $< X_{max} > VS. \sigma_{max} Plane (< 10^{18.8} eV)$ 

- Data/MC Comparison
- Data : Red rectangle (including systematics)
   MC : Contours (5000 MC sets)
- In lower energies <10<sup>18.8</sup>eV, allowing shift 10-20g/cm<sup>2</sup> data looks like protons





 $< X_{max} > VS. \sigma_{max} Plane (>10^{18.8} eV)$ 

- Data/MC Comparison
- Data : Red rectangle (including systematics)
   MC : Contours (5000 MC sets)
- In lower energies <10<sup>18.8</sup>eV, allowing shift 10-20g/cm<sup>2</sup> data looks like protons
- In higher energies >10<sup>18.8</sup>eV, data points looks like heavier primary than protons



<sup>(</sup>e)  $19.4 \le \log_{10}(E/eV) < 19.9$ 

### Ultra-High-Energy Cosmic Rays

COPE





# Electron Light Source (ELS)



- 40-MeV, 10<sup>9</sup> electrons (typical)
- End-to-end FD energy calibration



T. Shibata ICRC2013

An image of data Measured with FD



- Beam monitors have been calibrated. (Faraday Cap, Core monitor)
- MC simulation has been developed.
- Test fluorescence yield models
  - TA model(Kakimoto modifiend+Flash) : Data/MC = 1.18±0.01(stat)±0.18(syst)
  - Common Model (based on AirFly) Data/MC = 0.96±0.01(stat)±0.15(syst)

We expect that we can calibrate true energy scale of the FD with the ELS in near future.<sup>31</sup>

#### Astrophysical Scenario: TA

#### Fit with extra-galactic proton



#### Source Distribution

- Uniform
- LSS (~2MASS XSCz)

#### **Energy Loss with**

- CMB
- Infra-Red

using CRPropa 2.0 simulation checked with analytic  $\Delta E$ . No magnetic field. Evolution

#### 4-parameter fit

- Injection spectrum :  $E^{-p}$  $E_{max} = 10^{21} eV$
- Evolution : (1+z)<sup>m</sup>
- Flux normalization
- Energy scale



For LSS P = 2.37 +0.08 -0.08 m = 5.2 +1.2 -1.3 Log E'/E = -0.02 +0.04 -0.05

E. Kido

**ICRC 2013** 



#### Air Fluorescence : Reference model established

Reference Model proposed by B. Keilhauer & experimental groups at UHECR2012 @CERN.



- Extinction, T and humidity dep. : AirFLY, N.Sakaki et al.
- Normalization (AF Yield at 337nm) : open

$$Y_{\lambda}^{NEW2012}(T, P, RH)(\text{ph/MeV}) = Y_{337nm}(T_r, P_r) \cdot I_{\lambda}(T_r, P_r) \cdot \frac{1 + \frac{P_r}{P_{air}^{\prime \prime'}(T_0)} \left(\frac{T_0}{T_r}\right)^{1/2-\alpha}}{1 + \frac{P}{P_{air}^{\prime \prime'}(T_0, RH)} \left(\frac{T_0}{T}\right)^{1/2-\alpha}}$$
  
Tr=T\_0=293K  
Pr=800hPa

B. Keilhauer et al.,<br/>UHECR 2012M. Ave et al.<br/>AirFLY collaboration<br/>arXiv:1210.1319T. Shibata,<br/>ICRC 2013



V. Verzi, ICRC2013 A. Lettessier-Selvon ICRC2013 Energy Calibration E'<sub>SD</sub> (S<sub>38</sub> for Auger) vs E<sub>FD</sub> using hybrid events



v. verzi, ICRC2013

#### ICRC2013 Poster, 118, 298

### TA muon detector project

- One set of 24-m<sup>2</sup> scintillator detector with concrete absorber on the top
  - 8x(3-m<sup>2</sup> scintillator detectors)
- Lead layer sandwiched between two scintillators
  - First 9 m<sup>2</sup>: 12x(0.75 m<sup>2</sup>)
    - 1 segment was deployed inside CLF

will be installed outside CLF early next year

• Auger water  $\rightarrow$  TA site





# Hillas Diagram



Kotera & Olinto, Annu. Rev. Astron. Astrophys (2010)

Larmor Radius R<sub>L</sub>

- =100kpc Z<sup>-1</sup> (µG/B)(E/100EeV) >> galactic disk
- Source should have capability of confining particle up to E<sub>MAX</sub>
- Necessary condition, but not sufficient
- E<sub>MAX</sub> depends on acceleration mechanism
- Recent simulations relativistic shocks in AGN can't accelerate up to 10<sup>20</sup>eV?

### Motivation

### Search for Violent Accelerator in the Universe

Jets (R=~kpc)

AGN Super-massive BH Accretion disk & torus (R=~pc)

Lobe (R>~10kpc)

Hot Spot (R=~kpc)

Energetic jets of active galaxy (Centaurus A)

ESO/WFI (visible); MPIfR/ESO/APEX/A.Weiss et al. (microwave); NASA/CXC/CfA/R.Kraft et al. (X-ray))

### GZK Horizons Composition Dependence

distances 100% fraction of cosmic-rays from distance > D 5 GZK Horizons Helium (uniform source distribution) Beryllium 80% Boron ..... E>6 x 1019 eV 4 Mp 3 60% Proton GZK → 200 Mpc Proton 2 Be × В 40% 0 VIRGO → 18 Mpc [T 1 20% Cen A → 3.7 Mpc 0 He CNO 18 19 20 21 22 17 0%  $Log_{10}$  (E/eV) 100 150 200 250 300 350 50 40 0 D(Mpc)

### GZK Horizons Composition Dependence

distances 100% fraction of cosmic-rays from distance > D 5 GZK Horizons Helium (uniform source distribution) Beryllium 80% Boron ..... E>6 x 1019 eV 4 Mp 3 60% Proton GZK → 200 Mpc Proton 2 Be × В 40% 0 VIRGO → 18 Mpc [1] 1 20% Cen A → 3.7 Mpc 0 He CNO 18 19 20 21 22 17 0%  $Log_{10}$  (E/eV) 100 150 200 250 300 350 50 40 0 D(Mpc)



#### Intergalactic Magnetic Field Generally random MF

Very difficult to measure IGMF  $\rightarrow$  Large uncertainty ~10<sup>-17</sup>G < B < ~10<sup>-9</sup>G

$$\theta(E,d) \simeq \frac{(2dl_c/9)^{1/2}}{r_g} \simeq 0.8^{\circ} \, q \left(\frac{E}{10^{20} \, \mathrm{eV}}\right)^{-1} \left(\frac{d}{10 \, \mathrm{Mpc}}\right)^{1/2} \left(\frac{l_c}{1 \, \mathrm{Mpc}}\right)^{1/2} \left(\frac{B}{10^{-9} \, \mathrm{G}}\right)^{1/2} \left(\frac{B}{10^{-9} \, \mathrm$$

→ too small? to explain hotspot shifted from SGP

But, MF Strength depends on cluster / filament / void regions

A simulated universe

UHECR sources Virtual observers Ryu, Das & Kang, ApJ (2010)





#### Highest energy region

 ↔ Highest-E cosmic ray travel beyond 50Mpc rapidly loss their energy by interaction with the cosmic microwave background. → Greisen-Zatsepin-Kuzmin (GZK) Effect

Highest-E cosmic rays can not reach the Earth from the distant universe. Therefore, Origin of cosmic rays should be limited to local universe

# ALL SCOPE APPER

# TALE (TA Low-E Extension)

- ✤ Target range 10<sup>16.5</sup>-10<sup>19</sup>eV
  - Second Knee
  - Change of mass composition
  - LHC center of mass E
- ✤ TALE is operating partly now









2MASS catalog velocity 0 – 3000 km/s John P. Huchra, et al 2012, ApJ, 199, 26 → high completeness catalog Heliocentric velocity (Rough Distance) Red: 0-1000km/s (D = 0-15Mpc) Blue: 1000-2000km/s (D = 15-30Mpc) Green: 2000-3000km/s (D = 30-45Mpc)



2MASS catalog velocity 0 – 3000 km/s John P. Huchra, et al 2012, ApJ, 199, 26 + 5-year TA data (Color contour) Heliocentric velocity (Rough Distance) Red: 0-1000km/s (D = 0-15Mpc) Blue: 1000-2000km/s (D = 15-30Mpc) Green: 2000-3000km/s (D = 30-45Mpc)

### Nearby Prominent AGNs



COPF

TA : 2008 May – 2014 May (6.0 years) 87 events Auger : 2004 May – 2009 Nov (5.5 years) 62 events

### Comparison with Large-Scale Structure

Sky map of expected flux at E > 57EeV (Galactic coordinates). The smearing angle is  $6 \circ$ . The letters indicate the nearby structures as follows: C: Centaurus supercluster (60 Mpc); Co: Coma cluster (90 Mpc); E: Eridanus cluster (30 Mpc); F: Fornax cluster (20 Mpc); Hy: Hydra supercluster (50 Mpc); N: Norma supercluster (65 Mpc); PI: Pavo-Indus supercluster (70 Mpc); PP: Perseus-Pisces supercluster (70 Mpc); UM: Ursa Major (20 Mpc); and V: Virgo cluster (20 Mpc).

No correction for E scale difference b/w TA and PAO !!

TA 7 years + PAO 10 years



5

4

3

2

0

-2

-3

