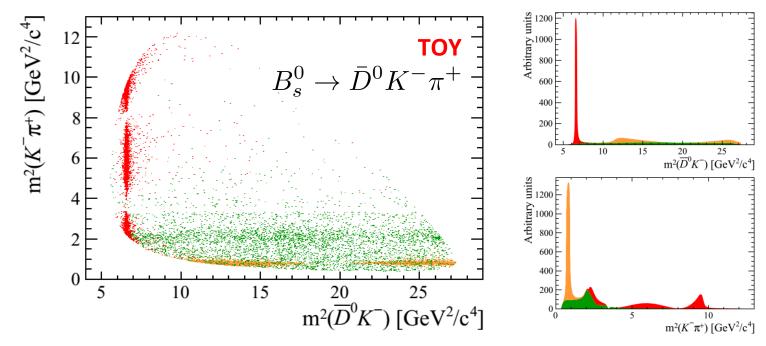
Meson spectroscopy at LHCb

Workshop on heavy hadron spectroscopy July 17th/18th CERN

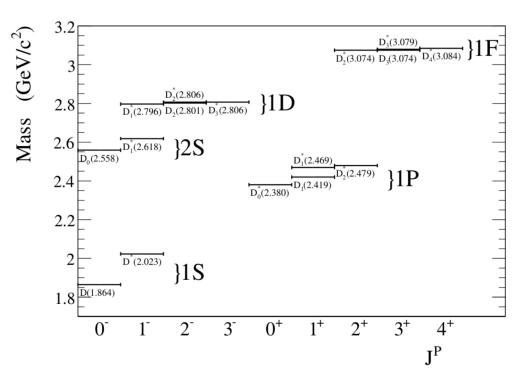
Mark Whitehead



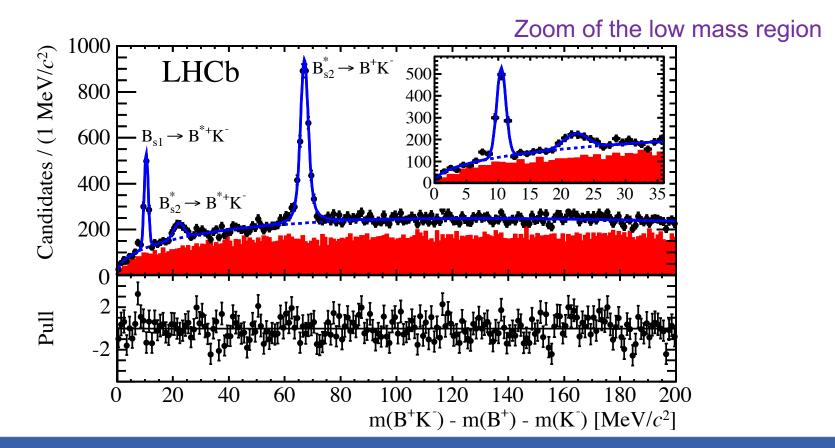
Introduction

- Meson spectroscopy at LHCb
 - Two main methods, prompt studies and Dalitz plot analyses
 - Overview of results for beauty and charm mesons
 - (Some) personal bias towards DP analyses
- Both methods have (dis)advantages
 - Prompt studies
 - High statistics, larger backgrounds, no* spin information
 - Dalitz plot analyses
 - High purity, spin/parity information, lower yields, need a parent

Dalitz plots


- One slide reminder...
 - Plot squares of invariant masses again each other
 - System is fully constrained -> access to spin information
 - Very power tool for spectroscopy (charm, light mesons)

What are we looking for?


- Excited beauty/charm (strange) mesons
 - Spectra predicted by e.g. LQCD and HQET
 - Look for new states and compare

For example: Predicted spectrum of excited neutral charm states

Beauty

- Study of excited B_s^0 meson states with B^+K^-
 - Fit the mass distribution

Beauty

- Study of excited B_s^0 meson states with B^+K^-
 - Measure the following parameters

$$m(B^{*+}) = 5324.26 \pm 0.30 \pm 0.23 \pm 0.17 \text{ MeV}/c^2,$$

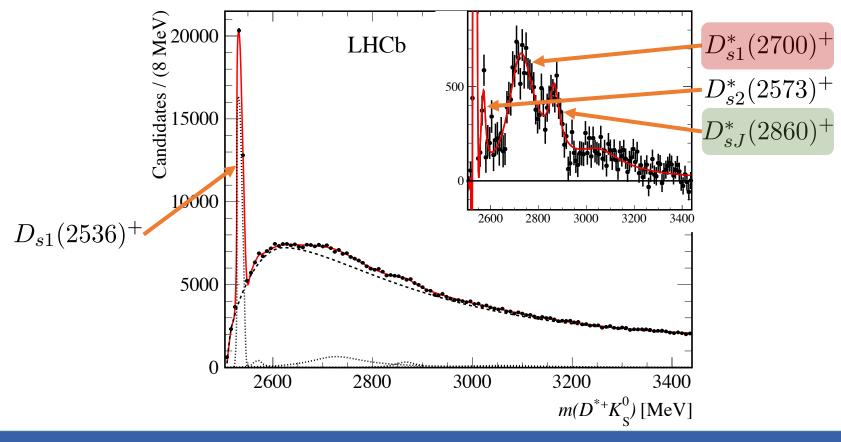
$$m(B_{s1}) = 5828.40 \pm 0.04 \pm 0.04 \pm 0.41 \text{ MeV}/c^2,$$

$$m(B^*_{s2}) = 5839.99 \pm 0.05 \pm 0.11 \pm 0.17 \text{ MeV}/c^2,$$

$$\Gamma(B^*_{s2}) = 1.56 \pm 0.13 \pm 0.47 \text{MeV}/c^2$$

- First measurement of the width for the B^*_{s2} state
- Mass measurements significantly more precise than before

Charm spectroscopy


- Prompt production • $D^{*+}K^0_S$, $D^{*0}K^+$
- Dalitz plot analyses
 - $B^+ \to D^- \pi^+ \pi^+$
 - $B^0 \to \bar{D}^0 \pi^+ \pi^-$
 - $B^+ \to D^- K^+ \pi^+$
 - $B_s^0 \to \bar{D}^0 K^- \pi^+$

LHCb-PAPER-2015-052

LHCb-PAPER-2016-026 LHCb-PAPER-2014-070 LHCb-PAPER-2015-007 LHCb-PAPER-2014-035(6)

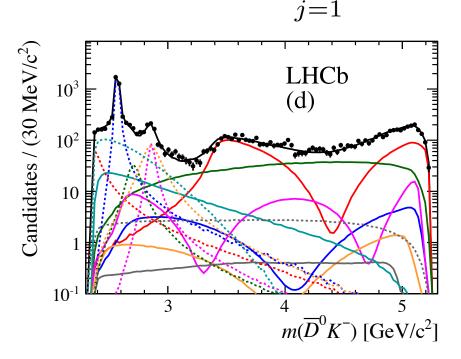
Charm spectroscopy (I)

- Study excited charm mesons with $D^{*+}K_S^0$, $D^{*0}K^+$
 - Perform a fit to the invariant mass distribution(s)

Charm spectroscopy (I)

- Study excited charm mesons with $D^{*+}K_S^0$, $D^{*0}K^+$
 - Measure the following parameters

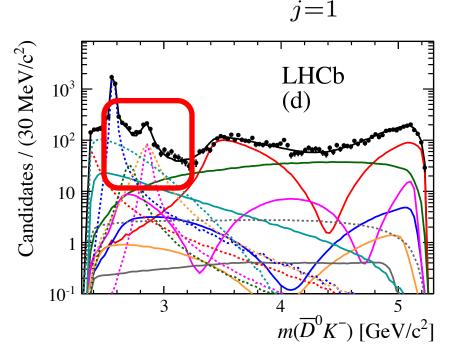
 $m(D_{s1}^*(2700)^+) = 2732.3 \pm 4.3 \text{ (stat)} \pm 5.8 \text{ (syst) MeV},$ $\Gamma(D_{s1}^*(2700)^+) = 136 \pm 19 \text{ (stat)} \pm 24 \text{ (syst) MeV},$


 $m(D_{sJ}^*(2860)^+) = 2867.1 \pm 4.3 \text{ (stat)} \pm 1.9 \text{ (syst) MeV},$ $\Gamma(D_{sJ}^*(2860)^+) = 50 \pm 11 \text{ (stat)} \pm 13 \text{ (syst) MeV}.$

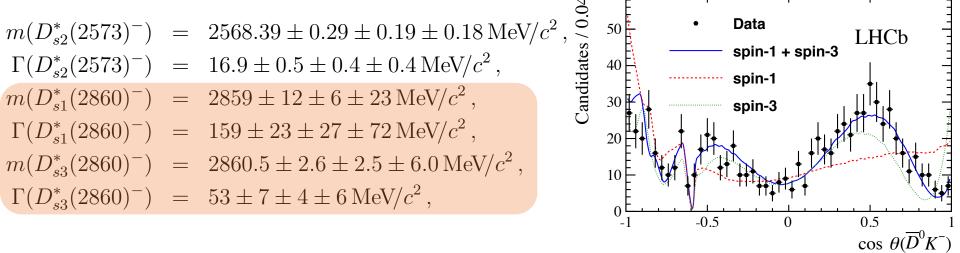
• Several other interesting results in the paper!

Charm spectroscopy (II)

- Dalitz plot analysis of $B_s^0 \to \bar{D}^0 K^- \pi^+$
 - Study excited charm-strange mesons
 - Amplitude fit using the isobar model $\mathcal{A}(s,t) = \sum c_j F_j(s,t)$

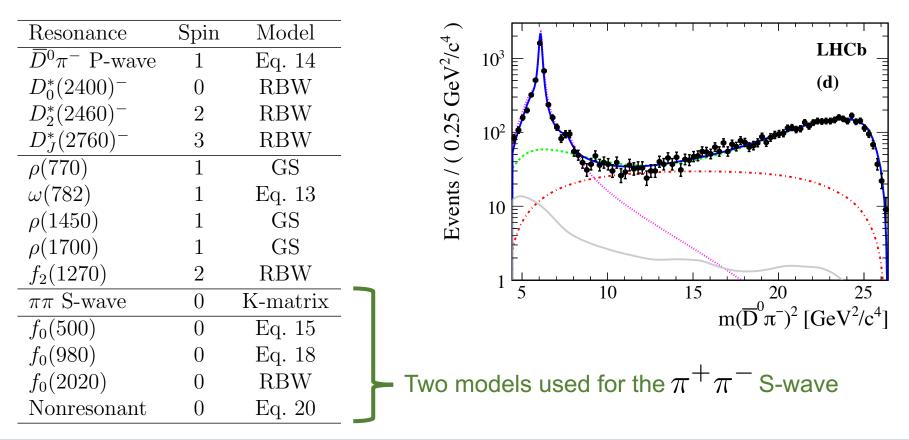

Resonance	Spin	Dalitz plot axis	Model
$\overline{K}^{*}(892)^{0}$	1	$m^2(K^-\pi^+)$	RBW
$\overline{K}^{*}(1410)^{0}$	1	$m^2(K^-\pi^+)$	RBW
$\overline{K}_{0}^{*}(1430)^{0}$	0	$m^2(K^-\pi^+)$	LASS
$\overline{K}_{2}^{*}(1430)^{0}$	2	$m^2(K^-\pi^+)$	RBW
$\overline{K}^{*}(1680)^{0}$	1	$m^2(K^-\pi^+)$	RBW
$\overline{K}_{0}^{*}(1950)^{0}$	0	$m^2(K^-\pi^+)$	RBW
$D_{s2}^{*}(2573)^{-}$	2	$m^2(\overline{D}{}^0K^-)$	RBW
$D_{s1}^*(2700)^-$	1	$m^2(\overline{D}{}^0K^-)$	RBW
$D_{sJ}^{*}(2860)^{-}$	1	$m^2(\overline{D}{}^0K^-)$	RBW
$D_{sJ}^{*}(2860)^{-}$	3	$m^2(\overline{D}{}^0K^-)$	RBW
Nonresonant		$m^2(\overline{D}{}^0K^-)$	\mathbf{EFF}
D_{sv}^{*-}	1	$m^2(\overline{D}{}^0K^-)$	RBW
$D^*_{s0v}(2317)^-$	0	$m^2(\overline{D}{}^0K^-)$	RBW
B_{v}^{*+}	1	$m^2(\overline{D}{}^0\pi^+)$	RBW

Charm spectroscopy (II)

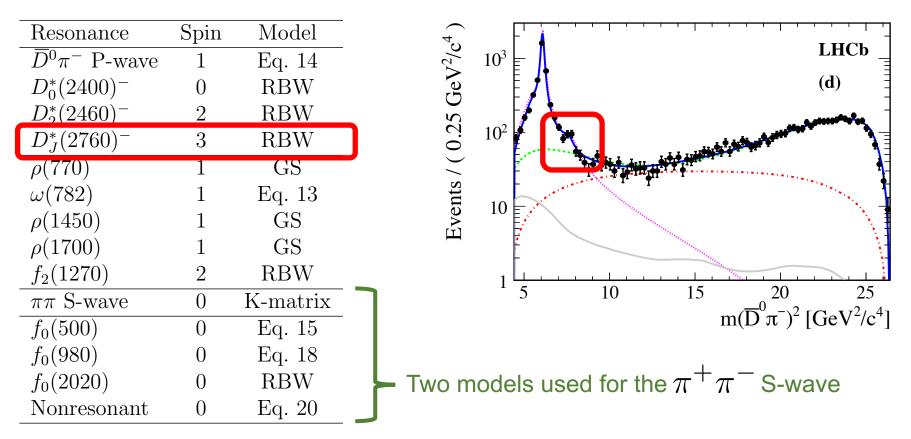

- Dalitz plot analysis of $B_s^0 \to \bar{D}^0 K^- \pi^+$
 - Study excited charm-strange mesons
 - Amplitude fit using the isobar model $\mathcal{A}(s,t) = \sum c_j F_j(s,t)$

Resonance	Spin	Dalitz plot axis	Model
$\overline{K}^{*}(892)^{0}$	1	$m^2(K^-\pi^+)$	RBW
$\overline{K}^{*}(1410)^{0}$	1	$m^2(K^-\pi^+)$	RBW
$\overline{K}_{0}^{*}(1430)^{0}$	0	$m^2(K^-\pi^+)$	LASS
$\overline{K}_{2}^{*}(1430)^{0}$	2	$m^2(K^-\pi^+)$	RBW
$\overline{K}^{*}(1680)^{0}$	1	$m^2(K^-\pi^+)$	RBW
$\overline{K}_{0}^{*}(1950)^{0}$	0	$m^2(K^-\pi^+)$	RBW
$D_{s2}^{*}(2573)^{-}$	2	$m^2(\overline{D}{}^0K^-)$	RBW
$D_{c1}^{*}(2700)^{-}$	1	$m^2(\overline{D}{}^0K^-)$	RBW
$D_{sJ}^{*}(2860)^{-}$	1	$m^2(\overline{D}{}^0K^-)$	RBW
$D_{sJ}^{*}(2860)^{-}$	3	$m^2(\overline{D}{}^0K^-)$	RBW
Nonresonant		$m^2(D^0K^-)$	EFF
D_{sv}^{*-}	1	$m^2(\overline{D}{}^0K^-)$	RBW
$D^*_{s0v}(2317)^-$	0	$m^2(\overline{D}{}^0K^-)$	RBW
B_v^{*+}	1	$m^2(\overline{D}{}^0\pi^+)$	RBW

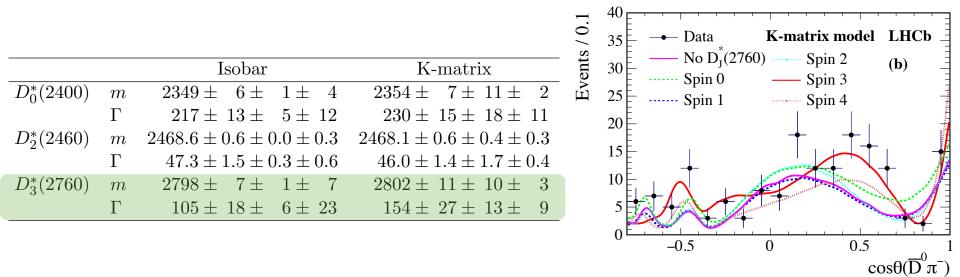
Charm spectroscopy (II)


- Dalitz plot analysis of $B_s^0 \to \overline{D}^0 K^- \pi^+$
 - Resolved the $D^*_{sJ}(2860)$ bump into two states
 - First observations of the $D_{s1}^*(2860)^+$ and $D_{s3}^*(2860)^+$ mesons
 - With spins of 1 and 3, masses and widths below

- Many theory papers discussing these states
 - In generally favour idenfiying them as members of the 1D family

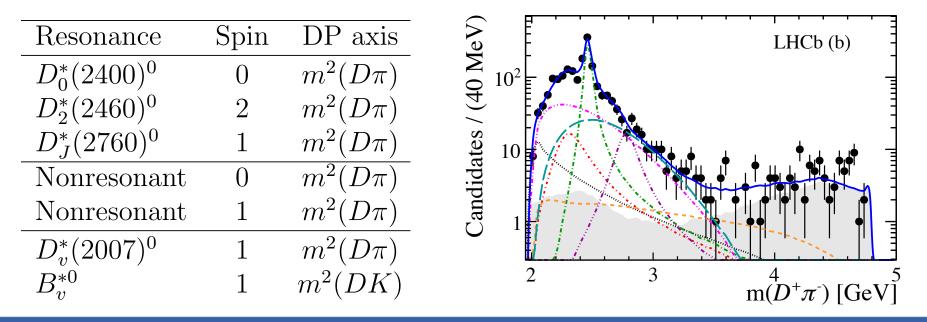

Charm spectroscopy (III)

- Dalitz plot analysis of $B^0 \to \bar{D}^0 \pi^+ \pi^-$
 - Study excited charm mesons

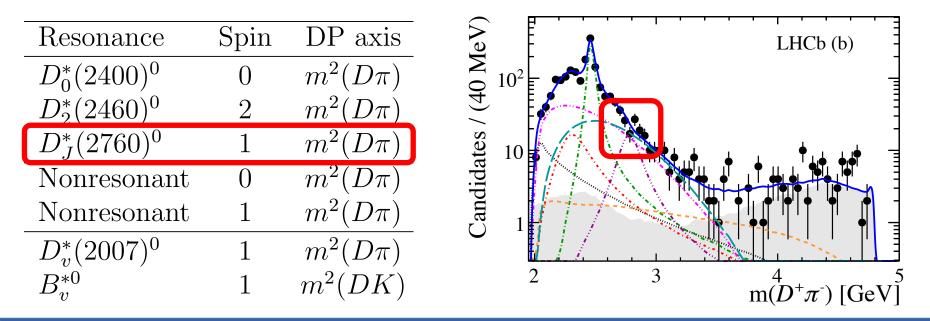

Charm spectroscopy (III)

- Dalitz plot analysis of $B^0 \to \bar{D}^0 \pi^+ \pi^-$
 - Study excited charm mesons

Charm spectroscopy (III)


- Dalitz plot analysis of $B^0 \to \bar{D}^0 \pi^+ \pi^-$
 - First observation of the $D_3^*(2760)^+$ meson
 - Determined to be spin 3, no sensitivity to a spin 1 partner

- Many more results in the paper from the amplitudes
 - Including studies of light mesons

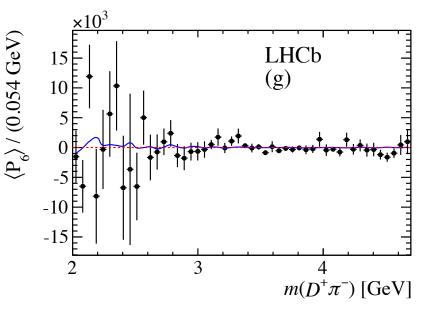

Charm spectroscopy (IV)

- Dalitz plot analysis of $B^+ \to D^- K^+ \pi^+$
 - Study excited charm mesons
 - Simpler decay, expect structures only in $m(D\pi)$
 - Use Legendre moments to help with model building

Charm spectroscopy (IV)

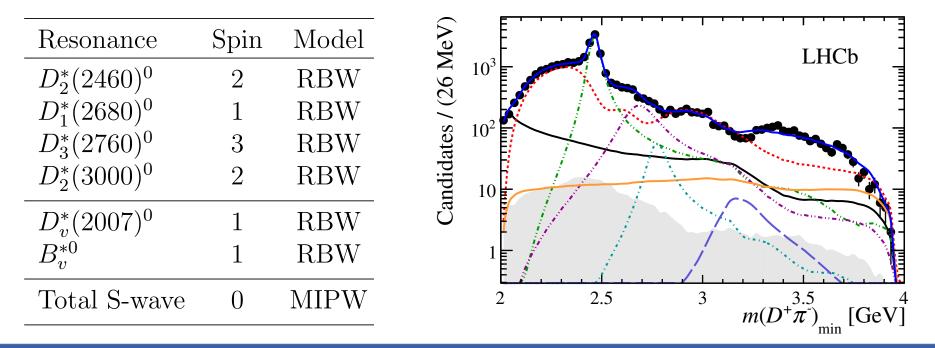
- Dalitz plot analysis of $B^+ \to D^- K^+ \pi^+$
 - Study excited charm mesons
 - Simpler decay, expect structures only in $m(D\pi)$
 - Use Legendre moments to help with model building

Charm spectroscopy (IV)

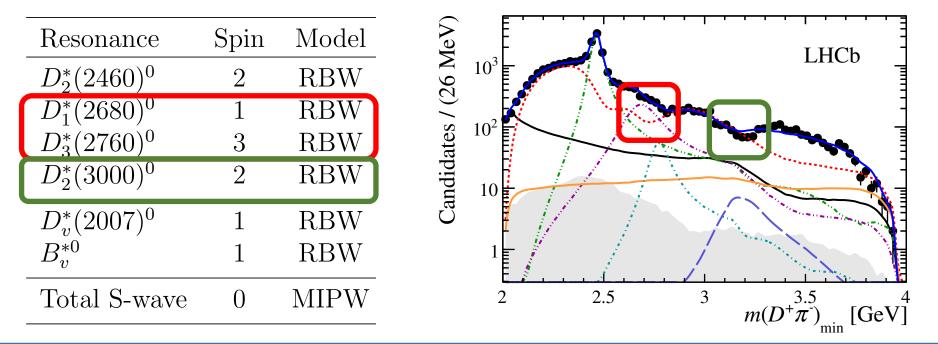

- Dalitz plot analysis of $B^+ \to D^- K^+ \pi^+$
 - First observation of the $D_1^*(2760)^0$ meson
 - Determined to be spin 1
 - No sensitivity to a spin 3 partner

$$m(D_2^*(2460)^0) = (2464.0 \pm 1.4 \pm 0.5 \pm 0.2) \text{ MeV}$$

$$\Gamma(D_2^*(2460)^0) = (43.8 \pm 2.9 \pm 1.7 \pm 0.6) \text{ MeV}$$


$$m(D_1^*(2760)^0) = (2781 \pm 18 \pm 11 \pm 6) \text{ MeV}$$

$$\Gamma(D_1^*(2760)^0) = (177 \pm 32 \pm 20 \pm 7) \text{ MeV}$$


Charm spectroscopy (V)

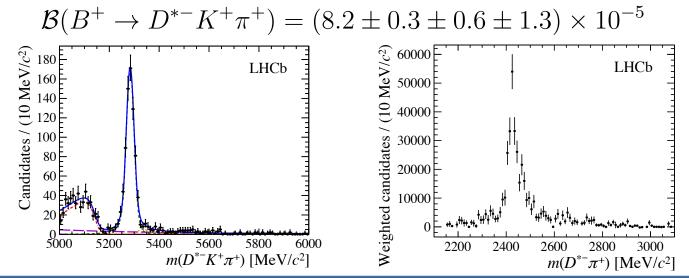
- Dalitz plot analysis of $B^+ \to D^- \pi^+ \pi^+$
 - Study excited charm mesons
 - Study the same resonances as the $B^+ \rightarrow D^- K^+ \pi^+$ analysis
 - Cabibbo favoured -> higher statistics

Charm spectroscopy (V)

- Dalitz plot analysis of $B^+ \to D^- \pi^+ \pi^+$
 - Study excited charm mesons
 - Study the same resonances as the $B^+ \rightarrow D^- K^+ \pi^+$ analysis
 - Cabibbo favoured -> higher statistics

Charm spectroscopy (V)

- Dalitz plot analysis of $B^+ \rightarrow D^- \pi^+ \pi^+$
 - First observation of $D_1^*(2680)^0$, $D_3^*(2760)^0$, $D_2^*(3000)^0$ states
 - Spins determined significantly
 - No sign of the $D_1^*(2760)^0$ state in this decay?


 $\begin{array}{rcl} m(D_2^*(2460)^0) &=& 2463.7 \pm \ 0.4 \pm \ 0.4 \pm \ 0.6 \, \mathrm{MeV} \\ \Gamma(D_2^*(2460)^0) &=& 47.0 \pm \ 0.8 \pm \ 0.9 \pm \ 0.3 \, \mathrm{MeV} \\ m(D_1^*(2680)^0) &=& 2681.1 \pm \ 5.6 \pm \ 4.9 \pm 13.1 \, \mathrm{MeV} \\ \Gamma(D_1^*(2680)^0) &=& 186.7 \pm \ 8.5 \pm \ 8.6 \pm \ 8.2 \, \mathrm{MeV} \\ m(D_3^*(2760)^0) &=& 2775.5 \pm \ 4.5 \pm \ 4.5 \pm \ 4.5 \pm \ 4.7 \, \mathrm{MeV} \\ \Gamma(D_3^*(2760)^0) &=& 95.3 \pm \ 9.6 \pm \ 7.9 \pm 33.1 \, \mathrm{MeV} \\ m(D_2^*(3000)^0) &=& 3214 \pm \ 29 \pm \ 33 \pm \ 36 \, \mathrm{MeV} \\ \Gamma(D_2^*(3000)^0) &=& 186 \pm \ 38 \pm \ 34 \pm \ 63 \, \mathrm{MeV} \end{array}$

Summary

- LHCb very active in meson spectroscopy studies
 - 6 first observations of excited charm (strange) mesons
 - Only natural spin parity states though need to do D*hh final states
 - Many worlds best measurements
 - Masses, widths, spins...
 - Active theory community interpretting out results
 - In total the papers shown have >>100 citations

Outlook

- Everything shown here is from Run 1
 - Already have more data in our pockets + 2017 + 2018
 - Should be able to explore higher mass states
 - Confirm and improve the measurements shown here
 - Expand the range of analyses
 - E.g. First step for $B^+ \to D^{*-} K^+ \pi^+$ decays

