Weak Decays of \mathcal{E}_{cc}

discovery potentials

Fu-Sheng YuLanzhou University

Thank Vincenzo, Vanya and Zhen-Wei for the invitation! LHCb/Theory workshop on heavy hadron spectroscopy 17.07.2017 @ CERN

[FSY, Jiang, Li, Lu, Wang, Zhao, arXiv:1703.09086]

Stories on the theory side

- Mar 2016, Ji-Bo asked to estimate branching fractions of doubly heavy baryon decays, to search for them at LHCb.
- Dec 2016, invited talk at LHCb China working group
- Mar 2017, invited talk at LHCb Charm working group

July 2017, LHCb reports the discovery [arXiv:1707.01621]

Congratulations on the discovery of Ξ_{cc}^{++}

Outline

- 1. Introduction to doubly charmed baryons
 - What are the processes with the largest potentials to discovery doubly heavy baryons (DHB)
- 2. Theoretical Framework
- 3. Discussions and Results
 - compare all the decay modes
- 4. Summary

Motivations

- Properties and significances of doubly heavy flavor baryons, see Yan-Xi's, Anatoli's and Merek's talk
- This talk focus on the decaying processes for the searches for these particles
- In experiments
 - The only evidence was found for Ξ_{cc}^+ by SELEX

$$\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+}$$
 $\Xi_{cc}^{+} \to p D^{+} K^{-}$ [SELEX, 02', 04']

But not confirmed by other experiments

$$\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+}$$
 [FOCUS, 02'] $\Xi_{cc}^{+(+)} \to \Xi_{c}^{0} \pi^{+} (\pi^{+}) \text{ and } \Lambda_{c}^{+} K^{-} \pi^{+} (\pi^{+})$ [Babar, 06'; Belle, 13'] $\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+}$ [LHCb, 13']

cross sections of production @ LHC

_	$\sqrt{S} = 7.0 \text{TeV}$	$\sqrt{S} = 14.0 \text{TeV}$
$[^3S_1]$	38.11	69.40
$\begin{bmatrix} {}^1S_0 \end{bmatrix}$	9.362	17.05
Total	47.47	86.45

in unit of nb

$$p_t \ge 4GeV \qquad |y| \le 1.5$$

[J.-W. Zhang, X.-G. Wu, T. Zhong, Y. Yu, Z.-Y. Fang, Phys.Rev. D 83, 034026 (2011)]

-	$ (^1S_0)_{1}\rangle$	$ (^3S_1)_{1}\rangle$	$ (^1S_0)_{8}g\rangle$	$ (^3S_1)_8g\rangle$	$ (^1P_1)_{1}\rangle$	$ (^3P_0)_{1}\rangle$	$ (^3P_1)_{1}\rangle$	$ (^3P_2)_{1}\rangle$
LHC	71.1	177.	(0.357, 3.21)	(1.58, 14.2)	9.12	3.29	7.38	20.4

LHC (
$$\sqrt{S} = 14.0 \text{ TeV}$$
)

in unit of nb

[C.-H. Chang, C.-F. Qiao, J.-X. Wang, X.-G. Wu, Phys.Rev. D71 (2005) 074012]

 B_c well studied at LHCb, discovery and establishment of \mathcal{E}_{cc} would not be far

The key issue
is to select the decaying processes
with the largest possibilities of
observing doubly charmed baryons

Lifetimes in predictions

Literatures	$\Xi_{cc}^{++}(fs)$	Ξ_{cc}^{+} (fs)
Karliner, Rosner, 2014	185	53
Kiselev, Likhoded, Onishchenko, 1998	430±100	110±10
Kiselev, Likhoded, 2002	460±50	160±50
Chang, Li, Li, Wang, 2007	670	250
Guberina, Melic, Stefancic, 1998	_1550	220

Large ambiguity of lifetimes

$$\text{Compared to} \quad \frac{\tau(\Lambda_c^+) = (200 \pm 6) \times 10^{-15} s,}{\tau(\Xi_c^0) = (112^{+13}_{-10}) \times 10^{-15} s,} \qquad \tau(\Xi_c^+) = (442 \pm 26) \times 10^{-15} s,}{\tau(\Omega_c^0) = (69 \pm 12) \times 10^{-15} s.}$$

Lifetimes

Literatures	Ξ_{cc}^{++} (fs)	Ξ_{cc}^{+} (fs)
Karliner, Rosner, 2014	185	53
Kiselev, Likhoded, Onishchenko, 1998	430±100	110±10
Kiselev, Likhoded, 2002	460±50	160±50
Chang, Li, Li, Wang, 2007	670	250

But much less ambiguity of ratio of lifetimes

$$\mathcal{R}_{\tau} \equiv \frac{\tau_{\Xi_{cc}^{+}}}{\tau_{\Xi_{cc}^{++}}} = 0.25 \sim 0.37$$

$$\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$$

Effect of destructive Pauli interference

Longer lifetime of Ξ_{cc}^{++}

$$\mathcal{R}_{\tau} \equiv \frac{\tau_{\Xi_{cc}^{+}}}{\tau_{\Xi_{cc}^{++}}} = 0.25 \sim 0.37$$
 $\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$

Longer lifetime ⇒ Larger branching fractions

$$\mathcal{B}_i = \Gamma_i \cdot \tau$$

 Longer lifetime ⇒ Higher efficiency of identification at hadron colliders

We recommend to search for Ξ_{cc}^{++} rather than Ξ_{cc}^{+}

for the first reason

Theoretical Framework

- 1. Short-distance contributions
 - external W-emission diagrams
 - Calculate form factors in light-front quark model
 - Calculate amplitudes using factorization approach
- 2. Long-distance contributions
 - final-state interacting (FSI) effects
 - significantly large in charm decays
 - Calculate rescattering effects

- 3. Relative branching fractions
 - most theoretical uncertainties cancelled

Transition form factors (FF) in light-front quark model

$$\langle \mathcal{B}_{c}(p_{f})|J_{\mu}^{w}|\Xi_{cc}(p_{i})\rangle = \bar{u}_{f}(p_{f}) \left[\gamma_{\mu} f_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{m_{i}} f_{2}(q^{2}) + \frac{q_{\mu}}{m_{i}} f_{3}(q^{2}) \right] u_{i}(p_{i}) \qquad \Xi_{cc} \boxed{\frac{c}{q}} - \bar{u}_{f}(p_{f}) \left[\gamma_{\mu} g_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{m_{i}} g_{2}(q^{2}) + \frac{q_{\mu}}{m_{i}} g_{3}(q^{2}) \right] \gamma_{5} u_{i}(p_{i})$$

The di-quark picture: [cq] = 0+ or 1+

$$\langle \mathcal{B}_{c}(\overline{\mathbf{3}})|J_{\mu}^{w}|\Xi_{cc}\rangle = \frac{\sqrt{3}}{4}\langle J_{\mu}^{w}\rangle_{0^{+}} + \frac{\sqrt{3}}{4}\langle J_{\mu}^{w}\rangle_{1^{+}},$$
$$\langle \mathcal{B}_{c}(\mathbf{6})|J_{\mu}^{w}|\Xi_{cc}\rangle = -\frac{3}{4}\langle J_{\mu}^{w}\rangle_{0^{+}} + \frac{1}{4}\langle J_{\mu}^{w}\rangle_{1^{+}}.$$

	Ξ	cc o	$\Xi_c/\Xi_c'($	0+)	$\Xi_{cc} \to \Xi_c/\Xi_c'(1^+)$			
	f_1	g_1	f_2	g_2	f_1	g_1	f_2	g_2^*
F(0)	0.75	0.62	-0.78	-0.08	0.74	-0.20	0.80	-0.02
$m_{ m fit}$	1.84	2.16	1.67	1.29	1.58	2.10	1.62	1.62
δ	0.25	0.35	0.30	0.52	0.36	0.21	0.31	1.37
		,	Λ /∇ /	<u>ω+)</u>		. А		1+1
		cc o	$M_c/ \angle c$	(\mathbf{U}_{j})	<u> </u>	$_{cc} o \Lambda$	$c/\Sigma_c($	1')
			•	g_2			,	,
$\overline{F(0)}$	f_1	g_1	f_2	` ,	f_1	g_1	f_2	g_2^*
$F(0) \ m_{ m fit}$	$\begin{array}{ c c }\hline f_1\\\hline 0.65\\ \hline\end{array}$	$\frac{g_1}{0.53}$	$\frac{f_2}{-0.74}$	g_2	f_1 0.64	$\frac{g_1}{-0.17}$	$\begin{array}{c} f_2 \\ \hline 0.73 \end{array}$	$\frac{g_2^*}{-0.03}$
$m_{ m fit}$	$egin{array}{c} f_1 \\ 0.65 \\ 1.72 \\ \end{array}$	g_1 0.53 2.03	f_2 -0.74 1.56	$\frac{g_2}{-0.05}$	$egin{array}{ c c c c } f_1 & & & \\ 0.64 & & & \\ 1.49 & & & \\ \end{array}$	g_1 -0.17 1.99	f_2 0.73 1.53	

Transition form factors (FF) in light-front quark model

- Isospin symmetry relates FF's of Ξ_{cc}^{++} and Ξ_{cc}^{+}
- Flavor SU(3) symmetry relates FF's of $c \rightarrow s$ and $c \rightarrow d$ transitions
- Uncertainties in FFs are mostly cancelled in the relative branching fractions

<i>C</i> -	$\rightarrow S$					$\Xi_{cc} \to \Xi_c/\Xi_c'(1^+)$			
	<i>' b</i>	f_1	g_1	f_2	g_2	f_1	g_1	f_2	g_2^*
	F(0)	0.75	0.62	-0.78	-0.08	0.74	-0.20	0.80	-0.02
	$m_{ m fit}$	1.84	2.16	1.67	1.29	1.58	2.10	1.62	1.62
	δ	0.25	0.35	0.30	0.52	0.36	0.21	0.31	1.37
,	1	[1]	\rightarrow	$\frac{1}{\Lambda_a/\Sigma_a}$	(0^{+})		$\rightarrow \Lambda$	$\frac{1}{2}$	1+)
		(<i>ic ' .</i>	110/ 40(-(C / 11	<i>c</i> / 2 <i>c</i> (- /
<i>C</i> -	$\rightarrow d$	f_1	g_1	f_2	g_2	$\int f_1$	g_1	f_2	g_2^*
<i>c</i> -	$rac{\rightarrow d}{F(0)}$				$\frac{g_2}{-0.05}$				
<i>c</i> –		0.65	0.53	-0.74		0.64	-0.17	0.73	-0.03
c-	$m_{ m fit}$	0.65 1.72	0.53 2.03	-0.74	-0.05 1.12	0.64	-0.17	0.73 1.53	-0.03 2.03

Short-Distance Contributions

External W-emission processes using factorization approach

$$A(\Xi_{cc} \to \mathcal{B}_c M)_{\mathrm{SD}}$$

$$= \frac{G_F}{\sqrt{2}} V_{cq'}^* V_{uq} a_1(a_2) \langle M | \bar{u} \gamma^{\mu} (1 - \gamma_5) q | 0 \rangle \langle \mathcal{B}_c | \bar{q}' \gamma_{\mu} (1 - \gamma_5) | \Xi_{cc} \rangle$$

Relative branching fractions are reliable

$$\mathcal{B}(\Xi_{cc}^{+} \to \Xi_{c}^{0}\pi^{+})/\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = \mathcal{R}_{\tau} = 0.25 \sim 0.37,$$

$$\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}\pi^{+})/\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = 0.056,$$

$$\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\ell^{+}\nu)/\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = 0.71,$$

Uncertainties of form factors are mostly cancelled

$$\mathcal{B}(\Xi_{cc}^{++}\to\Xi_c^+\pi^+)$$
 is the largest one

small lifetime $\mathcal{B}(\Xi_{cc}^+ \to \Xi_c^0 \pi^+)/\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) = \mathcal{R}_\tau = 0.25 \sim 0.37,$ Cabibbosuppressed $\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ \pi^+)/\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) = 0.056,$ suppressed $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \ell^+ \nu)/\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) = 0.71,$ missing energy

Other processes with large branching fractions, but

either have neutral final-state particles

$$\Xi_c^+ \rho^+ (\to \pi^+ \pi^0)$$
 $\Xi_c^{\prime +} (\to \Xi_c^+ \gamma) \pi^+$

or have more tracks

$$\Xi_c^+ a_1^+ (\to \pi^+ \pi^+ \pi^-)$$

 $\Xi_{cc}^{++}\to\Xi_c^+\pi^+$ is the best one to search for doubly heavy baryons among external W-emission processes

$$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$$

Absolute branching fractions:

$$\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = \left(\frac{\tau_{\Xi_{cc}^{++}}}{300 \,\text{fs}}\right) \times 3.4\%$$

large enough for measurement

We suggest to measure $\Xi_{cc}^{++}\to\Xi_c^+\pi^+~$ with the reconstruction of $\Xi_c^+\to pK^-\pi^+$

[FSY, et al, 1703.09086]

 $\mathcal{B}(\Xi_c^+ \to p K^- \pi^+)$ has never been directly measured but predicted to be $(2.2 \pm 0.8)\%$

Branching Ratio of $\Xi_c^+ \rightarrow pK^-\pi^+$

Under U-spin symmetry, *d*⇔s

$$\mathcal{A}(\Xi_c^+ \to p\overline{K}^{*0}) = -\mathcal{A}(\Lambda_c^+ \to \Sigma^+ K^{*0})$$

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ K^{*0}) = (0.36 \pm 0.10)\%$$
[FOCUS, 01']

$$\mathcal{B}(\Xi_c^+ \to p\overline{K}^{*0})/\mathcal{B}(\Xi_c^+ \to pK^-\pi^+) = 0.54 \pm 0.10$$

[FOCUS, 02']

$$Br(\Xi_c^+ \to pK^-\pi^+) = (2.2 \pm 0.8)\%$$

[FSY, et al, 1703.09086]

Short-distance v.s. Long-distance Contributions

Br=3.4%

short-distance branching fractions

Br=0.003%

external W-emission

color-favored

$$a_1(\mu_c)=1.07$$

internal W-emission color-suppressed

$$a_2(\mu_c) = -0.02$$

But long-distance contributions are significantly enhanced in charmed hadron decays

Indication from pure internal W-emission

$$\Lambda_c^+ \qquad \begin{array}{c} & & & & \\ u & & & \\ u & & & \\ d & & & \\ \end{array} p$$

Short-distance v.s. Long-distance

$$la_2(\mu_c)l=0.02$$

Br(exp)=
$$(1.04\pm0.21)\times10^{-3}$$

la₂^{eff}(μ_c)l=0.7

large-N_c limit

Understanding long-distance contributions is essential to find a best process for the searches for doubly heavy baryons

Rescattering mechanism of the final-state interacting effects

Absorptive part:

$$Abs\mathcal{M}(p_i \to p_f q) =$$

$$\frac{1}{2} \sum_{j} \left(\prod_{k=1}^{j} \int \frac{d^{3}p_{k}}{(2\pi)^{3} 2E_{k}} \right) (2\pi)^{4} \times \delta^{4}(p_{f} + q - \sum_{k=1}^{j} p_{k}) M(p \to \{p_{k}\}) T^{*}(p_{f}q \to \{p_{k}\})$$

Effective Lagrangian

$$\mathcal{L}_{\text{eff}} = i \frac{g_{VPP}}{\sqrt{2}} Tr\{V^{\mu}[P, \partial_{\mu}P]\} + i \frac{g_{VVV}}{\sqrt{2}} Tr\{(\partial_{\nu}V_{\mu} - \partial_{\mu}V_{\nu})V^{\mu}V^{\nu}\} - ig_{DDV}(D_{i}\partial_{\mu}D^{j\dagger} - \partial_{\mu}D_{i}D^{j\dagger})(V^{\mu})_{j}^{i}$$

$$+ ig_{VD^{*}D^{*}}(D_{i}^{*\nu}\partial_{\mu}D_{\nu}^{*j\dagger} - \partial_{\mu}D_{i}^{*\nu}D_{\nu}^{*j\dagger})(V^{\mu})_{j}^{i} + 4if_{VD^{*}D^{*}}D_{i\mu}^{*\dagger}(\partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu})_{j}^{i}D_{\nu}^{*j}$$

$$- ig_{PDD^{*}}(D^{i}\partial^{\mu}P_{ij}D_{\mu}^{*j\dagger} - h.c.) + g_{PBB}Tr[\overline{B}i\gamma_{5}PB] + g_{1VBB}Tr[\overline{B}\gamma_{\mu}V^{\mu}B] + \frac{g_{2VBB}}{2m_{B}}Tr[\overline{B}\sigma_{\mu\nu}\partial^{\mu}V^{\nu}B]$$

$$+ \{g_{PB_{c\bar{3}}B_{c\bar{3}}}Tr[\overline{B}_{c\bar{3}}i\gamma_{5}PB_{c\bar{3}}] + (\mathcal{B}_{c\bar{3}} \rightarrow \mathcal{B}_{c\bar{6}})\} + \{g_{PB_{c\bar{6}}B_{c\bar{3}}}Tr[\overline{B}_{c\bar{6}}i\gamma_{5}PB_{c\bar{3}}] + h.c.\},$$

$$+ \{g_{1VB_{c\bar{3}}B_{c\bar{3}}}Tr[\overline{B}_{c\bar{3}}\gamma_{\mu}V^{\mu}B_{c\bar{3}}] + \frac{g_{2VB_{c\bar{3}}B_{c\bar{3}}}}{2m_{c\bar{3}}}Tr[\overline{B}_{c\bar{6}}\sigma_{\mu\nu}\partial^{\mu}V^{\mu}B_{c\bar{3}}] + (\mathcal{B}_{c\bar{3}} \rightarrow \mathcal{B}_{c\bar{6}})\}$$

$$+ \{g_{1VB_{c\bar{6}}B_{c\bar{3}}}Tr[\overline{B}_{c\bar{6}}\gamma_{\mu}V^{\mu}B_{c\bar{3}}] + \frac{g_{2VB_{c\bar{6}}B_{c\bar{3}}}}{2m_{c\bar{6}}}Tr[\overline{B}_{c\bar{6}}\sigma_{\mu\nu}\partial^{\mu}V^{\mu}B_{c\bar{3}}] + h.c.\} + g_{\Lambda_{c}(\Sigma_{c})ND_{q}}\{\overline{\Lambda}_{c}(\overline{\Sigma}_{c})i\gamma_{5}D_{q}N + h.c.\}$$

$$+ g_{1\Lambda_{c}(\Sigma_{c})ND_{q}}^{*}\{\overline{\Lambda}_{c}(\overline{\Sigma}_{c})\gamma_{\mu}D_{q}^{*\mu}N + h.c.\} + \frac{g_{2\Lambda_{c}(\Sigma_{c})ND_{q}}^{*}}{m_{\Lambda_{c}(\Sigma_{c})}+m_{N}}\{\overline{\Lambda}_{c}(\overline{\Sigma}_{c})\sigma_{\mu\nu}\partial^{\mu}D_{q}^{*\nu}N + h.c.\}$$

Hadronic coupling constants are related under the flavor SU(3) symmetry and the chiral and heavy quark symmetries

Uncertainties are mostly cancelled in relative Br's

[Yan, et al, PRD46,1148(1992)] [Casalbuoni, et al, Phys.Rept.281,145(1997)] [Meissner, Phys.Rept.161,213(1988)]

Theoretical Uncertainties

- Transition form factors —cancelled in relative Br's
- Hadronic coupling constants
 - —cancelled in relative Br's
- Off-shell effects of intermediate states

$$F(t, m) = \left(\frac{\Lambda^2 - m^2}{\Lambda^2 - t}\right)^n$$
 $t = (p_1 - p_3)^2$ $n=1$

$$\Lambda = m_{\rm exc} + \eta \Lambda_{
m OCD}$$

[Cheng, Chua, Soni, PRD 71, 014030 (2005)]

Results are very sensitive to the value of η

No first-principle calculations for η

We take η from 1.0 to 2.0

Relative Branching Fractions with long-distance contributions

			<u> </u>
	Baryons	Modes	$\mathcal{B}_{ ext{LD}}$
	$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1
Large	est	pD^{*+}	0.04
		pD^+	0.0008
	$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{\tau}/0.3) \times 0.22$
		$\Sigma_c^{++}(2455)K^-$	$(\mathcal{R}_{\tau}/0.3) \times 0.008$
		$\Xi_c^+ ho^0$	$(\mathcal{R}_{\tau}/0.3) \times 0.04$
		ΛD^+	$(\mathcal{R}_{\tau}/0.3) \times 0.004$
		pD^0	$(\mathcal{R}_{\tau}/0.3) \times 0.002$

Uncertainties of the relative branching fractions induced by the parameter of η are less than 10%

$$\Xi_{cc}^{++} \to \Sigma_c^{++} \overline{K}^{*0} \to \Lambda_c^+ K^- \pi^+ \pi^+$$

$$= \Xi_{cc}^{++} \xrightarrow{\overline{K}^{*0}} K^{*0} + \Xi_{cc}^{++} \xrightarrow{\overline{K}^{*0}} \text{dominant}$$

$$+ \Xi_{cc}^{++} \xrightarrow{\overline{\Sigma}_{c}^{++}} \Sigma_{c}^{++} + \Xi_{cc}^{++} \xrightarrow{\overline{\Sigma}_{c}^{++}} \Sigma_{c}^{++}$$

$$+ \Xi_{cc}^{++} \xrightarrow{\Xi_{cc}^{+}} \Sigma_{c}^{++} + \Xi_{cc}^{++} \xrightarrow{\overline{\Sigma}_{c}^{+}} \Sigma_{c}^{++}$$

$$\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = 3.4\%$$

$$\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \rho^{+}) = 6.3\%$$

$$\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+} \pi^{+}) = 2.4\%$$

$$\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+} \rho^{+}) = 8.7\%$$

$$\Xi_{cc}^{++} \xrightarrow{\Xi_c^{+}} \Sigma_c^{+} \qquad \Sigma_c^{+}$$

$$\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_{c}^{++} \overline{K}^{*0}) = (1.6 \sim 10.3)\%$$

$$\times \frac{\tau_{\Xi_{cc}^{++}}}{300 \text{ fs}}$$

 $\eta = 1.0 \sim 2.0$

Large enough for measurements

$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$$

$$\overline{K}^{*0}$$
 or $(K\pi)_{\text{S-wave}}$

$$\Xi_{cc}^{++} \to \Sigma_c^{++}(2455)\overline{K}^{*0}$$

is actually a four-body decay

$$\Sigma_c^{++}(2455)$$
 or $\Sigma_c^{++}(2520)$

In charmed hadron decays, final-state particles are not energetic, and easily located in the momentum range of resonances

$$\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_c^{++}(2455)\overline{K}^{*0}) = \left(\frac{\tau_{\Xi_{cc}^{++}}}{300 \,\text{fs}}\right) \times (1.6 \sim 10.3)\%$$

It would be expected to be as large as O(10%)

$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$$
 v.s. $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$

SELEX's discovery channel, LHCb measured

 $\Xi_{cc}^{++} o \Lambda_c^+ K^- \pi^+ \pi^+$ has more signal yields around one more order than $\Xi_{cc}^+ o \Lambda_c^+ K^- \pi^+$

$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$$
 v.s. $\Xi_{cc}^+ \to p D^+ K^-$

SELEX's discovery channel

Baryons	Modes	$\mathcal{B}_{ ext{LD}}$	
$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1	$\Lambda_c^+ K^- \pi^+ \pi^+$
	pD^{*+}	0.04	C
	pD^+	0.0008	
$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{\tau}/0.3) \times 0.22$	Λ is below
	$\Sigma_c^{++}(2455)K^-$	$(\mathcal{R}_{ au}/0.3) imes 0.008$	pK threshold
	$\Xi_c^+ ho^0$	$(\mathcal{R}_{ au}/0.3) imes 0.04$	
	ΛD^+	$(\mathcal{R}_{ au}/0.3) imes 0.004$	pD^+K^-
	pD^0	$(\mathcal{R}_{\tau}/0.3) \times 0.002$	

We recommend to measure $\Xi_{cc}^{++}\to \Lambda_c^+ K^-\pi^+\pi^+$ to search for doubly heavy baryons

Summary

- We systematically study the weak decays of doubly charmed baryons
- By comparing all the decay modes, we recommend to measure the following processes to search for doubly heavy baryons

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ \qquad \Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$$

And LHCb observed it via the first process.

Thank you!

$$\Xi_{cc}^{++} \to \Lambda_c^+ \pi^+$$

+
$$\Xi_{cc}^{++}$$
 Σ_c^0 Λ_c^+ Λ_c^+

$$\Xi_{cc}^+ \to \Xi_c^0 \pi^+$$

$$V_{cs}^* V_{ud}(T + E_2)$$

 Ξ_{cc}^+

+
$$\Xi_{cc}^{+}$$
 Ξ_{cc}^{+} Ξ_{cc}^{+} Ξ_{cc}^{+} Ξ_{cc}^{-} Ξ_{cc}^{-} Ξ_{cc}^{-}

$$\Xi_{cc}^+ \to \Xi_c^+ \rho^0 \to \Xi_c^+ \pi^+ \pi^-$$

$$\frac{1}{\sqrt{2}}V_{cs}^*V_{ud}(C'-E_2)$$

$$= \underbrace{\begin{array}{c} d \\ \overline{d} \\ c \\ \overline{c} \\ c \\ \end{array}}_{\Xi_{cc}^+} \underbrace{\begin{array}{c} d \\ \overline{d} \\ \overline{c} \\ \overline{c} \\ \end{array}}_{\Xi_{cc}^+} \underbrace{\begin{array}{c} d \\ \overline{d} \\ \overline{c} \\ \overline{c} \\ \end{array}}_{\Xi_{cc}^+} \underbrace{\begin{array}{c} d \\ \overline{d} \\ \overline{c} \\ \overline{c} \\ \overline{c} \\ \end{array}}_{\Xi_{cc}^+} \underbrace{\begin{array}{c} d \\ \overline{d} \\ \overline{c} \\ \overline{c} \\ \overline{c} \\ \end{array}}_{\Xi_{cc}^+} \underbrace{\begin{array}{c} d \\ \overline{d} \\ \overline{c} \\ \overline{c} \\ \overline{c} \\ \overline{c} \\ \end{array}}_{\Xi_{cc}^+} \underbrace{\begin{array}{c} d \\ \overline{d} \\ \overline{c} \\ \overline{c} \\ \overline{c} \\ \overline{c} \\ \overline{c} \\ \end{array}}_{\Xi_{cc}^+} \underbrace{\begin{array}{c} d \\ \overline{d} \\ \overline{c} \\$$

$$= \Xi_{cc}^{+} \xrightarrow{\pi^{+}/\rho^{+}} \Xi_{c}^{+} + \Xi_{cc}^{+} \xrightarrow{\pi^{+}/\rho^{+}} \Xi_{c}^{'0}$$

$$\Xi_{cc}^+ \to \Lambda_c^+ \overline{K}^{*0}$$

$$\rightarrow \Lambda_c^+ K^- \pi^+$$

$$= \Xi_{cc}^{+} \underbrace{\Xi_{cc}^{+}}_{K^{\pm}} \underbrace{K^{\pm}}_{K^{\pm}} + \underbrace{\Xi_{cc}^{+}}_{\Xi_{c}^{0}/\Xi_{c}^{\prime 0}}$$

$$\Xi_{cc}^{+}$$
 Σ_{c}^{0} Ξ_{cc}^{+} Σ_{c}^{0} Ξ_{cc}^{+} Σ_{c}^{0} Ξ_{cc}^{+} Σ_{cc}^{0} Ξ_{cc}^{0} Ξ_{cc}^{0}

$$\Xi_{cc}^+ \to \Lambda^0 D^+$$

$$V_{cs}^*V_{ud}(C'+B)$$

$$= \underbrace{\begin{array}{c} c \\ d \\ \hline \end{array}}_{\Xi_{cc}^+} \underbrace{\begin{array}{c} c \\ d \\ d \\ \end{array}}_{\Lambda} + \underbrace{\begin{array}{c} c \\ d \\ \end{array}}_{\Lambda}$$

