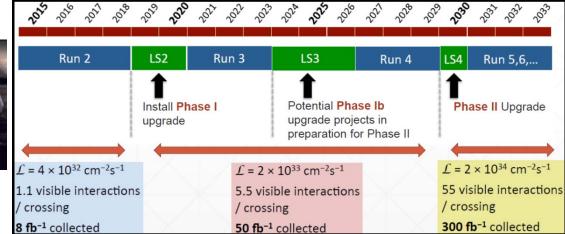
Experimental aspects for discovering Ξ_{bc}

S. Blusk Syracuse University

Workshop on heavy hadron spectroscopy, July 17-18. 2017, CERN

Introduction

- I won't spend time reviewing theory, please see talks by previous speakers.
- Here, I'd like to share what I see as the experimental issues & prospects (LHCb-centric, sorry)


• LHCb strengths are:

- VELO: Excellent proper time resolution, ~50 fs for *b*-hadrons, ~100 fs for *c*-hadrons
- **RICH:** Excellent separation of K, p from π (RICH)
- Trigger: Highly flexible, now have "offline quality" at the trigger level.
 - Can do analysis directly on data coming out of the trigger (*e.g.* Ξ_{cc}^{++})
 - Physics groups slowly migrating (req. for the Phase 1(b) upgrade.)
- **Spectrometer:** Excellent mass resolution.

• LHCb – into the future

- L0 hardware trigger (1 MHz max) gone!
- Full software trigger, with calibrated detector.
- Large increase in eff, especially for hadronic modes!

Preliminaries (1)

$$N_{obs}(\Xi_{bc} \to f) = \left(\sigma_{pp \to \Xi_{bc}X} L_{int}\right) \left(B_{tot}(\Xi_{bc} \to f)\right) \left(Acc(LHCb)\right) \left(\varepsilon_{sel}\right)$$

□ Theory expectation: $\sigma(\Xi_{bc}^{+}) \sim \sigma(\Xi_{bc}^{-0}) \cong 20$ nb at 14 TeV, ~10 nb each at 7 TeV □ For reference $\sigma(bb) \sim 70$ ub (at least 1 b in LHCb acceptance).

J.-W. Zhang, et al., PRD 83 034026 (2011)

All numbers

here are unofficial!

 $\square \text{ In Run 1: } L_{\text{int}} = 3 \text{ fb}^{-1}, \quad (2015+2016) \text{ } L_{\text{int}} \sim 1.8 \text{ fb}^{-1}.$

 $N_{prod}(\Xi_{bc}^{+}) \approx N_{prod}(\Xi_{bc}^{0}) \cong \left[10 \text{ nb} \times 3 \text{ fb}^{-1} + 20 \text{ nb} \times 1.8 \text{ fb}^{-1}\right] \approx 66 \times 10^{6}$

□ Cannot "afford" $B_{tot} < 10^{-5}$, until after LHCb Phase 1b upgrade (unless $\sigma(\Xi_{bc})$ is much larger than expected)

- □ Most Ξ_{bc} decays have 3 BFs involved: Assume all CF, and are ~5% each: B_{tot} = 1.25 x 10⁻⁴ → After BFs: ~ 8250
 □ Geometric acceptance for 5 tracks within LHCb acceptance (10 < θ < 400 mrad): Acc ~ 0.15 → After Acc(det): ~ 1200
 □ In this scenario, one would want to have ε_{tot} > ~1% to have a shot at discovery with 1 mode.
- **D** To give a **VERY ROUGH** idea (from simulation of Ξ_{bc} , $\tau = 400$ ps) in Run 1
 - $\Box J/\psi \text{ modes:} \qquad \epsilon_{sel}(\Xi_{bc} \rightarrow J/\psi \Lambda_c, J/\psi \rightarrow \mu^- \mu^+, \Lambda_c^+ \rightarrow pK^- \pi^+) \sim 3\%$
 - \Box Fully hadronic: $\epsilon_{sel} (\Xi_{bc} \rightarrow \Lambda_c^+ D^0, D^0 \rightarrow K^- \pi^+, \Lambda_c^+ \rightarrow p K^- \pi^+) \sim 0.6\%$
 - \Box Much of difference from L0 E_T thresholds for hadronic trigger (dimuons are golden!)

Probably need to combine many modes to increase our chances here..

Preliminaries (2)

$N_{obs}(\Xi_{bc} \to f) = \left(\sigma_{pp \to \Xi_{bc}X} L_{int}\right) \left(B_{tot}(\Xi_{bc} \to f)\right) \left(Acc(LHCb)\right) \left(\varepsilon_{sel}\right)$

Large number of possible final states, depending on whether the b or the c undergoes the weak decay first.

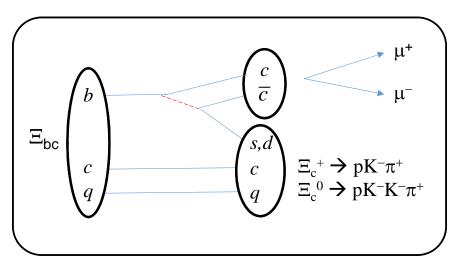
Experimental wish list:

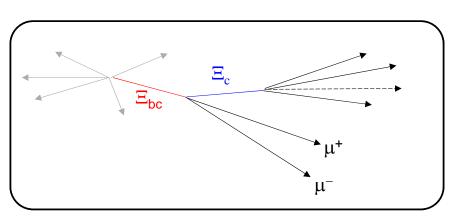
- \Box As large B_{tot} as possible
- \Box As few final state tracks as possible (lose ~ factor of 2–3 in Acc(det) x $\varepsilon_{se/}$ for each extra track)
- □ Largest possible IP (impact parameter) to PV (to suppress PV background).
 - Prefer most/all tracks from tertiary vertices

General challenges / issues

- □ Small production cross-section (and sizeable uncertainty on its value)
- \Box Large uncertainty / unknown absolute BRs for Ξ_{bc} , Ξ_{cc} , Ξ_{c}
- \Box Ξ_{bc} lifetime expected to be short, ~100–300 fs or so.

□ Improved predictions on lifetime or BRs can be a big help for us to focus on most promising modes


□ I will discuss a handful of modes that LHCb can pursue, along with their pros & cons


Classes of final states

- Fully reconstructed: For a discovery, the most convincing evidence will be a narrow mass peak, consistent with the detector resolution, more or less in the expected mass range.
 - Seeing the peak in > 1 decay mode would be a bonus.
- **Partially reconstructed:** Semileptonic decays may provide larger signal rates, but one usually doesn't end up with a sharp mass peak.
 - Counting experiment, using a number of discriminating variables.
 - Data-driven methods for background determination required.
 - B_c was first discovered in J/ $\psi\mu$ at CDF via counting expt.
- Ultimately, we'd want to also investigate the lifetime & production rates/properties, relative BRs as well.

Fully reconstructed decays

Modes with J/ψ

Pros

- $\Box \quad b \rightarrow ccs \text{ is CF}$
- **\Box** High L0 efficiency for J/ ψ , ~90%.
- □ Narrow charm resonances
- □ Normalization/control channel: $B_c \rightarrow J/\psi D_s^+$.
- \Box p,K, π have *moderately large* IP due to $\tau(\Xi_c)$.

Issues

- \Box BFs of $\Xi_{c}^{(+,0)}$ probably not too large, O(1-2%)*.
- □ Physics backgrounds from $b \rightarrow J/\psi X$, random J/ψ +charm, ...

BRs

 $\Box \ B(\Xi_{bc} \rightarrow J/\psi X_{c}) \ B(J/\psi \rightarrow \mu \mu) \ B(\Xi_{c} \rightarrow pK\pi(K))$

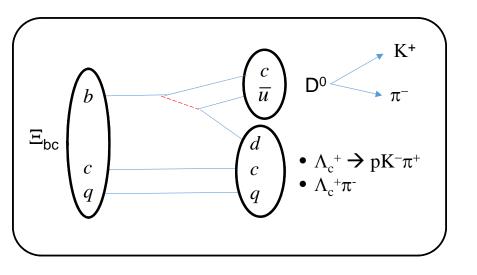
Other modes:

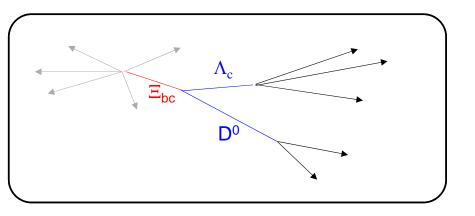
$$\Box J/\psi \Lambda_c, \ \Xi_{bc} \text{ is CS, but larger } \Lambda_c \text{ BF.}$$

$$\Box J/\psi \Lambda_c K$$

□ J/ ψ pK (*b*→*u*, but don't have another charm BF)

Particle	BR (%)	Lifetime (ps)
J/ψ	6.0	-
Λ_{c}^{+}	5.5	~0.20
Ξ _c +	1-2*	~0.45
Ξ_{c}^{0}	1-2†	~ 0.13


* e.g see: Yu et al, arXiv:1703.09086. † My estimate 7


$$\frac{N(\Xi_{bc}^{+} \rightarrow J/\psi \Xi_{c}^{+})}{N(B_{c}^{+} \rightarrow J/\psi D_{s}^{+})} = \frac{f_{\Xi_{bc}^{+}}}{f_{B_{c}^{+}}} \bullet \frac{B(\Xi_{bc}^{+} \rightarrow J/\psi \Xi_{c}^{+})}{B(B_{c}^{+} \rightarrow J/\psi D_{s}^{+})} \bullet \frac{B(\Xi_{c}^{+} \rightarrow pK\pi)}{B(D_{s}^{+} \rightarrow KK\pi)} \bullet \mathcal{E}_{rel}$$

Guesses: (0.3) (~0.5?) (~0.3) (0.8) ~ 0.04

In Run 1 + 2015 + 2016, we have/expect ROUGHLY 300 reco'd B_c→J/ψD_s⁺.
 → Could expect: N(Ξ_{bc}→J/ψΞ_c⁺) ~ 12
 Clearly, large uncertainties here, but perhaps some reason for optimism.

□ Much more comfortable with $N(B_c \rightarrow J/\psi D_s^+) = 3000 ! \odot$ □ LHCb upgrade stats!

Modes with 2 charm hadrons

Pros

- $\Box \quad b \rightarrow cud \text{ is CF}$
- □ Narrow charm resonances
- **CF** decays of charm hadrons
- □ Normalization/control channels: $B^+ \rightarrow D^0 D_s^+$,
- □ *Moderately large* IPs due to intermediate charm.

Issues

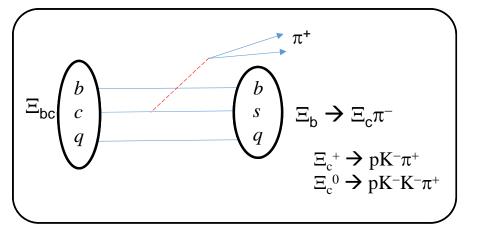
- **G** Fully hadronic: $\varepsilon(L0) \sim 25\%$.
- □ Internal tree (color suppressed)
- \Box Physics backgrounds from pp $\rightarrow ccX$, bb $\rightarrow ccX$, ...

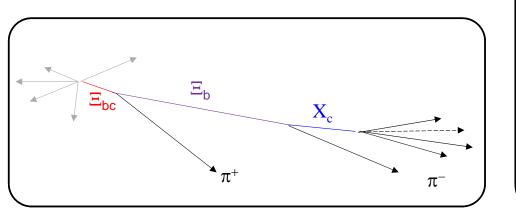
BRs

 $\Box \quad B(\Xi_{bc} \rightarrow D^{0} \Lambda_{c}) \ B(D^{0} \rightarrow K\pi) \ B(\Lambda_{c} \rightarrow pK\pi)$

Other

□ Could add $D^0 \rightarrow K\pi\pi\pi$, could provide ~50% more signal □ $\Lambda_c D^0 \pi$.


Particle	BR (%)	Lifetime (ps)
Λ_{c}^{+}	5.5	0.20
D^0	4.0	0.41


$$\frac{N(\Xi_{bc}^{+} \rightarrow D^{0}\Lambda_{c}^{+})}{N(B^{+} \rightarrow D^{0}D_{s}^{+})} = \frac{f_{\Xi_{bc}^{+}}}{f_{B^{+}}} \bullet \frac{B(\Xi_{bc}^{+} \rightarrow D^{0}\Lambda_{c}^{+})}{B(B_{c}^{+} \rightarrow D^{0}D_{s}^{+})} \bullet \frac{B(\Lambda_{c}^{+} \rightarrow pK\pi)}{B(D_{s}^{+} \rightarrow KK\pi)} \bullet \mathcal{E}_{rel}$$

Guesses: (0.001) (~0.5 ?) (~1) (0.3) ~ 1.5×10⁻⁴
[known]

□ In Run 1, we reconstruct ROUGHLY 20,000 B⁺→ $D^0D_s^+$. (LHCb-PAPER-2013-060)

- □ Could expect: $N(\Xi_{bc} \rightarrow D^0 \Lambda_c) \sim 7$ (Run 1 + 2015 + 2016) □ Perhaps ~10 with $D^0 \rightarrow K \pi \pi \pi$.
- \Box Again, large uncertainties here on BRs, $f_{\pm bc}$.

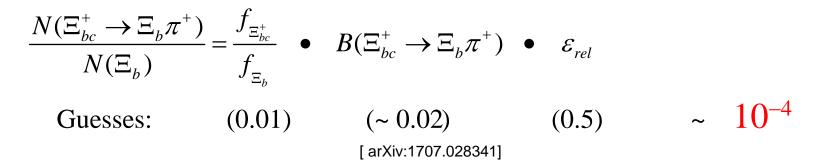
Modes with a *b*-hadron

Pros

- \Box *c* \rightarrow *sud* is CF
- \Box Narrow, clean Ξ_b signal in data
- \Box Normalization to inclusive Ξ_{b} decay
- □ Daughter IPs are "large" due to $\tau(\Xi_b)$ ~1.5 ps, except for π^+ from Ξ_{bc} .

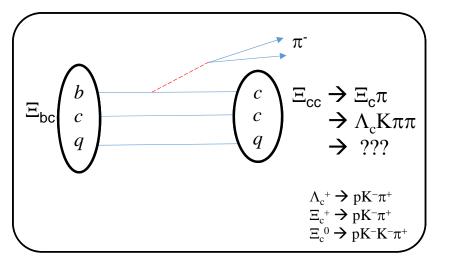
Issues

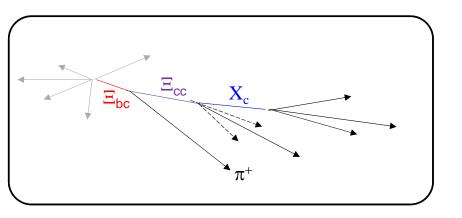
- **Given Schultz Fully hadronic:** $\varepsilon(L0) \sim 25\%$
- □ Relatively low yield of fully-reco'd Ξ_b in data □ Run 1: ~6000 $\Xi_b^{(0,-)}$ signal.


 \Box backgrounds from Ξ_{b} + random π^{+} .

BRs

 $\square B(\Xi_{bc} \rightarrow \Xi_{b}\pi) B(\Xi_{b} \rightarrow \Xi_{c}\pi) B(\Xi_{c}, \rightarrow pK(K)\pi)$


Other modes with b-hadrons:


- $\Box \Lambda_{b}\pi^{+}: \quad \text{Larger } \Lambda_{c} \text{ BF, but } \Xi_{bc} \text{ is CS.}$
- $\Box B^{0}\Lambda^{0}, \quad \Lambda_{b}K_{S} \text{ Low } \varepsilon_{tot}(\Lambda^{0}), \varepsilon_{tot}(K_{S})$
- $\Box \Lambda_{b}K\pi^{+}$: Phase space?
- \Box B⁰pK: phase space supp?
- $\Box B^{0}p: \qquad \Xi_{bc} \text{ is CS.}$

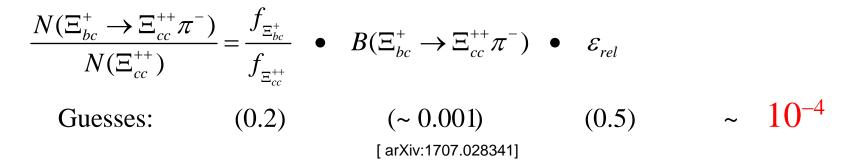
- □ In Run 1, we have **ROUGHLY** 4000 $\Xi_b^0 \rightarrow \Xi_c^+ \pi^-$. (LHCb-PAPER-2014-021)
- □ Again, sizeable uncertainties..
- Not super-promising, until phase 1b upgrade, may be worth further exploration though.

Modes with a Ξ_{cc} -baryon

Pros

- $\Box \ b \rightarrow cud \text{ is CF}$
- □ Know $m(\Xi_{cc})$ now tight mass cut around Ξ_{cc} will provide very large BG suppression.
- □ Normalization to inclusive Ξ_{cc} signal
- $\Box \pi^{-} \text{ from } \Xi_{bc} \text{ is high } p_{T}.$
- □ *Moderately large* IPs

Issues

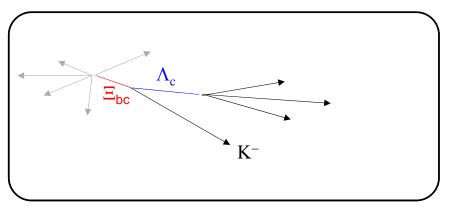

- **Given Schultz Fully hadronic:** $\varepsilon(L0) \sim 25\%$
- □ Expected signal yield may be too low (~500 "prompt" $\Xi_{cc}^{++} \rightarrow \Lambda_c K \pi \pi$)
- \Box Exploration of other $\Xi_{cc}^{+(+)}$ modes very important.

BRs

 $\Box \ B(\Xi_{bc} \rightarrow \Xi_{cc} \pi) \ B(\Xi_{cc} \rightarrow \Xi_{c} \pi, \Lambda_{c} K \pi \pi) \ B(\Lambda_{c}, \Xi_{c}, \rightarrow p K \pi)$

Other modes

- \Box Any additional clean / high yield Ξ_{cc} modes
- $\Box \ \Xi_{cc} \rightarrow \Xi_c \pi \pi \pi \ (similar \ \varepsilon \ to \ \Lambda_c \mathsf{K} \pi \pi)$



- □ Scaling from LHCb-PAPER-2017-018, we expect **ROUGHLY 500** $\Xi_{cc}^{++} \rightarrow \Lambda_c K \pi \pi$ signal in Run 1 + 2015 + 2016 data sets.
- \Box Additional Ξ_{cc} modes would help here, if they bring with them large signal yields.
- ❑ Would need sizeable gains in Ξ_{cc} signal yields to make such modes viable (unless above estimates are way off)
 - □ Perhaps with LHCb upgrade + more Ξ_{cc} modes..

Modes with one charm hadron

❑ W-exchange processes, b→u, or penguin decays

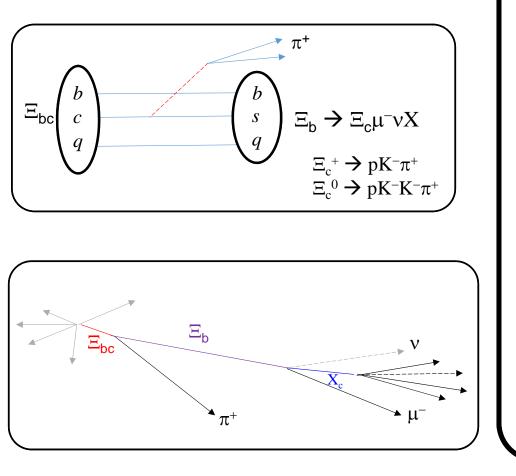
Pros

- \Box Only 1 charm BF (20 100 X less reduction)
- □ Narrow charm resonance.
- □ *Moderately large* IPs
- \Box Hadron from Ξ_{bc} vertex high p_T .

Issues

- **Given Schultz Fully hadronic:** $\varepsilon(L0) \sim 25\%$
- **Combinatorial backgrounds.**
- □ Could BR for such decays be O(10⁻⁴) [or larger]? BRs

 $\Box \quad B(\Xi_{bc} \rightarrow \Lambda_{c} K) B(\Lambda_{c}, \rightarrow p K \pi) \quad [\text{ not } 3!]$


Some other modes with 1 *c*-hadron:

- $\Box \ \Xi_c^{+}\pi^{-}: \text{ but smaller BR for } \Xi_c^{+}.$
- $\Box \ \Xi_{c}^{0}\pi^{+}: 1 \text{ extra track, maybe longer}[?] \ \tau(\Xi_{bc}^{+}) \text{ compensates.}$
- $\Box \equiv_{c} \pi \pi$, $\Lambda_{c} K \pi$: Two tracks with small IP, instead of one.
- $\Box \ \Lambda_{c}^{+}\pi(\pi) : CS, \text{ but } B(\Lambda_{c}^{+}) > B(\Xi_{c}^{+})$
- \Box D⁰pK: 4% BF for D⁰, tight PID on "pK" to suppress BG.
- **D**⁰**p:** CS, 4% BF for D⁰, tight PID on proton, **only 3 tracks**.
- **D**⁺pK: 9% BF for D⁺, τ (D⁺) ~1 ps, tight PID on "pK"
- $\Box \ \Xi_c \phi: \text{Narrow } \phi \text{ resonance (Penguin)}$

Semileptonic decays

Semileptonic decays

Can get very large gain by considering SL b - decays

Pros

 $\square N(\Xi_b \rightarrow \Xi_c \mu \nu X) \sim 15 \times N(\Xi_b \rightarrow \Xi_c \pi)$

- □ Daughter IPs are "large" due to $\tau(\Xi_b)$ ~1.5 ps, except for π^+ from Ξ_{bc} .
- \Box Normalization to inclusive Ξ_{b} decay

Issues

No sharp Ξ_b mass peak.
 Backgrounds from Ξ_b + random π⁺.
 BRs

$$\Box B(\Xi_{bc} \rightarrow \Xi_{b} \pi) B(\Xi_{b} \rightarrow \Xi_{c} \mu \nu X) B(\Xi_{c} \rightarrow p K(K) \pi)$$

- □ Can do "neutrino reconstruction" for Ξ_b , but generally assume Ξ_b comes from PV.
 - \Box How much is p(v) resolution degraded ? (needs study)
 - □ May still get narrow peak in $\delta m = m(\Xi_c \mu \nu \pi) m(\Xi_c \mu \nu)$
- □ MVA critical to distinguish backgrounds from signal.
- □ Modes with 2 tracks from Ξ_{bc} vertex to pin down Ξ_{bc} vertex? *e.g.* $\Xi_{bc} \rightarrow \Lambda_b K^- \pi^+$, where $\Lambda_b \rightarrow \Lambda_c \mu \nu X$

Other modes under discussion.

- There are quite a few other ideas for modes to investigate within LHCb.
 - Two-body charmless modes: very small BF, but only 1 BF enters. Also higher selection efficiency.
 - $D^0 D^0 p$
 - $J/\psi D^0 p$
 - $\Xi_{bc} \rightarrow \Xi_{b} \mu^{+} \nu X$, $\Xi_{b} \rightarrow \Xi_{c} \pi^{-}$
 - $\Xi_{bc} \rightarrow \Xi_{b} \mu^{+} \nu X$, $\Xi_{b} \rightarrow \Xi_{c} \mu^{-} \nu \rightarrow \text{Signature: } \Xi_{c} \mu^{+} \mu^{-}$
 - Bright ideas very welcome for new modes to consider!
 - Few tracks as possible
 - Large IP
 - Large BF

Summary

- With discovery of Ξ_{cc} , we need to ramp up our efforts on Ξ_{bc} .
- Challenging: $B_{tot} \ge \varepsilon_{tot}$ mustn't exceed ~10⁻⁷, to have a shot with Run 1 + Run 2 data.
 - Many possible modes, a few appear more promising than others.
 - We have a chance, but probably need to combine several of the most promising modes.
 - We should be careful in "writing off" modes. Some predictions come with large uncertainties, and m'ment sometimes challenges prediction(s). Case in point:

Penguin/Annihilation diagrams $B(B_c^+ \rightarrow D^0 K^+) = 0.13 \pm 0.04$ LHCb-PAPER-2016-058 LHCb-PAPER-2016-058

- I have not discussed other double-heavies, e.g. Ω_{bc} , or Ξ_{bb} , as these are even more difficult (although no less interesting!)
- If we do not discover Ξ_{bc} in Run1 + Run 2, it should certainly be well within reach with Phase 1(b) upgrade of LHCb.