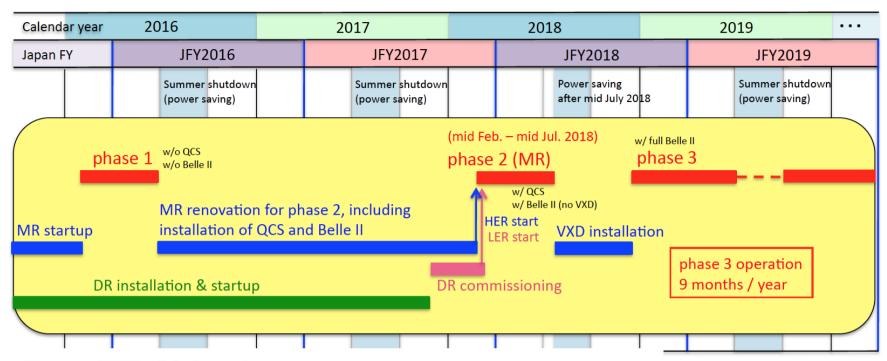
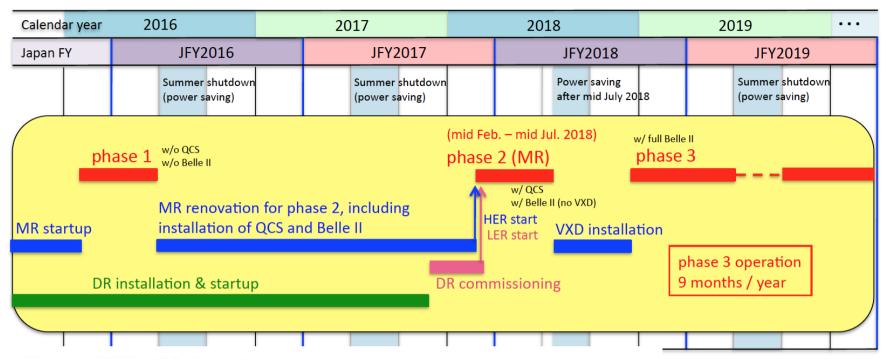

Hadron Physics at


Roberto Mussa INFN Torino

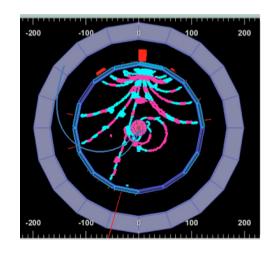
	Energy (GeV) LER/HER	У	$\epsilon_{_{_{ m X}}}$ (nm) LER/HER	ξ _y LER/HER	φ (mrad)	I _{beam} (A) LER/HER	Luminosity (cm ⁻² s ⁻¹) x 10 ³⁴
KEKB Achieved	3.5/8.0	5.9/5.9	18/24	0.129/0.090	11	1.64/1.19	2.11
SuperKEKB	4.0/7.0	0.27/0.41	3.2/2.4	0.09/0.09	41.5	3.6/2.62	80

KEKB short term plans: startup schedule

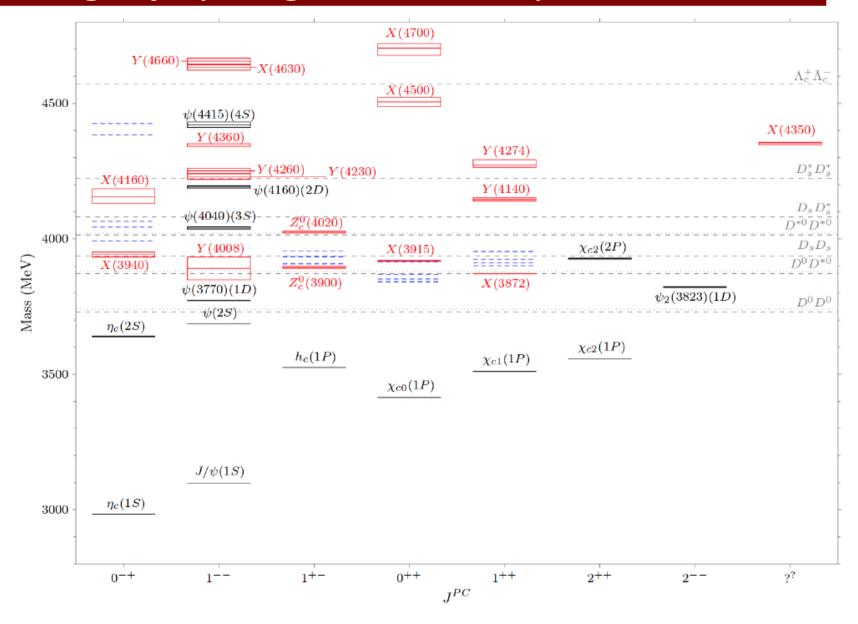


- Summer 2017: global cosmic ray run
- September 2017: ARICH and forward ECL
- October 2017: start Beast Phase II VXD commissioning
- Nov 2017 Summer 2018: Phase 2 commissioning, with two main goals:
 - √ tune SuperKEKB with nano-beams eventually reach KEKB design luminosity
 - ✓ ensure background levels are compatible with vertex detector operation
 - √ then, if compatible with the above, also do some physics without vertex detectors
- Summer 2018: install vertex detectors
- End 2018: full detector operation start of Physics run

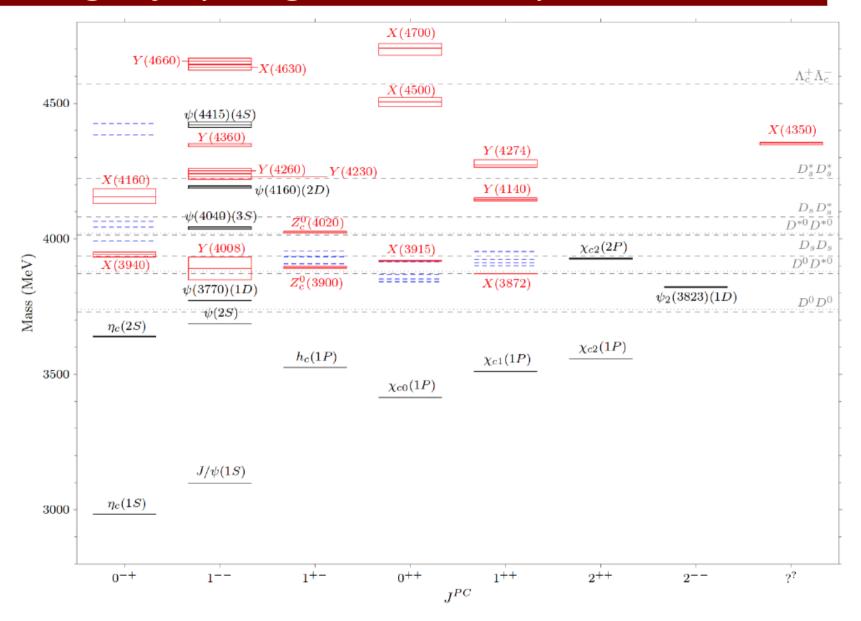
11/4: Belle-II roll in



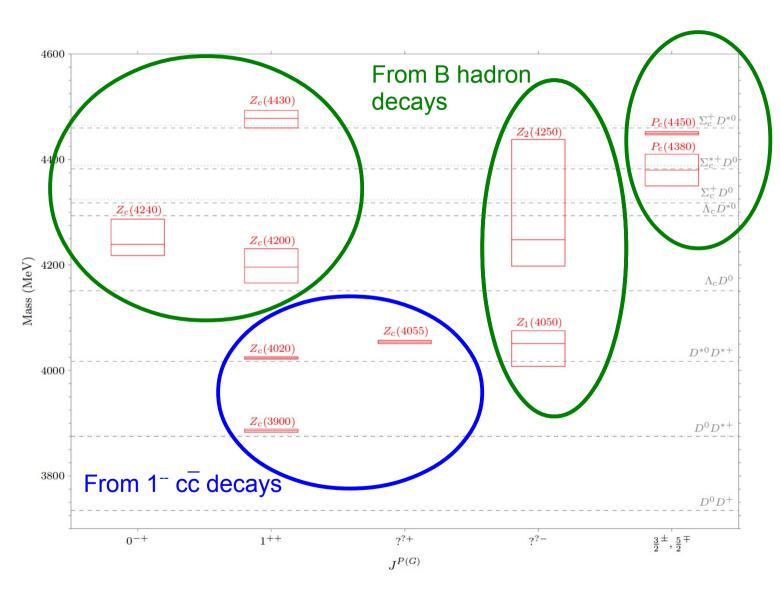
KEKB short term plans: startup schedule



- Summer 2017: global cosmic ray run
- September 2017: ARICH and forward ECL
- October 2017: start Beast Phase II VXD commissioning
- Nov 2017 Summer 2018: Phase 2 commissioning, with two main goals:
 - √ tune SuperKEKB with nano-beams eventually reach KEKB design luminosity
 - √ ensure background levels are compatible with vertex detector operation
 - √ then, if compatible with the above, also do some physics without vertex detectors
- Summer 2018: install vertex detectors
- End 2018: full detector operation start of Physics run


6/2017: cosmics in B field

The legacy of 1st generation B-factories...



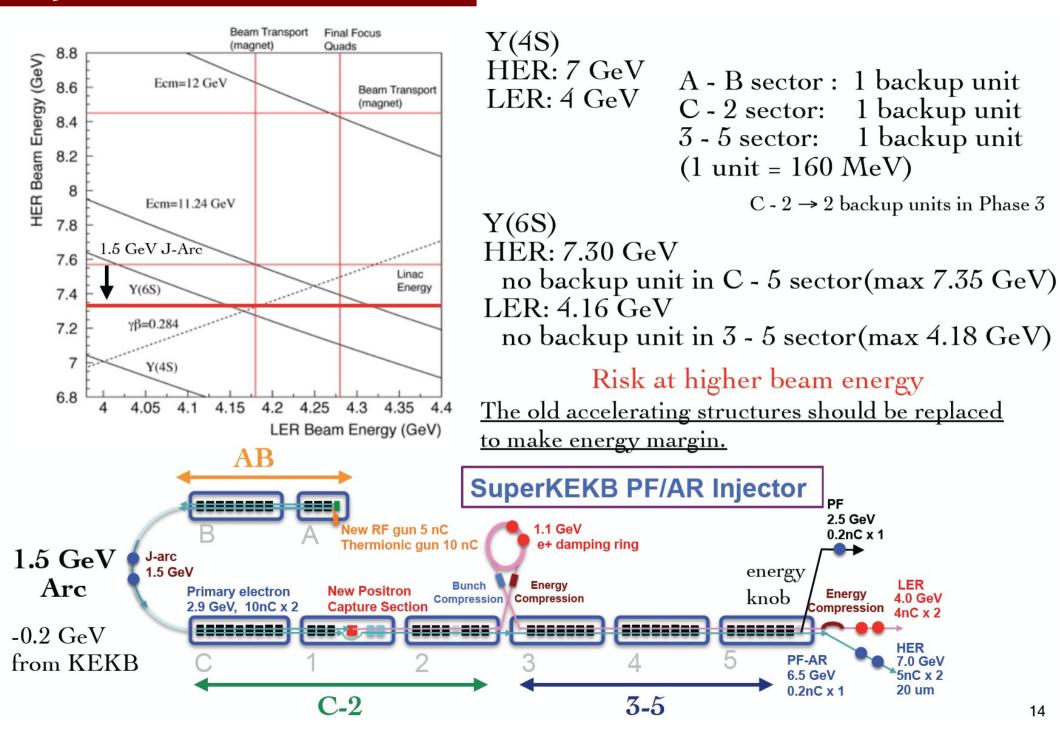
The legacy of 1st generation B-factories...

Challenge for the new generation: sort out this mess...

Charged charmoniumlike: width vs production mechanism

Motivations for non-Y(4S) running

Energy	Outcome	Lumi (fb-1)	Comments
Υ(1S) On	N/A	60+	-No interest identified -Low energy
Υ(2S) On	New physics searches	20+	-Requires special trigger
Υ(1D) Scan	Particle discovery	10-20	-Already accessible in B Factories?
Υ(3S) On	Many -onia topics	200+	-Known resonance -Luminosity requirement: Phase 3
Υ(3S) Scan	Precision QED	~10	-Understanding of beam conditions needs
Υ(2D) Scan	Particle discovery	10-20	-Unknown mass
>Υ(4S) On	Particle discovery?	10+?	-Energy to be determined
Υ(6S) On	Particle discovery?	30+?	-Upper limit of machine energy
Single γ	New physics?	30+	-Special triggers required


				$B^{(*)}\bar{B}^{**}$	11.00 - 11.07
Energy	Outcome	Lumi (fb-1)	Comments	$B_s^{(*)}\bar{B}_s^{**}$	11.13 - 11.26
Υ(1S) On	N/A	60+	-No interest identified -Low energy	$A_{b} \bar{A}_{b}$ $B^{**} \bar{B}^{**}$	$ \begin{array}{r} 11.24 \\ 11.44 - 11.49 \end{array} $
Υ(2S) On	New physics searches	20+	-Requires special trigger	$B_s^{**}\bar{B}_s^{**}$	11.48 - 11.68
Υ(1D) Scan	Particle discovery	10-20	-Already accessible in B Factories?	$\Lambda_b \bar{\Lambda}_b^{**}$ $\Sigma_b^{(*)} \bar{\Sigma}_b^{(*)}$	11.53 - 11.54 $11.62 - 11.67$
Υ(3S) On	Many -onia topics	200+	-Known resonance -Luminosity requirement: Phase 3	$\frac{\Lambda_b^{**} \bar{\Lambda}_b^{**}}{$	11.82 - 11.84
Υ(3S) Scan	Precision QED	~10	-Understanding of beam conditions nee	ded	
Υ(2D) Scan	Particle discovery	10-20	-Unknown mass		
2014010	I I	40.0			

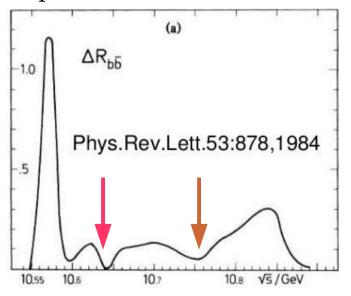
		Y(6S)	Yk	?	Y(2[D)	Y(1D)			
Experiment	Sang/Off	Dogo	· ~(5S)	<u> </u>	$\overline{4S}$	· ~ ((3S)	Υ (2) C)	Y ($\overline{1S}$
Experiment	scans/On.	nes.		,	,	48) MeV	`	55) 5 MeV		,	,	$\frac{15}{\text{MeV}}$
	${\rm fb^{-1}}$		fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}		fb^{-1}		fb^{-1}	
CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54		R_b	scan	433	471	30	122	14	99	_	_
Belle	100		121	36	711	772	3	12	25	158	6	102

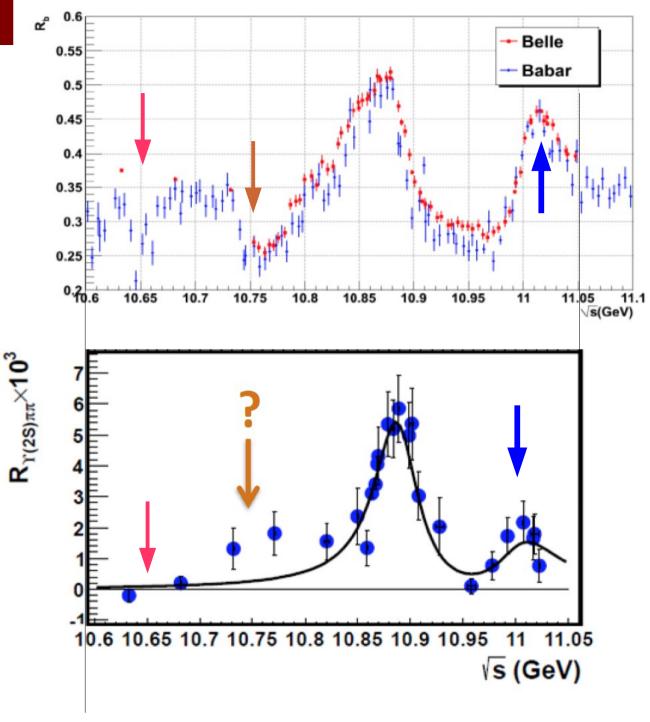
Threshold, GeV/c^2

Particles

Super KEKB limitations

Scenarios for Phase-II

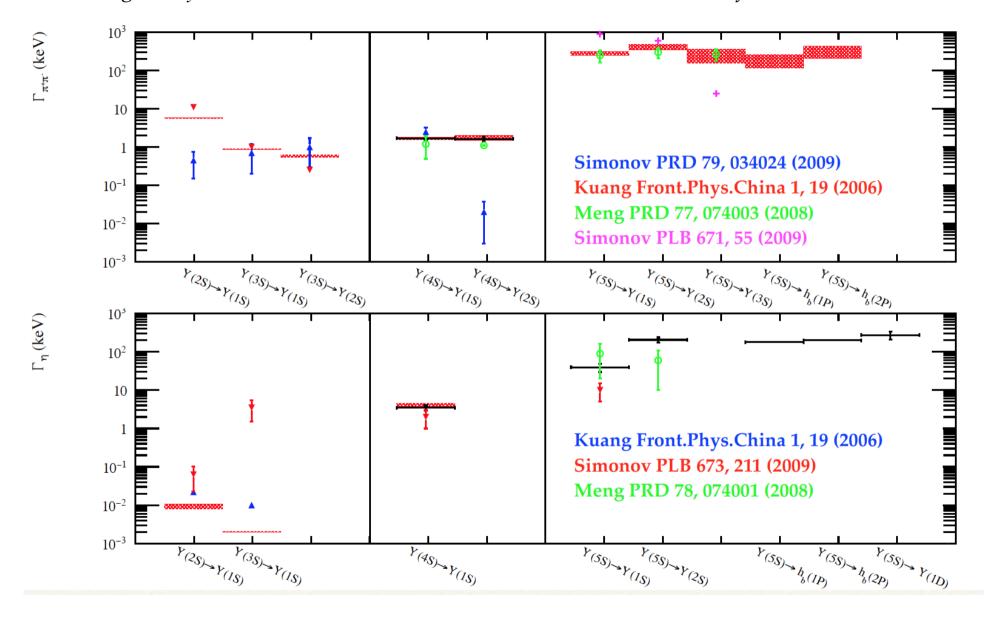

Where to run for Ldt ~ 10 fb^{-1} ?


• E = 10.65 GeV

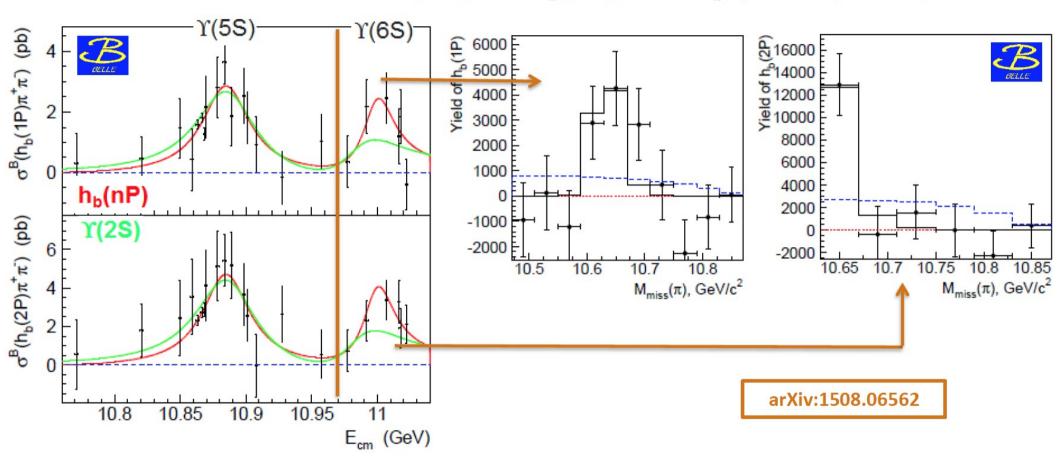
Dip in Rb, just on B*B* threshold

- E = 10.75 GeVOn the first $Z_b \pi$ threshold Above Rb drop at 10.74 Bump observed in R_v
- E = 11.02 GeV
 Y(6S) peak,
 6pt scan (1 fb⁻¹ each) in Belle-I

Note: features predicted by theory (coupled channel model)

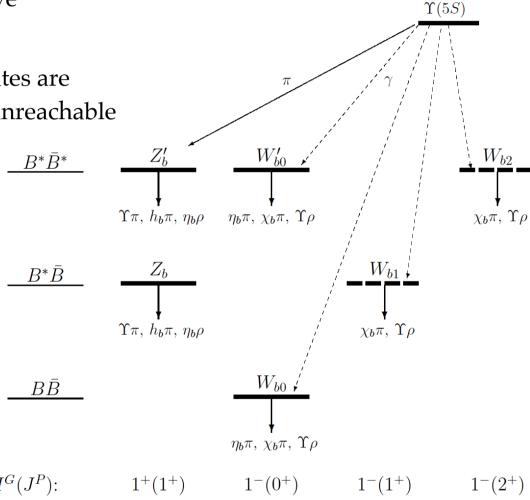


Heavy Hadron Spectroscopy at LHC

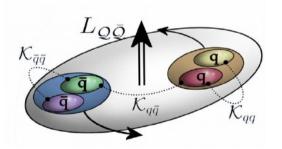

R.Mussa, Hadron Physics Prospects at Belle-II

The puzzle of eta/dipion transitions in bottomonium

Still lacking a unified theoretical model to describe the observed evolution of the cross section

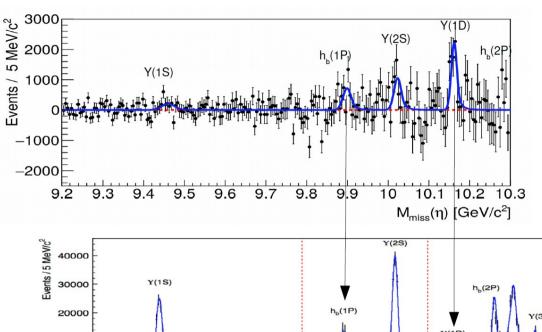

Preliminary evidence for $\Upsilon(6S) \rightarrow \pi \pi h_b(nP)$, via $\pi Z_b^{\pm}(106XX)$ decay

► Resonance structure of $\Upsilon(6S) \to \pi\pi\Upsilon(pS)$ decays not fully studied


The molecular model of the Z_{h} states predicts neutral partners (W_b) with J=0,1,2 which are expected on the same energy range, and should be reachable from Y(5,6S) via radiative transitions.

Further hadronic transitions to W_b states are expected above W_b threshold (11.3) unreachable at present.

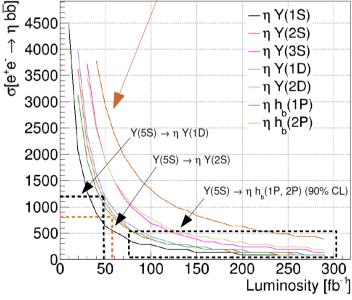
$$I^G(J^P)$$
: $1^+(1^+)$ $1^-(0^+)$ $1^-(1^+)$ $1^-(2^+)$


		charmonium	bottomo	nium-like	
Label	J^{PC}	State	Mass [MeV]	State	Mass [MeV]
X_0	0++	_	3756	_	10562.2
X_0' X_1	0++	_	4024	_	10652.2
X_1	1++	X(3872)	3890	_	10607.2
Z	1+-	$Z_c^+(3900)$	3890	$Z_b^{+,0}(10610)$	10607.2
Z'	1+-	$Z_c^+(4020)$	4024	$Z_h^+(10650)$	10652.2
X_2	2++	<u>_</u>	4024	_	10652.2
Y_1	1	Y(4008)	4024	$Y_b(10891)$	10891.1
Y_2	1	Y(4260)	4263	$Y_b(10987)$	10987.5
Y_3	1	Y(4290) (or $Y(4220)$)	4292	_	10981.1
Y_4	1	Y(4630)	4607	_	11135.3
Y_5	1	_	6472	_	13036.8

The tetraquark model (Maiani et al.) predicts a full spectrum of states in both bottomonium and charmonium region. We need to better understand the nature of both Y(5S) and Y(6S).

From Y(6S): Y(1,2D) searches in Belle-II

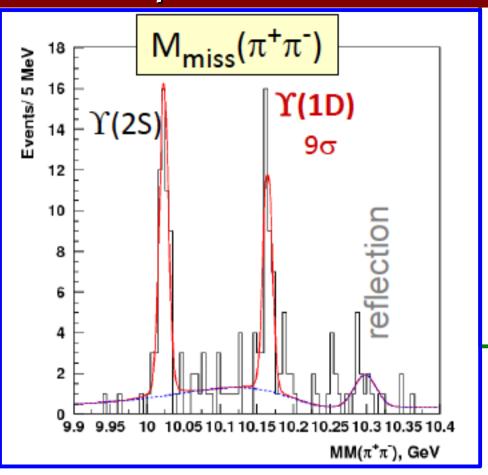
Eta vs dipion transitions with 120 fb⁻¹ at Y(5S)

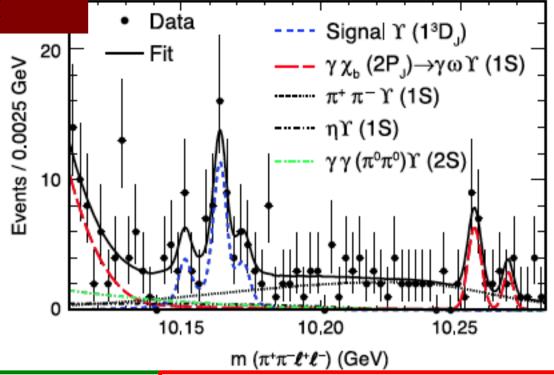

$$\begin{split} \sigma_{\text{Born}}[e^+e^- \to \eta \ Y_{1,2}(1\text{D})] &= (1.50 \pm 0.30 \pm 0.20) \ \text{pb} \\ \sigma_{\text{Born}}[e^+e^- \to \eta \ Y(2\text{S})] &= (0.97 \pm 0.31 \pm 0.19) \ \text{pb} \end{split}$$

$$\begin{split} &\sigma_{\text{Born}}[\text{e}^+\text{e}^-\to \eta \text{ Y(1S)}] < 0.61 \text{ pb} \\ &\sigma_{\text{Born}}[\text{e}^+\text{e}^-\to \eta \text{ h}_{\text{b}}(\text{1P})] < 0.92 \text{ pb} \\ &\sigma_{\text{Born}}[\text{e}^+\text{e}^-\to \eta \text{ h}_{\text{b}}(\text{2P})] < 0.69 \text{ pb} \end{split}$$

- Dipion transitions main discovery tool for charged bottomonia (more $Z_{\mathbf{h}}$'s?)

- Eta transitions : best pathway to Y(2D)?

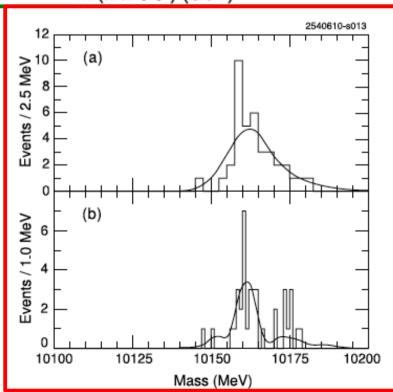



- Y(6S) running will be staged: first 10 fb⁻¹, ... 50 fb⁻¹, ... 150 fb⁻¹

10000

 $MM(\pi^{\dagger}\pi^{\dagger})$, GeV/c^2

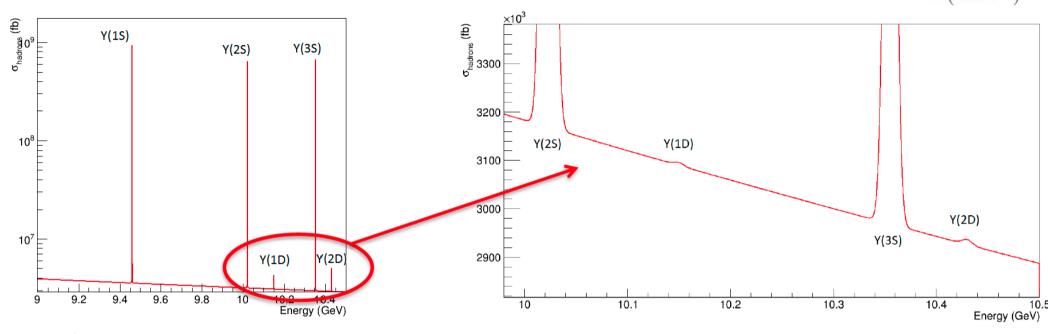
Y(1D) triplet still unresolved


Belle (from 5S) $10164.7 \pm 1.4 \pm 1.0 \text{ MeV}$

BaBar (from 3S) $10164.5 \pm 0.8 \pm 0.5$ MeV

CLEO (from 3S) $10161.1 \pm 0.6 \pm 1.6$ MeV

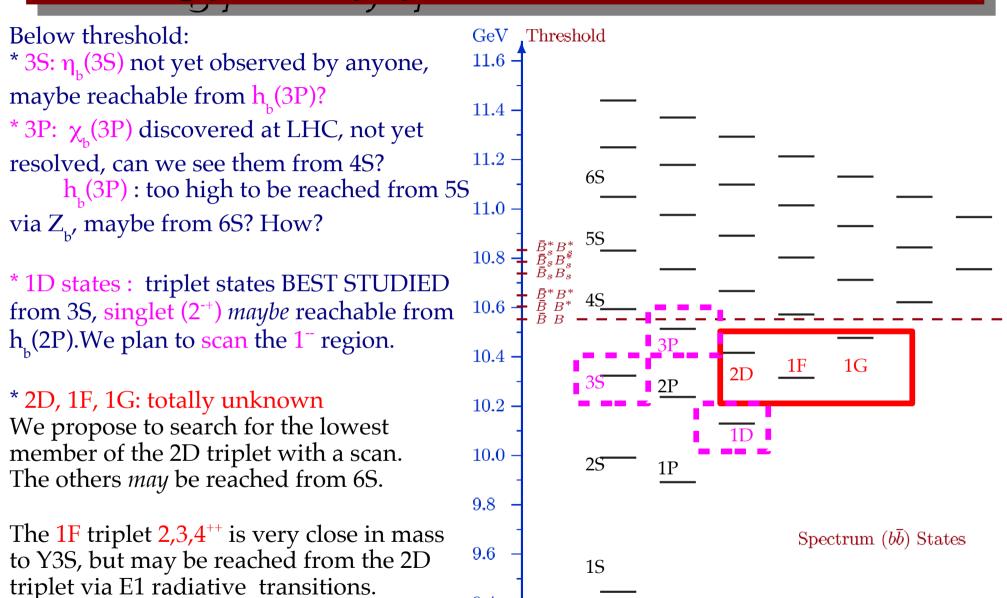
Heavy Hadron Spectroscopy at LHC


R.Mussa, Hadron Physics Prospects &

Scanning $Y(1,2^3D_1)$?

Observable: e+e- to hadrons

Continuum cross section: $\sigma = N_c Q_f^2 \frac{86.8 \text{ nb}}{s \text{ (GeV}^2)}$



Search for 1D: 7 point scan (5 MeV steps) around 10.15 GeV

Search for 2D: 7 point scan (5 MeV steps?) around 10.43 GeV

IF the 2S scan is successful, we may envisage a longer run on 2D peak and search for 1F states (single photon spectrum, probably large background from ISR Y(3S))

Missing pieces of spectrum below threshold

9.4

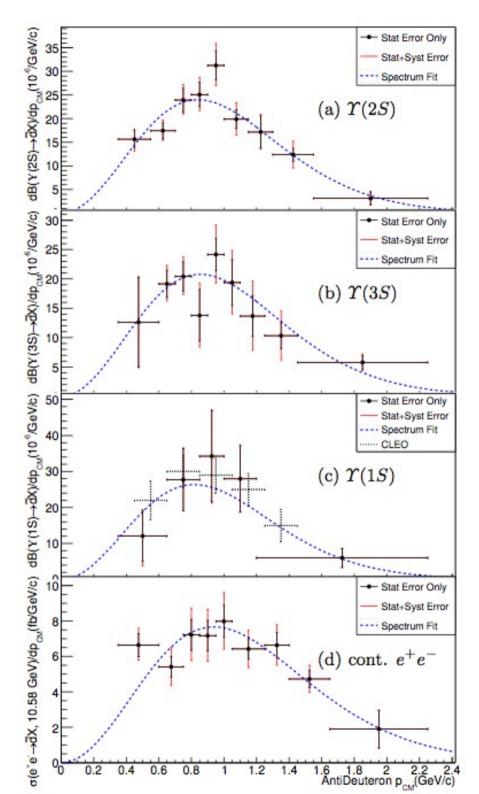
Antinuclei in Y(3S) decays

CLEO results:

$$\mathcal{B}^{\text{dir}}(\Upsilon(1S) \to \bar{d}X) = (3.36 \pm 0.23 \pm 0.25) \times 10^{-5}.$$

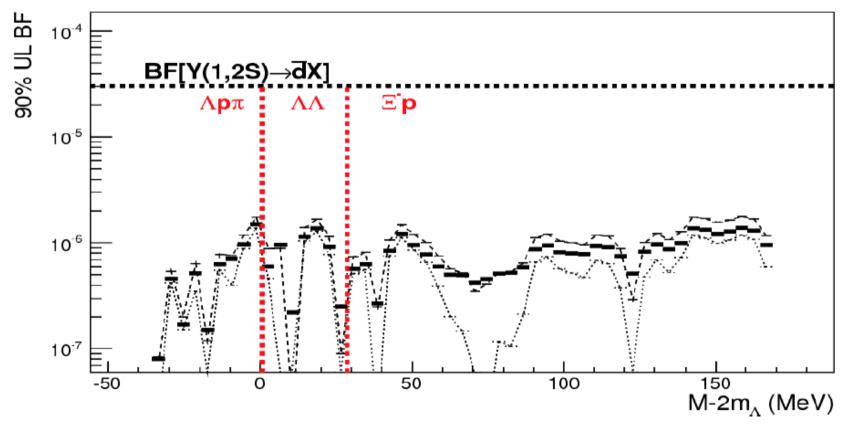
$$\mathcal{B}(\Upsilon(2S) \to \bar{d} + X) = (3.37 \pm 0.50 \pm 0.25) \times 10^{-5}$$

BABAR results:


Resonance	Onpeak	# of Υ Decays	Offpeak
$\Upsilon(4S)$	$429{\rm fb}^{-1}$	463×10^{6}	$44.8{\rm fb}^{-1}$
$\Upsilon(3S)$	$28.5{ m fb}^{-1}$	116×10^6	$2.63{\rm fb^{-1}}$
$\Upsilon(2S)$	$14.4{\rm fb}^{-1}$	98.3×10^{6}	$1.50{ m fb^{-1}}$

Process	Rate
$\mathcal{B}(\varUpsilon(3S) o ar{d}X)$	$(2.33\pm0.15^{+0.31}_{-0.28})\! imes\!10^{-}$
$\mathcal{B}(\varUpsilon(2S) o ar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-}$
$\mathcal{B}(\varUpsilon(1S) o ar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 {\rm GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01})\mathrm{fb}$
$rac{\sigma(e^+e^- o ar{d}X)}{\sigma(e^+e^- o ext{Hadrons})}$	$(3.01 \pm 0.13^{+0.37}_{-0.31}) \times 10^{-}$

Production mechanism still unclear: coalescence? Associated $d\overline{d}$ production not checked by Babar Good target for future Y(3S) decays samples

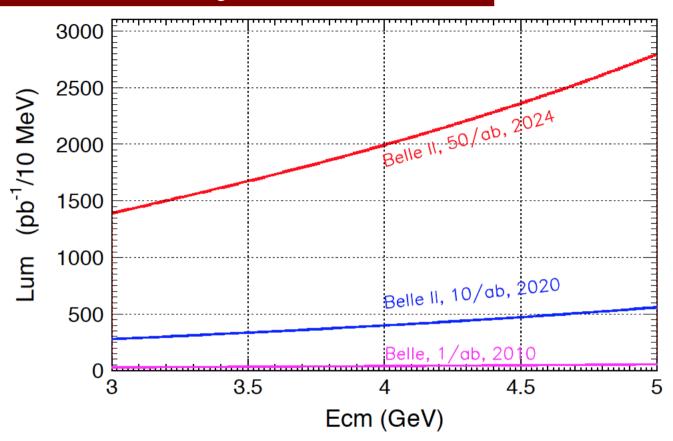

Heavy Hadron Spectroscopy at LHC

R.Mussa, Hadron Physics

Y(3S) to exa-quarks

Belle has extensively searched for the weakly bound Jaffe's H-dibaryon in Y(1,2S) in a broad mass range, setting limits at $O(10^{-1})$ the measured deuteron production

Belle-II will further investigate these channels, both with fully reconstructed final modes, and in missing mass.


Y(4S) running: ISR luminosity

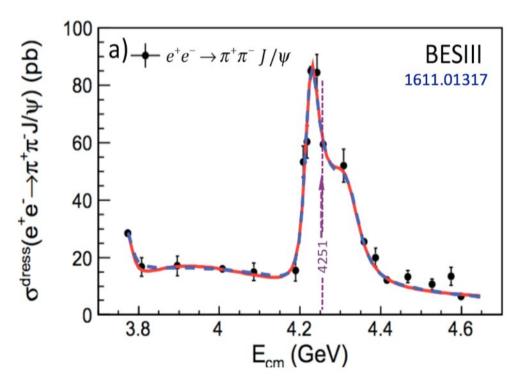
Access to vector states

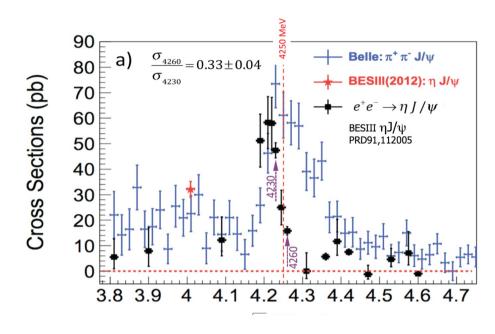
Detailed scan of all hadronic transitions

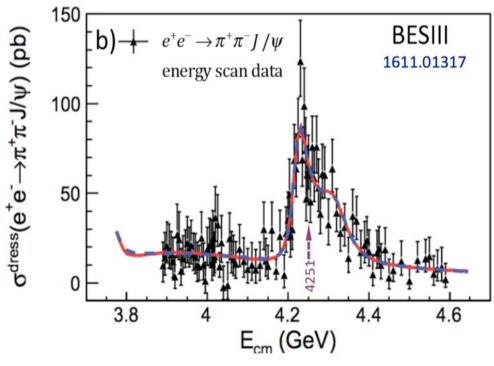
Complementary to detailed searches at BES-III

Statistical sensitivities for 10(50) fb⁻¹ are given below:

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states
$\pi^+\pi^-J/\psi$	4.23	7.5 (3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	$Y(4260), Y(4360), Y(4660), Z_c(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	15 (6.5)	$Y(4220), Y(4390), Z_c(4020), Z_c(4025)$
$\omega\chi_{c0}$	4.23	35 (15)	Y(4220)


Y(4260) news from BES-III


Y(4260) → ηJ/ψ?


The Y(4260) may actually be the sum of two states, as suggested by high statistics scans and eta transitions:

2 BW res. fit preferred over 1 BW res. fit by $>7\sigma$

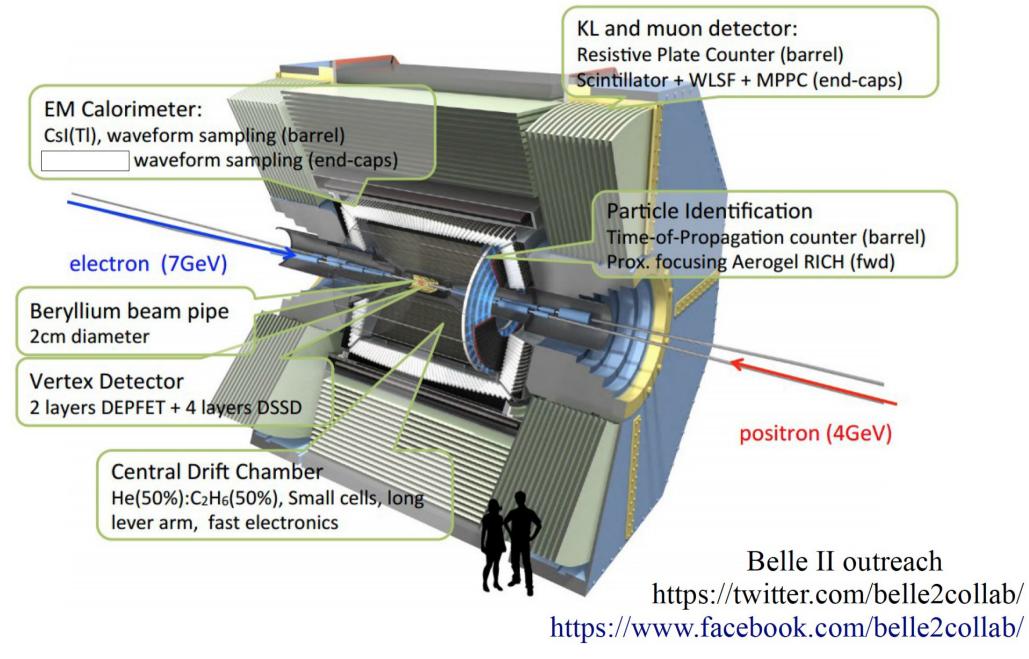
$$M_1 = 4220 \pm 4 \text{ MeV}/c^2$$
 $\Gamma_1 = 44 \pm 5 \text{ MeV}$
 $M_2 = 4320 \pm 13 \text{ MeV}/c^2$ $\Gamma_2 = 101^{+27}_{-22} \text{ MeV}$

Wrapping it up

Belle-II hopes to do some valuable physics even during phase-II run, without low momentum tracking, and no vertexing.

A pilot run on Y(6S) peak, even with only 20fb⁻¹, will give us about the 10x data taken in Belle-I. But it is quite risky in phase II This will be a pilot run, to plan future studies in this interesting region.

Searches for exotics are been proposed at 10.65+10.75 GeV


At least 300 fb⁻¹ at (and about) the Y(3S) peak are needed to address the following hot topics:

- Rare η transitions Spectroscopy of D waves
- Hindered radiative transitions Exaquarks in Y decays

Scans of the Y(1D) and Y(2D) regions are being planned as well Looking forward showing first results from Belle-II in end 2018

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.52±0.20	1.3±0.6 (<2.2)	1++/2-+	$B \to K(\pi^+\pi^-J/\psi)$ $p\bar{p} \to (\pi^+\pi^-J/\psi) + \dots$ $B \to K(\omega J/\psi)$ $B \to K(D^{*0}\bar{D^0})$ $B \to K(\gamma J/\psi)$ $B \to K(\gamma \psi(2S))$	Belle [85, 86] (12.8), BABAR [87] (8.6) CDF [88–90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BABAR [98] (3.5), Belle [99] (0.4)	2003	ОК
X(3915)	3915.6 ± 3.1	28±10	$0/2^{?+}$	$B ightarrow K(\omega J/\psi) \ e^+e^- ightarrow e^+e^-(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19) Belle [102] (7.7)	2004	OK
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- o J/\psi(D\bar{D}^*)$ $e^+e^- o J/\psi \; ()$	Belle [103] (6.0) Belle [54] (5.0)	2007	NC!
G(3900)	3943 ± 21	$52{\pm}11$	1	$e^+e^- o \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	$4008^{+121}_{-\ 49}$	$226{\pm}97$	1	$e^+e^-\to\gamma(\pi^+\pi^-J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B o K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	$?^{?+}$	$e^+e^- o J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!
$Z_2(4250)^+$	$4248^{+185}_{-\ 45}$	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4260)	4263 ± 5	108±14	1	$e^+e^- o \gamma(\pi^+\pi^-J/\psi)$ $e^+e^- o (\pi^0\pi^0J/\psi)$	BABAR [108, 109] (8.0) CLEO [110] (5.4) Belle [104] (15) CLEO [111] (11) CLEO [111] (5.1)	2005	ОК
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$B o K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
X(4350)	$4350.6_{-5.1}^{+4.6}$	$13.3^{+18.4}_{-10.0}$	$0,2^{++}$	$e^+e^-\to e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
Y(4360)	4353 ± 11	$96{\pm}42$	1	$e^+e^-\to\gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	4443^{+24}_{-18}	$107^{+113}_{-\ 71}$?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	$4634_{-11}^{+\ 9}$	92^{+41}_{-32}	1	$e^+e^-\to\gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	$4664{\pm}12$	$48{\pm}15$	1	$e^+e^-\to\gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- o (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

Н

