HL-LHC Upgrade - Introduction

O. Brüning CERN, Geneva, Switzerland

Idea Square on HL-LHC, June 14th 2017

Introduction: the LHC is a Synchrotron

Introduction: the LHC is a Synchrotron

physics goal: E = 7 TeV

existing infrastructure: LEP tunnel: circ = 27 km (ca. 17mi) with 22 km arcs (ca. 14mi)

assume 80% of arcs can be filled with dipole magnets: F = 0.8

B = 8.38 T

required dipole field for the LHC:

$$\frac{2\rho}{q} \times \frac{E/c}{circ \times F} = B$$

Idea Square on HL-LHC, June 14th 2017

(earth: 0.3 10⁻⁴ T)

Overall view of the LHC experiments.

Idea Square on HL-LHC, June 14th 2017

Introduction: LHC is NOT a Standalone

Machine:

LHC Performance during RunI: 2010-2012

S1 Consolidation:

Idea Square on HL-LHC, June 14th 2017

11

25R7 / 27R7

LHC Performance during RunII - 2016:

13 TeV after LS1

UNVER DIVINING, VEININ

Idea Square on HL-LHC, June 14th 2017

Performance Projections up to HL-LHC:

HL-LHC technical bottleneck:

Radiation damage to triplet magnets at 300 fb⁻¹

LHC Upgrade Goals: Performance

optimization

Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, S_s)$$

 \rightarrow 1) maximize bunch intensities \rightarrow Injector complex \rightarrow 2) minimize the beam emittance **Upgrade** LIU \rightarrow 3) minimize beam size (constant beam power); \rightarrow triplet aperture \rightarrow 4) maximize number of bunches (beam power); $\rightarrow 25$ ns \rightarrow 5) compensate for 'F'; → Crab Cavities → minimize number of →6) Improve machine 'Efficiency' unscheduled beam aborts **Oliver Brüning, CERN** Idea Square on HL-LHC, June 14th 2017

Goal of High Luminosity LHC (HL-LHC):

implying an integrated luminosity of 250 fb⁻¹ per year,

design oper. for $\mu \delta$ 140 (\rightarrow peak luminosity 5 10³⁴ cm⁻² s⁻¹

Operation with levelled luminosity!

→ 10x the luminosity reach of first 10 years of LHC operation!!

Idea Square on HL-LHC, June 14th 2017

HL-LHC technical bottleneck:

Radiation damage to triplet magnets

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magnet coils receive a similar radiation dose @ 10 times higher integrated luminosity!!!!!

Requires larger aperture!

Tungsten blocks

- New magnet technology
- → 70mm at 210 T/m → 150mm diameter 140 T/m 8T peak field at coils → 12T field at coils (Nb₃Sn)!!!

Idea

HL-LHC Challenges: Crossing Angle

Idea Square on HL-LHC, June 14th 2017

HL-LHC Upgrade Ingredients: Crab Cavities

- GeamCavictileuminosity
- Reduction Factor: geometrical reduction factor
- Independent for each IP

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

- Noise from cavities to beam?!?
- Challenging space constraints:

HL-LHC Crab Cavity Designs

The critical zones around IP1 and IP5

3. For collimation we also need to change the DS in the continuous cryostat in IR7:
11T Nb₃Sn dipole

LODA/C

Q10

iin wat

2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2 New triplet Nb₃Sn required due to:
 Radiation damage
 Need for more aperture

Changing the triplet region is not enough for reaching the HL-LHC goal!

More than 1.2 km of LHC !! Plus technical infrastructure (e.g. Cryo and Powering)!!

Idea Square on HL-LHC, June 14th 2017

CMS

In-kind contributions and collaborations for

design and prototypes

First approval as construction Project: Sept. 2013

Q1-Q3 : R&D, Design, Prototypes and in-kind **USA** D1 : R&D, Design, Prototypes and in-kind **JP** D2: Design and Prototypes **IT** MCBX : Design and Prototype **ES** HO Correctors: Design and Prototypes **IT** Q4 : Design and Prototype **FR** er Brüning, CERN

Idea Square on HL-LHC, June 14th 2017

New Schedule: → HL-LHC CE during LS2

HL-LHC: Project Corner Stones

Idea Square on HL-LHC, June 14th 2017

High Luminosity Work Packages after FP7 DS:

Idea Square on HL-LHC, June 14th 2017

High Luminosity Project Office after FP7 DS:

Project Leader & Deputy

Project Definition & Strategy Report to CERN Management and DHs Report to Collaboration Board Coordination technical WPs (2-14) & Collaborations

Project Office Manager Coordination among officers, secretariat, interface with host states, General Planning Coordination, Safety follow up

Safety officer

Budget Officer Budget & its follow-up Link to RC and to DAT

KT, Outreach and Communication

Technical Infrastructure Officer

Civil Engineering Impact & Environ. Studies Electrical Distr. & CV Access & Alarm Logistics & link to Test Infra. Consolidation & Operations

Configuration, Quality and Resource Officer

TDR Edition & Tech. Baseline (PBS, interfaces, Tech. Specs, Technical documentation & ECR) Quality and Risk management Resource & Purchase Plan Integration and Installation Officer

Integration study and layout Lead (de-) installation Survey

Idea Square on HL-LHC, June 14th 2017

Performance Projections up to HL-LHC:

UFOs – Unidentified Falling Objects:

Sudden local losses

- Rise time of the order of 1 ms.
- Potential explanation: dust particles falling into beam creating scatter losses and showers propagating downstream

- Distributed around the ring arcs, inner triplets, IRs
- Even without quench, preventive dumps by QPS

RunII Startup: UFO rates (September 2015)

□ There are many UFOs, a significant number > 1% of threshold

0.07% of all UFOs actually dump the beam

Slight signs of conditioning when normalizing rate by the total number of bunches

And excellent first results: RF Dipole Results from Measurements @ CERN

