Gas jet simulations

Marton ADY Cockroft Institute, 27/06/2017

Part 1: Monte Carlo intro

Monte Carlo

 $n = 3000 (\pi \approx 3.16667)$

$\frac{\text{points inside}}{\text{all points}} \sim \frac{\text{circle area}}{\text{square area}} = \frac{\pi}{4}$

Monte Carlo simulations

Geometry: polygons

Gas input: pV=NkT 1 Pa*m³/s = 2.4*10²⁰ molecules/s Virtual / Physical particle ratio

Reflection

Pumping / absorption

$S[m^3/s] = sticking [0..1] * 1/4 * A [m^2] * v_{avg} [m/s]$

Monte Carlo

dl/dt/dA = p

Part 2: First setup

Texture Sci	aling Januar			1	- Current
Min 0 Max 1 Set	to current	Autoscale Include constant flow Apply	l v Use co l v Logari Swap	olors thmic scale 2.50MB	Min: 2.671E+17 Max: 5.027E+22
Gradient 2.11e22	100e18	100e19 1		100e21	100e22

Simulating at once

Large density differences: Monte Carlo weakness

Structure 1

- High pressure nozzle
 - Skimmer 1 & 2

Link facet "Telling" particles where the structure boundary is

Sequential simulation basic steps

Facet 2: Diffuse [flux~Cos(theta)]:

Sum: 0.93%

Original distribution as sampled

Sum of collimated and diffuse distributions as generated

N H는 H		Norm.density and
		pressure
1	Between skimmers 1 - 2	1.00E+00
2	Between skimmers 2 - 3	7.80E-02
3	Interaction chamber	1.89E-05
4	Ionization chamber	1.51E-05
5	Last pump	1.04E-05

Normalized pressures

Morning update

Normalized pressures

	Norm.density and pressure	Pressure	On	Off	Diff	Norm diff
1 Between skimmers 1 - 2	1.0E+00	3.2E-03	6.5E-06	1.5E-06	5.0E-06	1.0E+00
2Between skimmers 2 - 3	6.9E-02	2.2E-04	2.1E-07	4.0E-08	1.7E-07	3.4E-02
3Interaction chamber	1.6E-04	5.0E-07	2.8E-08	2.2E-08	6.0E-09	1.2E-03
4 Ionization chamber	1.3E-04	4.3E-07				
5Last pump	9.4E-06	3.0E-08	1.3E-09	9.4E-10	3.6E-10	7.2E-05

Part 3: Improved setup

Input parameters:

2. Viscous-flow regime input (P. Magagnin, personal communication, July 2016);

saity amiline 1 7.402e+002		14 13
5.552e+002		5 15
3.701e+002		88 87
1.851e+002		70 9
1.856e-005 s^-1]		12 - 11
		74-13
-		76 4 75
		18 12
·	€82 0 000 (n) €925 €835	24 21 1 AX
	Horz. Scale: 50 mm	

|--|

	A	В	C	D	E	F	G	H	I	1	K
1		X[m)	Y[m]	Z[m)	vel	vel u	vel v	vel w	angle	diffRAD	diffDEG
2	0	2.99E-03	0.00E+00	0.00E+00	5.9094E+02	5.9094E+02	0.00E+00	0.00E+00	0		
3	2	2.99E-03	1.00E-05	0.00E+00	5.9088E+02	5.9088E+02	1.53E+00	0.00E+00	0.002586	0.002586	0.148174
4	17	2.99E-03	2.00E-05	0.00E+00	5.9086E+02	5.9085E+02	2.93E+00	0.00E+00	0.004966	0.00238	0.136355
5	16	2.99E-03	3.00E-05	0.00E+00	5.9084E+02	5.9082E+02	4.45E+00	0.00E+00	0.007534	0.002568	0.1471
6	14	2.99E-03	4.00E-05	0.00E+00	5.9080E+02	5.9077E+02	6.00E+00	0.00E+00	0.01016	0.002626	0.150453
7	11	2.99E-03	5.00E-05	0.00E+00	5.9074E+02	5.9069E+02	7.56E+00	0.00E+00	0.0128	0.00264	0.15128
8	9	2.99E-03	6.00E-05	0.00E+00	5.9066E+02	5.9059E+02	9.12E+00	0.00E+00	0.015447	0.002647	0.151646
9	8	2.99E-03	7.00E-05	0.00E+00	5.9057E+02	5.9048E+02	1.07E+01	0.00E+00	0.0181	0.002653	0.152010
10	5	2.99E-03	8.00E-05	0.00E+00	5.9047E+02	5.9034E+02	1.23E+01	0.00E+00	0.02077	0.00267	0.152995
11	4	2.99E-03	9.00E-05	0.00E+00	5.9034E+02	5.9018E+02	1.39E+01	0.00E+00	0.023483	0.002713	0.155452

For pressure P₀ = 0.525172754 mmHg = 0.020675222 inHg = 0.07 kPa
and temperature **T**= 300 K = 26.85000000 C = 80.33000000 F,
Molecules of diameter 3.64 x 10⁻¹⁰ meters (angstroms)
should have a mean free path of
$$\lambda = \frac{RT}{\sqrt{2\pi}d^2N_AP} = 1.005174\xi \times 10^{-4}$$
 m

Streamlines and absolute pressure on background

■ 0-2E+18 ■ 2E+18-4E+18 ■ 4E+18-6E+18 ■ 6E+18-8E+18 ■ 8E+18-1E+19 ■ 1E+19-1.2E+19 ■ 1.2E+19-1.4E+19

Created separator collar to isolate the volume between skimmers 1 and 2 from the one between 2 and 3 Inserted it so that molecules bouncing off skimmer 2 can't make it to the next volume

Original scenario Cos^100 spatial distribution 7001/s shared pumping

Background density (arb.units): 4E16

Double pumping (idea during the meeting) Cos^100 spatial distribution 1400I/s shared pumping

Background density (arb.units): 2.3E19 (~double pumping, half background)

Background density (arb.units): 1.8E16 (~double pumping, half background)

Differential pumping Cos^100 spatial distribution Individual pumping, 2*7001/s

Background density (arb.units): 1.4E15 (background very low in this volume, difficult to estimate due to low statistics, around 1 order lower)

And of the Station of the State

Background density (arb.units): 2.2E17 (background reduced by 2 orders)

Conclusion

- My calculation shows that individually pumping the volume between skimmers 1 and 2 would drastically improve the signal to noise ratio after skimmer 3 (at least a factor of 10)
- Gerhard's mechanical team prefers to avoid an extra cone (alignment, mechanical stability)
- Doubling the (shared) pumping would increase the SNR from ~40 to ~80, which might still be sufficient
- Adding the cone and the individual pumping would boost SNR to around 500, as in previous slide