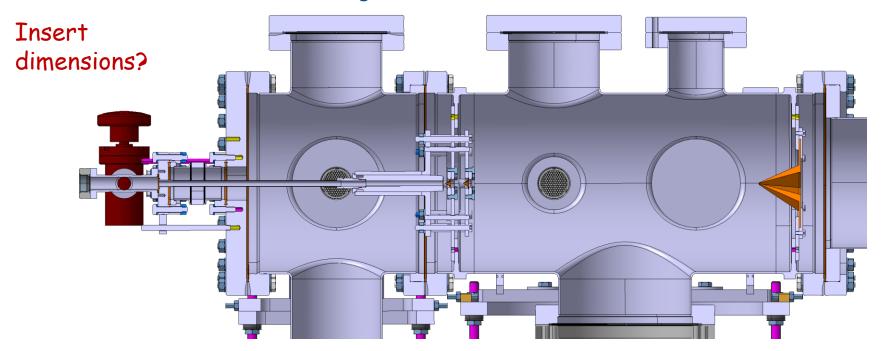
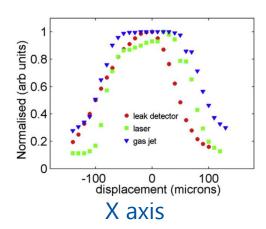
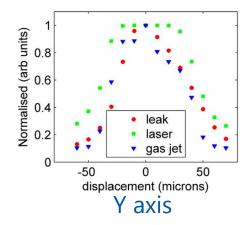

Manufacture and Alignment of the BGC Skimmer and Nozzle Assembly

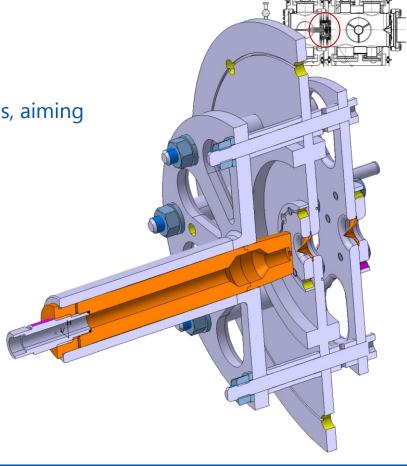

Tom Dodington 27 June 2017 BE-BI-ML

Nozzle and Skimmer Assembly

What do we want? - Concentric alignment of Skimmers and Nozzle.




Central Assembly


• Based on previous beam profile measurements, aiming within < 50 μ m alignment range

Pins used to align the three critical parts

Central skimmer position fixed

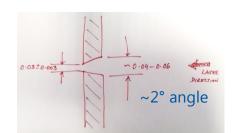
Nozzle Manufacture

To be machined in 2 parts at CERN

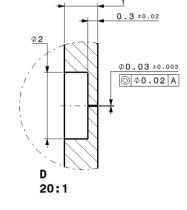
Full depth weld to join parts

Re-machined external diameter.

30µm hole must be tightly concentric with external diameter.

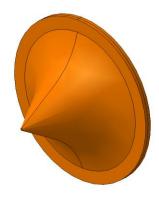

Manufacture:

Previously drilled in platinum foil, clamped between 2 Al plates.

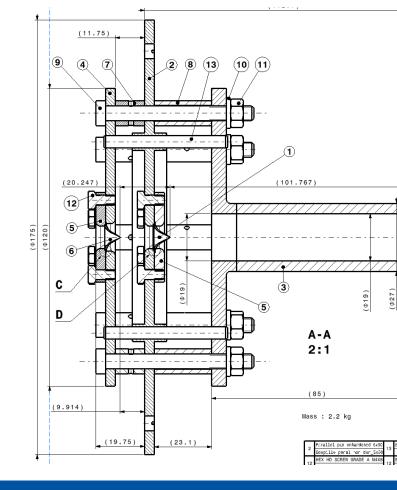

Precision, concentricity, internal angle unknown.

Laser Micromachining, UK

Contact at TU Darmstadt.



R200

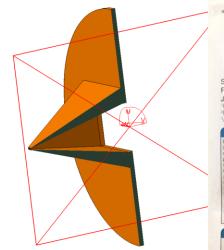

Skimmer I & 2

0.18 and 0.4mm diameter holes
Sharp edges are essential

Previously manufactured by

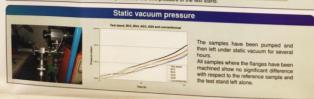
- Beam Dynamics Inc, US
- Feedback welcome
- New skimmers have been purchased 10/06

Skimmer 3


Rectangular, 0.4*4mm

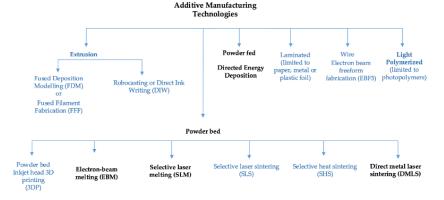
Previously manufactured by

- CRDM rapid prototyping
- TJW polishing


New Skimmer

- IPAC poster about 3D metal printing
- Will contact manufacturers to discuss

Manufacturer	Part name	Surface finishing	He leak test	Limit pressure (Penning)
BV Proto	BV1	Sawing at one end	Raw: 1×10^{-7} mbar l/s Sawed: $> 1 \times 10^{-5}$ mbar l/s	1.7 × 10 ⁻⁴ mbar
	BV2	Minor processing with hand tools	> 1 × 10 ⁻⁵ mbar l/s	8.6 × 10 ⁻⁴ mbar
	BV3	Lathing of both flanges	No leak detected	1.2 × 10 5 mbar*
	BV4	Lathing of both flanges and the internal surface	No leak detected	1.2 × 10 ⁻⁵ mbar*
AGS Fusion	AG1	Wire-cutting at one end	Raw: 3 × 10 ⁻⁷ mbar l/s Wire-cut: > 1 × 10 ⁻⁵ mbar l/s	8.5 × 10 ⁻⁴ mbar
	AG2	Wire-cutting at one end	2 × 10 ⁻⁷ mbar l/s Wire-cut: > 2.8 × 10 ⁻⁷ mbar l/s	$1.2 \times 10^{-3} \text{mbar}$
	AG3	Lathing of both flanges	6.2 × 10 ⁻⁸ mbar l/s No leak detected	1.5 × 10 ⁻⁵ mbar*
	AG4	Lathing of both flanges and the internal surface	No leak detected	9.6 × 10 ⁻⁶ mbar*
Vacom	Reference	Conventional	No leak detected	1.8 × 10 ⁻⁵ mbar*



Additive Manufacturing Study

Review carried out by ML, Ana Miarnau.

Key issues:

- Porosity and Lamination
- Columnar grain structure
- Orientation of the structure whilst printing
- Print area and wall thickness limitations
- General tolerance is \pm 0.2 mm \pm 1% of length
- Surface roughness \sim Ra 12 μ m. Post-processing required

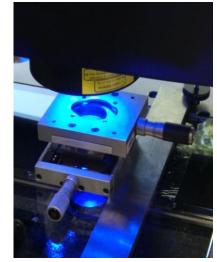
NOTE: Items in blue are not applicable or not commonly used for metals

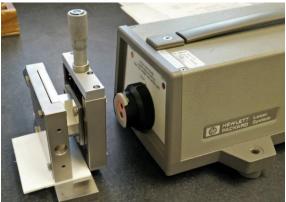
Combination of additive manufacturing and CNC machining Exciting potential, but technology not ready to provide desired tolerances.

Alignment

What do we want?

Skimmer 1, 2 & 3 aligned to Nozzle hole within 50 μm.


Perfect solution would not require alignment:


3D print as one part. X

Perforate all holes with laser into assembled system. X

Previous study by Ana Miarnau.

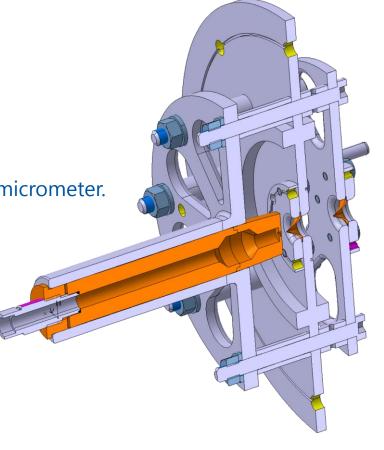
Alignment of two 50µm holes at CERN with metrology team

Alignment proposal

Build test rig at CERN for alignment preparation.

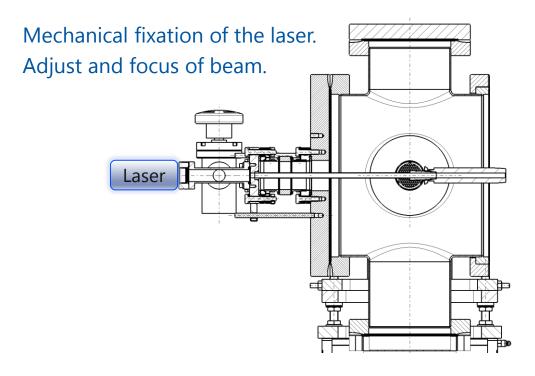
Central plate, holding skimmer 1, is fixed.

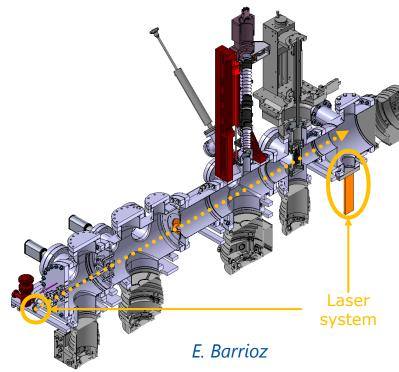
Nozzle housing and skimmer 2 plate adjustable with micrometer.


Alignment done manually using

Optical lasers or

Zeiss O-Inspect camera (CERN metrology)


Could manufacture part to hold laser in place


Once this system is aligned it can be installed in the BGC and then checked.

Laser Optical alignment

Drawing approval

All drawings ready to be signed

- Have begun checking all the drawings
- Hope to have signed before design review
- Manufacture to begin ASAP
- Discuss with Cockcroft Institute

References

Slide 1: Gas dynamics considerations in a non-invasive profile monitor for charged particle beams *Vasilis Tzoganis, Adam Jeff, Carsten P. Welsch*

Slide 4: Poster at IPAC, provided by Hao Zhang

Slide 5: Alignment of Beam Gas Curtain (BGC) test plates Ana Miarnau

