Intensity-dependent effects at ATF2: first measurements

P. Korysko, A. Latina CERN

Recap: Goals of ATF2 measurments

Validate jitter simulations.

Measure incoming beam jitter.

Outline

• Recap: ATF2.

Recap: simualtions.

Measurements at ATF2.

Analysis: first results.

ATF2

Е	1.3 GeV
Energy spread	0.08 %
Charge	1e10
εx	5200 nm.rad
εγ	30 nm.rad
Bunch length	7 mm
	•

ATF2 twiss parameters with Placet

Single bunch wake

Source: A. Lyapin, J. Snuverink and al., Measurements and simulations of wakefields at the Accelerator Test Facility 2,

Phys. Rev. Accel. Beams 19, 091002

https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.19.091002

Intensity-dependent effects on bunch distribution at IP

			Ζ (μm)		
Г	Wake	efield effect on distributi	on at IP for a beam	with a $1\sigma_{\!\scriptscriptstyle y}$ offset at inje	ction
0.4	Beam distr	ibution at IP, charge = ibution at IP, charge = ibution at IP, charge =	= 5e9		
0.2	ر در در د			e Landa de Cara	19.44è
0.0 × (mm)					
-0.2					
-0.4					
-0.6					
	-20000	-10000	0 Ζ (μm)	10000	20000

	Charge 1e9	Charge 5e9	Charge 1e10
Case	σy (nm)	σy (nm)	σy (nm)
No offset	37.59	37.59	37.59
1σy offset	53.95	70.00	149.90
1σy' offset	56.15	133.80	251.79

Banana effect.

Simulation procedures

Correction schemes: 1to1, DFS, WFS and fast knobs

Fast knobs used:

1st order: <y,y'> <y,E> <y,x'>

2nd order: <y,x'²> <y,x'*y'> <y,x'*E>

44 BPMs (post November 2016 lattice).

In most simulations:

Jitter $0.1\sigma_{v}$ in position and $0.1\sigma_{v}$, in angle.

Misalignment of 50 μm.

Case	Vertical beam size (nm)
No correction	9796.23
1to1	581.93
1to1 + DFS	469.46
1to1 + DFS + WFS	469.45
1to1 + DFS + WFS + knobs	37.41

Standard deviation of orbit at BPMs for a 50um misaligned machine with a jittering beam $(0.1\sigma_V)$ jitter in position and $0.1\sigma_V$ jitter in angle) - 100 jitters

Standard deviation of orbit at BPMs for a 50um misaligned machine with a jittering beam $(0.1\sigma_{V})$ jitter in position and $0.1\sigma_{V}$ jitter in angle) - centered on 0 - 100 jitters

June 15th 2017

Higher charge → **smaller orbit?**

At IP, higher charge
→ bigger beam

BPMs simulations without WFS

Wakefield Free Steering is not the problem

Conclusion:
We actually observe
that: higher charge
→ smaller orbit

Let's zoom in.

Same behavior as in simulations: Higher charge → smaller orbit

BPMs measurements (remark)

June 15th 2017

Intensity dependent effects start at the beginning of the line.

BPMs resolution

BPMs resolution depends on the charge

Source: Y. I. Kim et al., Cavity beam position monitor system for the Accelerator Test Facility 2. Phys. Rev. ST Accel. Beams 15, Apr 2012.

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.15.042801

BPMs resolution

The BPMs "charge-dependence-resolution" doesn't seem to be the source of the problem.

Further investigations

Let's study the following cases:

- The behavior of a sliced beam with jitter.
- The behavior of a sliced beam without jitter in a perfect machine.
- The effect of the longitudinal wakefield on the whole bunch.

Distribution of particles

Standard deviation of orbit at BPMs for a 50um misaligned machine with a jittering beam $(0.1\sigma_{V})$ jitter in position and $0.1\sigma_{V}$ jitter in angle) - 100 jitters - charge = 1e12

Off energy slices have a smaller standard deviation of jitters?

June 15th 2017

In simulations, the first source of wakefield is BPM MQD10X.

Wakefield simulations

Body and tail are off-energy.

Tail has a higher energy than body.

June 15th 2017

Zoom on the peak

Higher energy should lead to bigger focal length → higher beta

Calculating the initial jitter

Calculating the initial jitter

$$\begin{vmatrix} Y_{1} \\ Y_{2} \\ \cdot \\ \cdot \\ Y_{n} \end{vmatrix} = \begin{vmatrix} R_{0 \to 1, 11} & R_{0 \to 1, 12} & R_{0 \to 1, 16} \\ R_{0 \to 2, 16} & R_{0 \to 2, 16} & R_{0 \to 2, 16} \\ \cdot \\ \cdot \\ \cdot \\ Y_{n} \end{vmatrix} \begin{pmatrix} Y_{0} \\ Y_{0'} \\ \delta_{0} \end{pmatrix}$$

$$R_{0 \to n, 11} \quad R_{0 \to n, 12} \quad R_{0 \to n, 16}$$

$$\overrightarrow{Y}_{0}$$

$$\overline{Y}_0 = R \setminus \overline{Y}$$

Remarks and conclusions

- 2 wakefield effects:
 - Banana effect (transverse: z-(x,y) correlation).
 - Energy loss (longitudinal: z-E correlation).
- Simulations and measurements seem to go in the same direction.

Outlook

- Pursue the studies on the intensity dependent effect observed at BPMs.
- Simulate the wakefield with more precision.
- Try to reproduce in simulation the measured intensity dependence plot.
- Assess incoming beam jitter from experimental data.

Backup slides

Backup slides

Backup slides

