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Ultrasound session

Therapeutic
Jean Martial Mari

Diagnosis

Low intensity
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Basic principles of ultrasound

1: Overview and history

2: Sound waves

3: Ultrasound generation

4: Ultrasound in tissue
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Ultrasound scanning

Scanner

Probe
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The place of ultrasound in medical imaging

– 4 IRM 

– 8 scanners

– 10 angiographic

– 10 PET

– One hundred ultrasound scanners

Public Hospitals in Lyon (2000)

Specific
 rooms
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The place of ultrasound in medical imaging
• real time imaging

IN
 L

IV
E
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The place of ultrasound in medical imaging

• Ultrasound has the last ten years been the fastest growing 

imaging modality for non-invasive medical diagnosis. 

• Of all the various kinds of diagnostic produced in the world, 

one of four is an ultrasound scan. 

• Reasons for this are the ability to image soft tissue and blood 

flow

– the real time imaging capabilities, 

– the harmlessness for the patient and the physician (no radiation)

– the low cost of the equipment. 

– no special building requirements as for X-ray, Nuclear, and Magnetic 

Resonance imaging. 

• Limitations are that ultrasound imaging cannot be done 

through bone or air (limitations on chest imaging).
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Diagnostic Ultrasound

Echoes 

return

Processed into 

picture

Pictures 

analysed

Sound waves 

directed into 

patient
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Mechanical wave

Sound is a mechanical wave

�Created by a vibrating object

�Propagated through a medium

Vacuum chamber
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The acoustic pressure

Sound is a pressure wave

The acoustic pressure is the change of pressure around the static 

(ambient) pressure

Acoustic pressure 

amplitude

t

p  (Pa)

105
Ambient pressure

• Ultrasound energy is exactly like sound 

energy, it is a variation in the pressure 

within a medium.
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• Ultrasound scanner work as sonar

• Probe        ⇔⇔⇔⇔ Microphone  + Loudspeaker
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Ultrasound

Frequency of Sound

20 Hz

20 000 000 Hz

2 000 000 Hz

20 000 Hz
Audible Sound

Diagnostic Medical 

Ultrasound

Infrasound
20 Hz

20  MHz

2 MHz

20 kHz
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target

2

tc
d

⋅
=

d = ?

c= 1500 m/s

Time
tf = 100 µs

Depth 

or time

d = ?

d = 7. 5 cm

Transducer or probe
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target

2

tc
d

⋅
=

d 

c= 1500 m/s

Time

0.75 cm < depth < 15 cm

10 µs < tf: time of flight < 200 µs

tf
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Reflection and transmission

One transmitted pulse gives rise to a train of 

received echoes. Time

⇓⇓⇓⇓
Depth

We can calculate where the echoes have come 

from by timing how long they take to get back.
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64 to 512

Transducer elements
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Depth / 

time
Width

Amplitude



European School of Medical Physics  - Archamps
22

Depth / 

time

0.75 cm < depth < 15 cm

10 µs < time of flight < 200 µs

TPRF PRF: Pulse Repetition Frequency

TPRF  >> maximum time of flight

PRF = 1/ TPRF
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Echoes from ONE pulse

The echo 

amplitudes are 

converted to 
shades of grey

A-Mode 

(amplitude)

B-Mode 

(brightness)

Amplitude
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Transducer

One 

Frame

One 

Frame
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Visible scan 

lines (48)

Visible scan 

lines (48)

1970’
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Thyroid mass

B (Brightness) Mode Images

Ovarian Cyst

Popliteal artery

Gall bladder & stone
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Popliteal artery Gall bladder & stone

Linear probe Sectorial probe
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• B-mode

� M-mode 

(or TM mode, 

Time Motion)

time 

t

1

t

2

t

3
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Imaging modes

mode A

mode TMmode B

Signal enveloppe

Time        (s)

Scan plane

Distance          (cm)

D
ep

th
   (cm

)

D
ep

th
   (cm

)
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Doppler

Spectral Doppler

““““Ultrasonic Ultrasonic Ultrasonic Ultrasonic 
Doppler ModesDoppler ModesDoppler ModesDoppler Modes””””

Piero TortoliPiero TortoliPiero TortoliPiero Tortoli

““““Ultrasonic Ultrasonic Ultrasonic Ultrasonic 
Doppler ModesDoppler ModesDoppler ModesDoppler Modes””””

Piero TortoliPiero TortoliPiero TortoliPiero Tortoli

Colour Doppler
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History of Ultrasound

• 1794 Lazzaro Spallanzani discovered high 
frequency ‘ultra’sound by demonstrating ability of 
bats to navigate by echo reflection

• 1876 Francis Galton invented a whistle that 
generated sound above the limit of human hearing

• 1880 Pierre Currie discovered the piezo-electric 
effect in certain crystals.  

It was then possible for the generation 

and reception of ultrasound

It was then possible for the generation 

and reception of ultrasound



European School of Medical Physics  - Archamps
33

““““Medical Medical Medical Medical 
Ultrasound Ultrasound Ultrasound Ultrasound 

Development over Development over Development over Development over 
40 years40 years40 years40 years””””

Nico de JongNico de JongNico de JongNico de Jong

““““Medical Medical Medical Medical 
Ultrasound Ultrasound Ultrasound Ultrasound 

Development over Development over Development over Development over 
40 years40 years40 years40 years””””

Nico de JongNico de JongNico de JongNico de Jong



European School of Medical Physics  - Archamps
34

Intravascular Imaging

““““Intravascular Intravascular Intravascular Intravascular 
ImagingImagingImagingImaging””””
Nico de JongNico de JongNico de JongNico de Jong

““““Intravascular Intravascular Intravascular Intravascular 
ImagingImagingImagingImaging””””
Nico de JongNico de JongNico de JongNico de Jong
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Basic Principles of Ultrasound

1: Overview & History

2: Sound Waves

3: Ultrasound generation

4: Ultrasound in Tissue
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Waves
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Wave Motion

Up and down
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Wave Motion

Stadium wave

Transverse wave
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Transverse Wave
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Longitudinal Wave
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Elastic deformable 

medium – gas, liquid 

or solid.

Elastic deformable 

medium – gas, liquid 

or solid.

Molecules do not travel from one 

end of the medium to the other.

No flow of particles

Molecules do not travel from one 

end of the medium to the other.

No flow of particles

Pressure amplitude

Depth

ra
re

fa
ct

io
n

co
m

p
re

ss
io

n

wave velocity c
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At each spatial position , the material points are oscillating around their 

equilibrium position (particle velocity v)

Molecules do not travel from one end of the medium to the other.

At each spatial position , the material points are oscillating around their 

equilibrium position (particle velocity v)

Molecules do not travel from one end of the medium to the other.

Depth

wave velocity c
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The Nature of a Sound Wave

• Sound is a mechanical wave

– Created by a vibrating object

– Propagated through a medium

• Sound is a longitudinal wave

– Motion of particles is in a direction parallel to direction 

of energy transport

• Sound is a pressure wave

– Consists of repeating pattern of high and low pressure 

regions
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The Frequency of a wave

T = 1 / fT = 1 / f

Peak excess pressure 

=

amplitude (A) of wave

Peak excess pressure 

=

amplitude (A) of wave

( )ftAA π2sin0=

Wave equation
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Wavelength, λλλλ = c T = c / fWavelength, λλλλ = c T = c / f

Wavelength, λ

Time

Period, 

T=1/f Depends on sourceDepends on source

Depends on speed of sound, c 

(depends on material)

Depends on speed of sound, c 

(depends on material)

Wavelength and Frequency

Distance

Pressure ra
re

fa
ct

io
n

co
m

p
re

ss
io

n
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Air c=330m/s

Water c=1480m/s

If source= 3 MHz λλλλ=1480/ 3 .106= 493 µm

European School of Medical Physics  - Archamps
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Ultrasound Pulse

• The majority of ultrasound is emitted as pulses 

Pressure

Time

Length of pulse is about 3 to 5 period

F = 3 MHz

1 µs < Tp < 1.66 µs
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t . c

2
d =

Range Equation

• It is possible to predict the 

distance (d) of a reflecting 

surface from the transducer 

if the time (t) between 

transmission & reception of 

the pulse is measured and the 

velocity (c) of the ultrasound 

along the path is known

d

c

t

Pulse Echo
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Intensity

The intensity associated with the wave is 

defined as the power flowing through a 

unit area (measured in W/m2 or mW/cm2  )

Power

1m

1m

Ii (t,r)
p   (t,r)2

=
cρ

• Time averaged intensity (I) for a sinusoidal wave (where 

Po is the peak-pressure amplitude)

c

P
I

ρ2

2

0=
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pression

intensité
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Intensity

time

Intensity

Isptp (Temporal 

Peak)

Isppa (Pulse 

Average)

Ispta (Temporal 

Average)

PRFsppa

spta

TI

I ττττ
=

TPRF

τ

≈ 1/200
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Isptp

Ispta

Isppa

True time axis
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Basic Principles of Ultrasound

1: Overview & History

2: Sound Waves

3: Ultrasound Generation

4: Ultrasound in Tissue
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Sources of Sound Waves

Sound production 

requires a 

vibrating object

Vocal chords

Audio speaker system Collision!

Piezoelectric Element
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Ultrasound Generatiom

Pierre & 
Jacques Currie

Piezoelectric Piezoelectric 

effect discovered effect discovered 

in 1880in 1880 Quartz

+

-
Expansion

+

-
Contraction
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Ultrasound Detection

• Apply force to 

piezoelectric material

• Result is electrical 

charge proportional to 

force

• The frequency of the 

force applied will effect 

the frequency with 

which a voltage is 

generated

Force

Force
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Piezoelectric materials

• Quartz is a naturally occurring piezoelectric 

material.

• Lead Zirconate Titanate (PZT) is the 

synthetic ceramic material traditionally used 

for transducers.

– Can be customised according to the specialist 

properties required.
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Transducer

• …any device that transforms one kind of 

energy into another

– E.g. electrical to mechanical
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• The information obtained from ultrasound 

scanning depends in large part on the beam 

characteristics, which in turn are governed 

by transducer design.
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““““Ultrasound Ultrasound Ultrasound Ultrasound 
transducerstransducerstransducerstransducers””””
Franco BertoraFranco BertoraFranco BertoraFranco Bertora

““““Ultrasound Ultrasound Ultrasound Ultrasound 
transducerstransducerstransducerstransducers””””
Franco BertoraFranco BertoraFranco BertoraFranco Bertora
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Beam Shape
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Beam Shape

w

λ

W>>λ

w

λ

W<<λ
Small point source

Diffraction

directional

Spherical wave Plane wave
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Constructive 

and destructive 

interference, in 

accordance with 

Huygens’

principle
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Plane Disc Source

Near Field Far Field

Non-uniform 

beam

Non-uniform 

beam
Uniform 

beam

Uniform 

beam
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Ultrasound beam from a plane disc 

source

Continuous beam, single frequencyContinuous beam, single frequency
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Intensity Variation

Intensity

Distance from probe

Near field Far field

Intensity varies 

in space and 

time

Intensity varies 

in space and 

time



European School of Medical Physics  - Archamps
68

Intensity

Distance from probe,z

( )[ ]zzr
I

I z −+=
2/1222

0

sin
λ

π
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+
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m

mr
Z

λ

λ

λ

λ

n

nr
Z

2

222

min

−
=

λ

2

max'
r

Z =

Solve a 3D 

geometrical 

problem

Near 

Field 

length
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Component elements

PZT

Lens

Matching 

Layer
Backing 

Layer

Electrodes
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Lens

• A narrow ultrasound beam is desirable to 

allow closely spaced targets to be resolved.

• Improvement to the beam can be made by 

focussing

• An acoustic lens attached to the face of a 

flat surface produces a curved wavefront by 

refractions at its outer surface.
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Multi-Element Linear Array

Elements can be excited 

individually or in groups

Elements can be excited 

individually or in groups

Scan lines
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Different shapes & sizes
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Electronic Beam Steering
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• Spatial Resolution

• Temporal Resolution

• Contrast Resolution

Imaging Resolution
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Spatial Resolution

Spatial   (in space)

• axial (along the beam)

• lateral (across the beam)

– azimuth (in the scan 

plane)

– elevation or slice 

thickness (perpendicular 

to the scan plane)
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Axial Resolution
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Axial Resolution

• The minimum 

reflector spacing 

along the axis of the 

ultrasound beam that 

results in separate, 

distinguishable echoes 

on the display.
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Axial Resolution

• Example 3MHz 

transducer

• Example 10MHz 

transducer

mm
Hz

sm

f

c
5.0

000,000,3

/1540
===λ

mm
Hz

sm

f

c
15.0

000,000,10

/1540
===λ

Pulse length =number of cycles x λPulse length =number of cycles x λ

ra =3 x 0.5 = 1.5 mm 

ra =3 x 0.15 = 0.45 mm 
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Lateral Resolution
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Lateral Resolution

• The ability to 

distinguish two closely 

spaced reflectors that 

are positioned 

perpendicular to the 

axis of the ultrasound 

beam.
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Elevational Resolution 

(slice thickness)

• Works in a direction 

perpendicular to the 

image plane.

• Dictates the thickness 

of the section of tissue 

that contributes to 

echoes visualised on 

the image.
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Slice Thickness Resolution
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Temporal Resolution

• The time interval between pulses 

– limits the temporal resolution

– it is usually set so that there is sufficient time 

for the most distant echo to return to the 

transducer before the next pulse is launched
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Temporal Resolution

pulse

Interval to 

allow echoes

to return

Sequence of pulses from

transducer

Typical PRF = 5kHz

TPRF = 0.2 ms

Typical PRF = 5kHz

TPRF = 0.2 ms

Time
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Contrast Resolution

The ability to display regions of differing echo size

Low

High
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Basic Principles of Ultrasound

1: Overview & History

2: Sound Waves

3: Ultrasound Generation

4: Ultrasound in Tissue
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Speed of S
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Speed of S
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Speed of S
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ReflectionReflectionReflectionReflection

RefractionRefractionRefractionRefraction

Attenuati
on

Attenuati
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Attenuati
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NonNonNonNon----linea
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linear effe

cts
linear effe

cts

SafetySafetySafetySafety
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Matter

• It is helpful, for ultrasound purposes, to 

imagine that matter is composed of 

– tiny particles

– joined together by springs
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Matter
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Properties

• Stiffness of substance K (bulk modulus)

– strength of the spring

• Density of substance ρ

– mass & separation of particles
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Movements

• Each particle is connected to each of its 

neighboring particles by ‘springs’

• A single movement of ONE particle will 

move all the others

• Repetitive movements will move all the 

others repetitively - but after a time delay
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0 u
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0 udu

v
du

=
dt

particle velocity
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0 u
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x
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Speed of Sound

• Low density and high stiffness

high speed of sound

• High density and low stiffness

low speed of sound
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Mathematically…

ρ

k
c =

Bulk modulus

Density
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Speed of Sound

• Air 330m/s

• Water 1480m/s

• Fat 1460m/s

• Blood 1560m/s

• Muscle 1600m/s

• Bone 4060m/s

Average soft 

tissue value = 

1540m/s

This can lead to small errors in the estimated distance travelled because of the 

variation in the speed of sound in different tissues.

This can lead to small errors in the estimated distance travelled because of the 

variation in the speed of sound in different tissues.

Programme the 

ultrasound 

machine with...
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Speed of S
ound

Speed of S
ound

Speed of S
ound

Speed of S
ound

Impedanc
e

Impedanc
e

Impedanc
eImpedanc
e

ReflectionReflectionReflectionReflection

RefractionRefractionRefractionRefraction

Attenuati
on

Attenuati
on

Attenuati
on

Attenuati
on

NonNonNonNon----linea
r effectslinear effe

cts
linear effe

cts
linear effe

cts

SafetySafetySafetySafety
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Reflection at Boundaries

Incident 

wave

Transmitted wave

Reflected 

wave

• At the boundary 

between tissues 

ultrasound is partially 

reflected

• The relative proportions 

of the energy reflected 

and transmitted depend 

on the acoustic 

impedance between the 

two materials
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Acoustic Impedance

Small masses

Weak springs

Low impedance
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Large masses

Strong springs

High impedance

Acoustic Impedance
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Mathematically

Bulk modulusDensity x

kz ρ=
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The Proof…

• Acoustic Impedance 

analogous to electrical 

resistance.

• So using Ohm’s law
P = local pressure

v = local particle velocity v

P
z =
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Similar Values

Acoustic Impedance

• Air 0.0004 x 106 rayls

• Lung 0.18     x 106

• Fat 1.34     x 106

• Water 1.48 x 106

• Blood 1.65 x 106

• Muscle 1.71 x 106

• Skull Bone 7.80 x 106
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Speed of S
ound

Speed of S
ound

Speed of S
ound

Speed of S
ound

Impedanc
e

Impedanc
e

Impedanc
eImpedanc
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ReflectionReflectionReflectionReflection

RefractionRefractionRefractionRefraction

Attenuati
on

Attenuati
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Attenuati
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Attenuati
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NonNonNonNon----linea
r effectslinear effe
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linear effe
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cts

SafetySafetySafetySafety
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Reflection

Z1

Z2

Pi , vi

Pt , vt

Pr , vr

Replace v with P/z

112 z

P

z

P

z

P rit −=

rit

rit

vvv

PPP

−=

+=
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112 z

P

z

P

z

P rit −=

ririt PPP
z

z
P

z

z
P +=−=

1

2

1

2

riri PzPzPzPz 1122 +=−

rrii PzPzPzPz 2112 +=−

( ) ( )2112 zzPzzP ri +=−

12

12

zz

zz

P

P

i
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+

−
= Reflection 

Coefficient
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Blood Fat

Z1=1.65 Z2= 1.34

10.0
34.165.1

34.165.1
=

+

−
==

i

r

P

P
R

10% reflected 90% transmitted
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64.0
71.18.7

71.18.7
=

+

−
==

i

r

P

P
R

Muscle Bone

Z1=1.71 Z2= 7.8

64% reflected 36% transmitted
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Calcification
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999.0
34.10004.0

34.10004.0
−=

+

−
==

i

r

P

P
R

Fat Air

Z1=1.34 Z2= 0.0004

99.9% reflected 0.01% transmitted
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Bowel Gas
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Strong 

Reflection

Weak 

Reflection

Very weak 

Reflection
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Reflection

• Specular reflection

– from large flat boundaries

• Diffuse reflection

– from small structures

• Rayleigh Scattering

– from very small structures

StrongStrong

WeakWeak

Very weakVery weak
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Non-perpendicular 

Incidence

Specular Reflection

θθθθi = θθθθr

Perpendicular 

Incidence

Reflected 

beam 

travels off 

at an angle

Strong orientation dependenceStrong orientation dependence
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Diffuse Reflection

Reflected waves 

travel in various 

directions away 

from the interface
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Diffuse Reflection

Reflected waves 

travel in various 

directions away 

from the interface

Some orientation dependenceSome orientation dependence
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Rayleigh Scattering

Particles size 

<<λ

Waves are scattered 

and travel off in all 

directions

Energy loss α f4 
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Rayleigh Scattering

Particles size 

<<λ

Little orientation dependenceLittle orientation dependence

Waves are scattered 

and travel off in all 

directions

Energy loss α f4 
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Echo Amplitude - Beware!

The amplitude of the echoes (image grey level)

does not have a simple relationship with the 
tissue (unlike X-ray CT [Hounsfield numbers]).

• Echo size depends on 

– relative acoustic impedances across boundary

– shape and orientation of boundary 

– size of structure compared with λ
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Refraction

θt

θi

• At boundaries between 

tissues with different 

velocities i.e. c1≠c2

• The beam direction is 

changed (if it is not 

incident normally to the 

boundary) i.e. θi≠ θ t

• Beam distortion leads to 

misregistration

• A problem with fat and 

muscle

C1

C2
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Snell’s Law

θt

θi

C1

C2

2

1

sin

sin

c

c

t

i =
θ

θ
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Refraction - Snell’s Law

C1=1600m/s

θt

60o

Fat

C2=1460m/s

E.g. Muscle to fat with an angle 

of incidence of 60o

o

t

t

52

1460

1600

sin

60sin

=

=

θ

θ
Muscle

i.e 8 degrees 

difference

i.e 8 degrees 

difference
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Image Degradation

Real path

Real target

Path as assumed by 

machine

Displayed image 
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Attenuation

The energy of the ultrasound beam is reduced with distance

Energy is lost from the beam by:

Absorption (conversion into heat)

Scattering (reflection out of beam confines, 

refraction, divergence)



European School of Medical Physics  - Archamps
144

Attenuation in an image

Bright

deep to

the cyst

Dark

deep to 

the defect

in the

phantom!
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Attenuation Coefficient

The intensity, Iz, of an ultrasound beam is related 

to distance from the source, z, thus:

Where I0 is the intensity at z = 0, the transducer face.

Iz

z

z

z eII
α−= 0
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Attenuation Coefficient

Attenuation is approximately exponential,

the slope of the logarithmic graph is constant.

Attenuation coefficient is quoted in dB/cm

In addition, for soft tissue,                              

attenuation is proportional to frequency.

The attenuation coefficient for soft tissue is

0.5 - 0.7 dB/cm/MHz 

The attenuation coefficient for soft tissue is

0.5 - 0.7 dB/cm/MHz 



European School of Medical Physics  - Archamps
147

Attenuation - compensation

Average echo

Amplification

factor

Echo train 

after compensation

Time

(distance)
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depth

gain
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Non-Linear Propagation

Under conditions of relatively high pressure amplitude

the speed of sound is NOT CONSTANT

but varies over the propagation path (z)

)(
2

1)( 0 zv
A

B
czc ÷








++=

c

p
v

ρ 
=
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Non-Linear Propagation

)(
2

1)( 0 zv
A

B
czc ÷








++=

Material B/A

water (30°C) 5.2

blood 6.3

liver 7.6

spleen 7.8

fat 11.1
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High pressure High pressure

Low pressure Low pressure
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After a sufficient distance, the faster 

moving high-pressure parts of the wave 

catch up to the slower low-pressure parts.

The result is a 

sawtooth wave

The distorted  wave has many harmonic frequencies

Higher 

speed

Higher 

speed

Lower 

speed

Lower 

speed
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Higher 

speed

Higher 

speed

Lower 

speed

Lower 

speed
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Propagation non linéaire
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Harmonics

f0

Fundamental

2f0

2nd

3rd

3f0

Frequency

Amplitude
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Harmonic Imaging

A relatively recent innovation in 

diagnostic ultrasound imaging is

Tissue Harmonic Imaging

Discovered by accident it uses the

effects of non-linear propagation.
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• Native harmonic frequencies are used to 

improve images

• How?

– By tuning the receiver to the harmonic frequency (2Fo) 

rather than the transmitted frequency Fo

• Benefits

– Reduces clutter (noise), increases resolution at depth, 

improves sensitivity
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Safety

• Thermal

– tissue heating, cell death for T > 42oC  

• Mechanical 

– cavitation bubbles for pressures > threshold

• unfortunately threshold is frequency dependent

Possible damage from ultrasound:
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Important Intensities

• ISPTA   (spatial peak temporal average)

– describes tissue heating potential 

• ISPTP  (spatial peak temporal peak)

– describes cellular damage potential  
Isptp (Temporal 

Peak)

Isppa (Pulse 

Average)

Ispta (Temporal 

Average)

TPRF

τ
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Example: Acoustical Outputs

Mode Pr(Mpa) ISPTA(mW/cm2) ISPPA (W/cm2) Power(mW) 

B 1.68 18.7 174 18 

M 1.68 73 174 3.9 

PD 2.48 1140 288 30.7 

CF 2.59 234 325 80.5 
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Mechanical and Thermal Indices

• Thermal index

– relates to temperature

– potential for heating effects (metabolic rate) 

• Mechanical Index

– relates to pressure

– potential for bubble effects (cavitation)
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Thermal Index

• TI is the ratio between:

– the power exposing the tissue, W

– the power required to cause a 1oC temperature 

rise, Wdeg

TI =

Wdeg

W
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Mechanical Index

• MI describes the likelihood of the negative 

pressure causing bubble activity 

MI
P-d

f

=

P-d is the ‘derated’ pressure at the site in the body

f     is the frequency of the pulse

megapascals

(megahertz) 1/2
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MI and TI in practice

important                 not so important

contrast agents

lung (cardiac)

bowel gas (abdominal)

absence of gas bodies

(most soft tissue studies)

TI 1st trimester

fetal skull and spine

ophthalmic

fever

poor perfusion

good perfusion 

(liver, spleen)

cardiac

vascular

MI
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Guidelines

• MI>3 Possibility of minor damage to 

neonatal lung or intestine

• MI>0.7 Theoretical risk of cavitation.

• TI>0.7 Restrict exposure time of a fetus

• TI>1.0 Eye scanning not recommended

• TI>3.0 Fetal scanning not recommeded
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Scanner settings

•Fixed settings : MI, TCG, gain

•Adjustement: focus, sector 

size
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It’s all over….


