The EUROPEAN SCIENTIFIC INSTITUTE

In ARCHAMPS, 7 Km from downtown GENEVA Fifty minutes from Chamonix-Mont-Blanc

organises two schools ESMP : European School of Medical Physics

In partnership with the European Federation of Organisations in Medical Physics (EFOMP)

2012 :15th SESSION of ESMP

Lecture presented in Archamps (Salève Building) by :

Christian CACHARD (CREATIS Lyon)

Intravascular imaging

Nico de Jong Presented (and adapted) by Christian Cachard

Outline

- General presentation
 - principal features, contributions to diagnosis
- Image formation
 - Image formation
 - catheter technologies
 - Geometric artefacts
- IVUS in the clinic
- IVUS diagnostic modality under investigation

General presentation

- Usefulness in cardiology
 - diagnosis of atherosclerotic coronary artery disease
 - guiding therapeutic procedures (balloon angioplasty, stenting)
- High resolution cross-sectional images of vessel walls in real time
- Frequency: 30-40 MHz, depth < 10 mm

General Presentation

- Well spread in the middle of interventional cardiology

 ex: in France, among 135 centres of angioplasty 30 have
 intravascular ultrasound imaging
- Time of examination : 5 to 10 mn
- Cost : 800 € (depends on the catheter used)
- Operating room

• Main advantages

- qualitative analysis by characterising *roughly* plaque components, plaque rupture or acute thrombosis
- depicting atherosclerotic plaque morphology and remodeling
- 2D and 3D quantitative analyses by precise measurements
 - arterial dimensions (diameter and area)
 - % stenosis
 - plaque volume

Imaging of the vessels

X-ray angiography Intraves skeleton image of artery cross-set

Intravascular Ultrasound (IVUS) cross-sectional image of artery

M0Y-2

Intravascular Ultrasound (IVUS)

•IVUS provides real time cross-sectional images *in vivo* of vessels.

IVUS provides specific diagnostic information and guides interventional techniques for treatment of atherosclerotic luminal narrowing

IVUS is used for studying the mechanisms for restenosis.

Image formation

Catheter diameter $\cong 1$ mm

IVUS is an **invasive** imaging modality

Intravascular Ultrasound (IVUS) Imaging

ultrasound beam

IVUS image

catheter

IVUS compare to classic probe

Advantages of IVUS

Frequency: 30 MHz
High frequency: better resolution and more attenuation
Vessel size: some millimeters
Wavelength: λ = c/f = 50 µm
Axial resolution : 150 µm at 30 MHz
Lateral resolution : 250 µm at 30 MHz

Drawback Sinvasive technique (operating room)

Construction of an IVUS catheter

• Catheter based imaging technique

INTRALUMINAL IMAGING

Wild	1955	echo-endoscope	rectal tumour location
Omoto	1962	rotating probe C-scan	intracardiac tomography
Ebina	1964	transesophageal P.P.I. scanning	heart and vessels
Wells	1965	rotating mirror	intravenous
Eggleton .	1969	4-elements e.c.g. triggered	heart
Bom	1971	32-elements cylindrical phased array	intracardiac tomography

Intravascular Ultrasound Catheters

• Mechanical rotating single element catheter

3. transducer

Sypical features

catheter diameter : 0.9 mm (~3 French) aperture : 14 ° forward inclination angle : $\beta = 10 - 15^{\circ}$ central frequency : 30 - 40 MHz European School of Medical Physics - Archamps

• Mechanical rotating mirror

transmitted ultrasonic beam

1. flexible drive shaft

4. rotating mirror

• Electronically switched **phased circular array** catheter

circumferential array

of transducers

Central

guidewire

catheter

64-element probe, Endosonics

Sypical features

catheter diameter : 1.2 mm (~4F) elements number : 16, 32, 64 or 128

Bom N, Lancée CT, Van Egmond FC (1972) An ultrasonic intracardiac scanner. Ultrasonics 10

Geometric artefacts

- Geometric distortion are caused by the position of the ultrasound catheter within the artery
- A circular artery is seen on IVUS images as a noncircular vessel represented by more or less complex shapes

• The main distortions are due:

- to the inclination of the catheter (its long axis is not coaxial the vessel axis), angle α
- to the off centered position of the catheter (the axis catheter is not located on the axis of the vessel), δx and δy
- These artefacts are amplified by the geometry of the probe
 - the origin of the ultrasound beam is not the center of the catheter: ρ
 - the ultrasound beam looks forward (not perpendicular to the long axis of the catheter), angle β

Forward inclination angle β

Transmitting cone swept by the ultrasound beam

• The forward inclination of the piezoelectric element avoids direct <u>reflection</u> on the vessel wall and the multiple reflection. The scattering is reinforced

2D-Simulation

Catheter

Four origins for geometric artefacts

combination:

forward inclination angle β inclination of the probe axis α , off centered position δx et δy

Modelisation of the geometry

Reference coordinate system: R (O, x, y, z)

inclination $\alpha = 0$ inclination $\alpha = 20^{\circ}$ off centered position $\delta x = 0$ mm, $\delta y = 0$ mm off axis of transmition point $\rho = 0.4$ mm

• forward inclination angle β

European School of Medical Physics - Archamps

Inclination of the catheter axis: α

$$\begin{split} &\delta x = -\ 0.7\ mm,\ \delta y = 0.5\ mm\\ &\beta = 15^\circ\\ &\rho \ = 0.4\ mm \end{split}$$

1 : $\alpha = 20^{\circ}$, $\delta x = 0.2$ et $\delta y = -0.7$; 2 : $\alpha = 40^{\circ}$, $\delta x = -0.7$ et $\delta y = 0.5$; 3 : $\alpha = 20^{\circ}$, $\delta x = -0.7$ et $\delta y = 0.5$ (β =15° et $\rho = 0.4$ mm).

Geometric artifacts

Viewing

Screen capture **European School of Medical Physics - Archamps**

IVUS in the clinic

Plaque

Calcified component

Hyper-reflectivity following by shadowing

Cell component (blood, lipidic, inflammatory cells) ~ no reflectivity

Fibrous component hypo or hyper reflectivity (collagen density)

Hyaline fibrosis

Quantifying plaque volume

Three-Dimensional Data Acquisition

The probe is pulled out

Longitudinal Contour Detection

In-stent Restenosis Assessed with 3D IVUS

Vulnerabele Plaque Characterization

Vulnerable Plaque

Plaque composition

- Large lipid pool
- Thin fibrous cap
- presence of Macrophages

The challenge:

- % of the lipid core (tissue characterization)
- metabolism, inflammation (pH, temperature)
- thickness of the cap (range = $0 200 \,\mu m$)
- stability of the cap (strain)

Vulnerable plaque with IVUS

Boston Scientific

Nissen & Yock Circ 2001;103:604-616

IVUS diagnostic modality under investigation

- Elastography and Palpography
- Harmonics
- Thermography
- Modulography
- Contrast agents

IVUS diagnostic modality under investigation

- Elastography and Palpography
- Harmonics
- Contrast agents
- Thermography
- Modulography

Harmonic Imaging

Fundamental

Second harmonic

• A pilot study in Toronto (A.F.W. van der Steen et al., 1999) showed already the feasibility of Harmonic Imaging at higher frequencies.

IVUS diagnostic modality under investigation

- Elastography and Palpography
- Harmonics
- Contrast agents
- Thermography
- Modulography

ULTRASOUND CONTRAST AGENT IN INTRAVASCULAR ECHOGRAPHY: Parametric mapping based on RF output

Phantom without agent

Phantom with agent

Creatis

European School of Medical Physics - Archamps

Injection contrast agent

Iumen ROIs in lumen and in phantom Iumen ROI in contrast agent ROI in phantom phantom

Conclusions

IVUS can provide the answer to all relevant diagnostic problems and therapy guidance related to atherosclerosis and restenosis

IVUS

What it is good at

- Tomographic imaging
- Free lumen assessment
- Plaque burden assessment
- Qualitative flow imaging
- Therapy guidance:
 - PTCA
 - Stent
 - Brachytherapy

What it is not yet good at

- Plaque characterization
- Vulnerable plaque detection
- For moderate stenosis: "Should I treat it or not?"
- Quantitative flow measurement
- Shear stress measurement

Future of intravascular

• Obtain more parameters wall characteristics perfusion data

• Combine with therapy and other modalities

• Make it less expensive

Aknowledgement/coworkers

Erasmus MC, Rotterdam

- Ton van der Steen
- Charles Lancee
- Nico de Jong
- Jolanda Wenzel
- Dave Goertz
- Martijn frijlink
- Antoinette ten Have
- Frits Mastik

CREATIS, Lyon

- Gerard Finet
- Philippe Delacharte

- Chris de Korte
- Peter Burns
- Peter Frinking
- Jos Roelandt
- Folkert ten Cate
- Rob Krams
- Patrick Serruys

• Elisabeth Brusseau

REFERENCES

- Bom N, Lancée CT, Van Egmond FC (1972) An ultrasonic intracardiac scanner. Ultrasonics 10: 72-76.
 Bom N, Li W, van der Steen AF, Lancee CT, Cespedes EI, Slager CJ, de Korte CL. Intravascular imaging. Ultrasonics 1998; 36: 625-8.
- Finet G, Maurincomme E, Tabib A, Crowley RJ, Magnin I, Roriz R,Beaune J, Amiel M. Artefacts in intravascular ultrasound imaging:analyses and implications. Ultrasound Med Biol 1993;19:533–547.
- Finet G, Cachard C, Delachartre P, Maurincomme E, Beaune J. Artefactsin intravascular ultrasound imaging during coronary artery stent implantation, Ultrasound Med Biol 1998;24:793–802.
- Delachartre P., Cachard C., Finet G., Gerfault L., Vray D., Modelling geometric artefacts in Intravascular Ultrasound Imaging, Ultrasound in Medicine and Biology, 1999, vol. 25, n° 4, pp. 567-575.
- Doyley MM, Mastik F, de Korte CL, et al. Advancing intravascular ultrasonic palpation toward clinical applications. Ultrasound Med Biol 2001; 27: 1471-80.
- de Korte CL, Pasterkamp G, van der Steen AF, et al. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 2000; 102: 617-23.
- J. A. Schaar, C. L. de Korte, F. Mastik, L. C. van Damme, R. Krams, P. W. Serruys, and A. F. W. van der Steen. Three-dimensional palpography of human coronary arteries. Herz, 30(2):125–133, 2005.