The EUROPEAN SCIENTIFIC INSTITUTE In ARCHAMPS, 7 Km from downtown GENEVA Fifty minutes from Chamonix-Mont-Blanc organises two schools

ESMP: European School of Medical Physics

In partnership with the European Federation of Organisations in Medical Physics (EFOMP)

2012:15th SESSION of ESMP

Lecture presented in Archamps (Salève Building) by :

Karl-Freidrich KAMM (Hamburg)

Basic Aspects Quality and Processing of Digital Images

Karl-Friedrich Kamm
Hamburg-Norderstedt, Germany

Steps of image processing

Properties of detection

Optical Density / pixel value

output

Definitions of Contrast

1. Modulation
$$m = \frac{L_1 - L_2}{L_1 + L_2} = 0 \dots 1$$

2. Contrast
$$k_1 = \frac{L_1 - L_2}{L_1} = 0 \dots 1$$
,

3. Contrast
$$k_2 = \frac{L_1 - L_2}{L_2} = 0 \dots \infty$$
,

4. Film Contrast
$$k_1 = log \frac{L_1}{L_2} = D_1 - D_2 \qquad 0 \dots \infty$$

$$L = Luminance, Intensity, L_1 > L_2$$
 D = Optical Density

Definition of Contrast

Definition of Modulation

Modulation = Intensity of object - Intensity of environment Intensity of environment + Intensity of object

Range: 0...1

6

Contrast curves classical film screen combinations

Dynamic range of an image

Digital x-ray of a human thorax, posterior anterior pa

Signal intensity

Fourier Transformation

decomposition of an arbitrary signal

by a sum of well defined signals, e.g. sinusoidal waves

Definition of Spatial Frequency

Spatial Frequency = Number of periodical variations of bright and dark areas in an image, related to the distance (so called Line pairs, Lp)

$$f = \frac{1}{x}$$

Unit: mm⁻¹

10

resolution test object

leaden stripes, Pb with varying width and 0.05 mm thickness

1.8

2.0

2.5

2.8

0.6

0.7

0.8

0.9

1,0

Measurement of the Modulation Transfer Function, MTF

Point Spread Function PSF

Modulation- Transfer - Function MTF

Comparison of Modulation Transfer Functions

same input image

+
different imaging system
+
resulting MTFs

by Heynacher,Köber,1964

Comparison of Modulation Transfer Functions

Modulation

Quanta per pixel

radiation dose at entrance of detector Kerma (kinetic energy released on matter)

2.5 μGy

equivalent to

70.000 quanta / mm²

- ~ 4.400 quanta / pixel
- ~ 250 µm pixel size

Influence of noise

3000 Photons

12 000 Photons

From A. Rose, Vision, 1973

Influence of noise

93 000 Photons

760 000 Photons

From A. Rose, Vision, 1973

Influence of noise

3 600 000 Photons 28 000 000 Photons

From A. Rose, Vision, 1973

Histogram of an image

procedure:

- discretisation of the image
 - small fields and
 - defined number of intensity steps
- determination of the mean intensity value of each field
- evaluation of all fields
- counting the number of fields for each intensity step
- graphical representation of all counts for all intensity steps

"characteristic" for a specific exposure

"characteristic" for a specific exposure

Histograms of a hip x-ray image

Karl-Friedrich Kamm 2012

European School of Medical Physics - Archamps

Characteristics of noise

different noise characteristics added to a homogeneously grey image

properties:

- mean value
- mean deviation: σ

standard deviation SD

Contrast - Detail Test Object

example: Mammography CDMAM

low radiation dose

high radiation dose

Signal - Noise - Ratio

Measure for the amount of noise within an image, related to the mean signal

Definition: Signal – Noise – Ratio (CNR)

SNR = Mean of the Signal

Standard Deviation of the noise

Contrast - Noise - Ratio

Measure for the amount of noise within an image, related to the contrast of an object

Definition: Contrast-Noise - Ratio (CNR)

contrast of the Signal

Standard Deviation of the noise

Also: signal difference to noise ratio SDNR

Test object for low contrast resolution and dynamic range

exposure of a staircase (horizontal Cu stripes)

with low contrast objects (vertical Al stripes)

to measure

of a DSA (Digital Subtraction Angiography) system

Example: Signal to Noise Ratio

Noise Equivalent Quanta

$$NEQ = \frac{I(q)^2 MTF(u)^2}{NPS (q,u)}$$

Detective Quantum Efficiency

DQE
$$(q,u) = \frac{I(q)^2 MTF(u)^2}{\Phi NPS(q,u)}$$

radiation fluence Ф:

radiation dose q:

spatial frequency u:

I(q) MTF(u): intensity transfer function (characteristic curve)

Modulation Transfer Function

NPS(q,u): Noise Power Spectrum Number Radiation dose incoming quanta Φ

Detector Imaging system

MTF

I(q) = characteristical curve

Signal = $I(q) \times MTF$

Quantumnoise Detectornoise System noise

noise-power-spectrum (Wiener Spectrum)

$$\sigma = \frac{\text{Signal}}{\text{noise}}$$

$$\sigma = \sqrt{(\Phi)}$$

Poisson distribution

Detective Quantum Efficiency (DQE)

$$DQE = \frac{\left(\frac{Signal}{noise}\right)_{output}^{2}}{\left(\frac{Signal}{noise}\right)_{input}^{2}} = \frac{NEQ}{\Phi}$$

Noise Equivalent Quanta (NEQ)

$$NEQ = \left(\frac{Signal}{noise}\right)^{2}$$

ideal detector, ideal system

$$NEQ = \sigma^2 = \Phi$$

$$DQE = 1$$

NEQ Noise equivalent Quanta

NEQ = (signal /noise) ²

squared SNR at output of imaging system

comparison of detector principles

Modulation Transfer Function (MTF)

Comparison of detector technologies

MTF describes signal transfer without influence of noise.

NHS /KCARE U.K. 2005

Detective Quantum Efficiency

higher DQE

= greater dose reduction potential

Only Cesium Iodide flat-panel detectors have significantly improved DQE values

NHS /KCARE U.K. 2005

Important Factors for Image Quality

- Detector Technology
- DQE Detective Quantum Efficiency
- Resolution / Image Matrix
- Active Detector Area
- Dynamic Range
- Image Processing

Detector, AND Image Processing is important

Image Quality

sharpness temporal contrast (spatial resolution) (contrast resolution) resolution energy, number focal spot size + density of exposure time (x-ray tube), x-ray quanta geometry limited number of quanta

34

presentation dilemma

Pelvis
digital flat detector
3000 x 3000 Pixel = 9 M Pixel
> 16 000 pixel values
(14 bit)

large matrix + large range of pixel values are difficult to display

Pelvis survey

Original image matrix 2982 pixel x 2576 pixel

Reduced to 1600 pixel x 1280 pixel for a survey

e.g. only each 3. pixel and each 3. row is displayed (pixel cropping)

Pelvis - ROI 768 pixel x 596 pixel

each pixel is displayed within a section

SMPTE Testpattern 512 x 512

SMPTE Society of Motion Picture Television Engineers

Test Image AAPM TG18 - QC

American Association of Physicists in Medicine

421

(Courtesy: J. Yorkston Eastman Kodak Company)

41

Important Factors for Image Quality

Literature on fundamentals of medical imaging

- Bushberg, J., et al. The essential Physics of medical imaging, Williams & Wilkins, Baltimore, 2001
- SPIE Handbook of medical Imaging 2000
- Dainty J.C.; Shaw R., Image Science principles, analysis and evaluation of photographic-type imaging process, Academic Press, London, 1974

Literature on fundamentals of medical imaging

Electronic book:

 Medical Imaging Physics, Fourth Edition, by William R. Hendee and E. Russell Ritenour

ISBN: 0-471-38226-4 Copyright C 2002 Wiley-Liss, Inc. **1**