The EUROPEAN SCIENTIFIC INSTITUTE In ARCHAMPS, 7 Km from downtown GENEVA Fifty minutes from Chamonix-Mont-Blanc organises two schools

ESMP: European School of Medical Physics

In partnership with the European Federation of Organisations in Medical Physics (EFOMP)

2012:15th SESSION of ESMP

Lecture presented in Archamps (Salève Building) by :

Karl-Freidrich KAMM (Hamburg)

Fundamental Aspects of

Digital Imaging

Karl - Friedrich Kamm

Hamburg-Norderstedt Germany Comparison – Digitization versus

Human Visual System

Transformation of an image

- Picture ———— Receptive Fields
 Elements
- Mean signal Membrane Voltage
- Coding
 Nerve Action
 Potentials

Parameters of the human visual system:

- Contrast Sensitivity: 1% Contrast
- Spatial Resolution: Visus 1

Retina ganglion horizontal \cell cell bipolar rods cones cell light measured nerve action potentiales light light light off off on amakrin cell

retina

visual

nerv

time

Digitization of a Radiograph

Digitization by Scanning

Transformation Steps towards a Digital Image

- Pixelization subdivision of the image
 (discretisation) to picture elements → pixels registration of the mean signal value
- Quantization subdivision of the signal range to discrete signal levels → gray levels mean signal value → signal level
- Coding transformation of signal level to binary digits → bits

Is there a loss of information?

Aliasing

Karl-Friedrich Kamm 2012

European School of Medical Physics - Archamps

effect of Aliasing (pseudo structures)

structures, smaller than the pixel will be distorted by the imaging process.

limiting spatial frequency for pixel size a: $f_N = 1/2a$

Pixel (mm)	f _N (lp/mm)
0.2	2.5
0.1	5.0
0.05	10.0

f_N = Nyquist frequency

Moiré patterns

superposition of two grids

- → undesired artifact within images
- produced by various digital imaging and computer graphics techniques

Definition of Sampling Frequency

Section of a digital image consisting of discrete pixels

a = distance between two pixel centers
 (called: pixel pitch or pixel size)

Sampling Frequency $f_s = 1 / a$

= number of

pixels per unit of length example: pixel size

200 μm

 f_s

5 p

Sampling Theorem

Nyquist-Shannon Sampling Theorem also WKS Whittaker-Kotelnikow S T

Definition of Nyquist frequency for a digital imaging system:

$$f_{\text{Nyquist}} = \frac{f_s}{2}$$

called: limiting spatial frequency

There is no loss of information by sampling an image, if

Nyquist frequency > highest spatial frequency component of the signal

Historical background

Claude Elwood Shannon

- * 30.4.1916 Petoskey, Michigan,
- † 24.2.2001 Medford, Massachusetts

American engineer + mathematician

founder of information theory (1948)

Grey Scales

Pixel values of a picture element (Pixel)

number n of possible pixel values (grey values) = range of values

$$n = 2^{bits (per Pixel)}$$

example:

8 bit 256 pixel values

10 bit 1024 pixel values

12 bit 4096 pixel values

Historical background

Leibniz, Gottfried Wilhelm,

* 1.7.1646 Leipzig,

† 14.11.1716 Hannover

philosopher, mathematiciangeneral scientist

Representation of numbers using two values

Dual System

Matrix of an image

basic example:
Image Matrix 20 x 25 Pixels,
3 bit representing
8 pixel values

Picture Element, pixel with pixel value 011

Quality of Digital Images

Aims of Digital Imaging

- Instant image
- Standardized + compact storage
- Image Enhancement by Processing
- no loss of images
- the right information
 - at the right place (networking)
 - at the right time
- fast retrieval in large data bases

