

EndoTOFPET-US: A multi-modal endoscope for Ultrasound and Time-of-Flight PET

Marco Pizzichemi

On behalf of the EndoTOFPET-US collaboration

International Medical Physics and Biomedical Engineering Workshop Ohrid, Macedonia, July 25-28 2018

- → Introduction
- → Motivations
- → Technological challenges
- → Detector design
- → Performance of individual sub-detectors
- → Conclusions

Marco Pizzichemi (CERN) International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

Introduction

→ International collaboration in the frame of the European FP7 program

- > 7 academic partners: CERN, DESY, LIP, TU-Delft, TUM, Heidelberg Uni, Milano-Bicocca Uni
- > 3 industrial partners: KLOE, Fibercryst, Surgiceye
- > 3 clinical partners: Aix-Marseille Uni, Klinikum Recht der Isar-TU Munich, Lausanne Uni

→ International collaboration in the frame of the European FP7 program

- > 7 academic partners: CERN, DESY, LIP, TU-Delft, TUM, Heidelberg Uni, Milano-Bicocca Uni
- > 3 industrial partners: KLOE, Fibercryst, Surgiceye
- > 3 clinical partners: Aix-Marseille Uni, Klinikum Recht der Isar-TU Munich, Lausanne Uni

→ Develop an imaging tool for early diagnosis of **pancreas** and **prostate** cancer

→ International collaboration in the frame of the European FP7 program

- > 7 academic partners: CERN, DESY, LIP, TU-Delft, TUM, Heidelberg Uni, Milano-Bicocca Uni
- > 3 industrial partners: KLOE, Fibercryst, Surgiceye
- > 3 clinical partners: Aix-Marseille Uni, Klinikum Recht der Isar-TU Munich, Lausanne Uni

→ Develop an imaging tool for early diagnosis of **pancreas** and **prostate** cancer

→ Combine a high resolution PET scanner with an endoscopic US probe

Marco Pizzichemi (CERN)

Motivation

Pancreatic Cancer

[2] American Cancer Society (2010). "Cancer Facts and Figures 2010"

→ Standard imaging nowadays performed with US, CT and MRI, not PET

- → Standard imaging nowadays performed with US, CT and MRI, not PET
- → Limited effectiveness of standard WB-PET/CT scanners
 - small organ dimensions
 - background from organs nearby
 - 18F-FDG not very specific

Marco Pizzichemi (CERN)

International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

- → Standard imaging nowadays performed with US, CT and MRI, not PET
- → Limited effectiveness of standard WB-PET/CT scanners
 - small organ dimensions
 - background from organs nearby
 - 18F-FDG not very specific

Marco Pizzichemi (CERN)

International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

High spatial resolution

[1-2 mm]

- → Standard imaging nowadays performed with US, CT and MRI, not PET
- → Limited effectiveness of standard WB-PET/CT scanners
 - small organ dimensions
 - background from organs nearby
 - 18F-FDG not very specific

- High spatial resolution
- Background rejection with TOF

[1-2 mm] [200 ps]

- → Standard imaging nowadays performed with US, CT and MRI, not PET
- → Limited effectiveness of standard WB-PET/CT scanners
 - small organ dimensions
 - background from organs nearby
 - 18F-FDG not very specific

- High spatial resolution
- Background rejection with TOF
- → New radiotracers

[1-2 mm] [200 ps]

 \rightarrow

Technological goals and challenges

$$\Delta x_{FWHM} \sim a \sqrt{\left(\frac{d}{2}\right)^2 + (0.0022D)^2 + r^2 + b^2}$$

$$\Delta x_{FWHM} \sim a \sqrt{\left(\frac{d}{2}\right)^2 + (0.0022D)^2 + r^2 + b^2}$$

→ EndoTOFPET-US project goal: Δx_{FWHM} = 1-2 mm

Marco Pizzichemi (CERN) International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

$$\Delta x_{FWHM} \sim a \sqrt{\left(\frac{d}{2}\right)^2 + (0.0022D)^2 + r^2 + b^2}$$

→ EndoTOFPET-US project goal: Δx_{FWHM} = 1-2 mm

- a = reconstruction degradation ~1.25
- ightarrow r = positron range ~0.8 mm

$$\Delta x_{FWHM} \sim a \sqrt{\left(\frac{d}{2}\right)^2 + (0.0022D)^2 + r^2 + b^2}$$

→ EndoTOFPET-US project goal: ∆x_{FWHM} = 1-2 mm

\triangleright	а	= reconstruction degradation	~1.25
\blacktriangleright	r	= positron range	~0.8 mm
\blacktriangleright	d	= crystal transversal size	0.75 mm
\blacktriangleright	D	= detector heads distance	< 100 mm
\succ	b	= accuracy of positioning system	< 1 mm

International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

$$\Delta x_{FWHM} \sim a \sqrt{\left(\frac{d}{2}\right)^2 + (0.0022D)^2 + r^2 + b^2}$$

→ EndoTOFPET-US project goal: ∆x_{FWHM} = 1-2 mm

\triangleright	а	= reconstruction degradation	~1.25		
\triangleright	r	= positron range	~0.8 mm		
\searrow	d	= crystal transversal size	0.75 mm	→	High granularity
\blacktriangleright	D	= detector heads distance	< 100 mm	→	Endoscopic approach
\checkmark	b	= accuracy of positioning system	< 1 mm		

Marco Pizzichemi (CERN)

International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

Background rejection

Marco Pizzichemi (CERN)

4

Compute the **difference in time of arrival** of gammas:

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12–22

- Compute the **difference in time of arrival** of gammas:
 - Improve event localization along LORs, reject events from nearby organs (liver, heart, bladder)

$$\Delta x = c \frac{\Delta t}{2}$$

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12–22

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12-22

Compute the **difference in time of arrival** of gammas:

Improve event localization along LORs, reject events from nearby organs (liver, heart, bladder)

$$\Delta x = c \frac{\Delta t}{2}$$

 Decrease noise correlation in overlapping LORs, improve Signal-to-Noise Ratio (SNR)

$$SNR_{TOF} \sim \sqrt{\frac{D}{\Delta x}} \cdot SNR_{CONV}$$

D = effective object diameter

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12–22

Time resolution (ns)	Δx (cm) TOF NEC gai		1 TOF SNR gain	
0.1	1.5	26.7	5.2	
0.3	4.5	8.9	3.0	
0.6	9.0	4.4	2.1	
1.2	18.0	2.2	1.5	
2.7	40.0	1.0	1.0	

M. Conti - Eur J Nucl Med Mol Imaging (2011) 38:1147–1157

International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

5

Compute the **difference in time of arrival** of gammas:

Improve event localization along LORs, reject events from nearby organs (liver, heart, bladder)

$$\Delta x = c \frac{\Delta t}{2}$$

Decrease noise correlation in overlapping LORs, improve Signal-to-Noise Ratio (SNR)

$$SNR_{TOF} \sim \sqrt{\frac{D}{\Delta x}} \cdot SNR_{CONV}$$

D = effective object diameter

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12–22

Time resolution (ns)	Δx (cm)	TOF NEC gain	TOF SNR gain	
0.1	1.5	26.7	5.2	
0.3	4.5	8.9	3.0	
0.6	9.0	4.4	2.1	
1.2	18.0	2.2	1.5	
2.7	40.0	1.0	1.0	

M. Conti - Eur J Nucl Med Mol Imaging (2011) 38:1147–1157

5

Compute the **difference in time of arrival** of gammas:

Improve event localization along LORs, reject events from nearby organs (liver, heart, bladder)

$$\Delta x = c \frac{\Delta t}{2}$$

Decrease noise correlation in overlapping LORs, improve Signal-to-Noise Ratio (SNR)

$$SNR_{TOF} \sim \sqrt{\frac{D}{\Delta x}} \cdot SNR_{CONV}$$

D = effective object diameter

→ Current commercial PET scanner
> ∆t_{FWHM} = 450 ps (250 ps)

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12–22

Time resolution (ns)	Δx (cm)	TOF NEC gain	TOF SNR gain	
0.1	1.5	26.7	5.2	
0.3	4.5	8.9	3.0	
0.6	9.0	4.4	2.1	
1.2	18.0	2.2	1.5	
2.7	40.0	1.0	1.0	

M. Conti - Eur J Nucl Med Mol Imaging (2011) 38:1147–1157

Improve event localization along LORs, reject events from nearby organs (liver, heart, bladder)

$$\Delta x = c \frac{\Delta t}{2}$$

 Decrease noise correlation in overlapping LORs, improve Signal-to-Noise Ratio (SNR)

$$SNR_{TOF} \sim \sqrt{\frac{D}{\Delta x}} \cdot SNR_{CONV}$$

D = effective object diameter

→ Current commercial PET scanner

>
$$\Delta t_{FWHM}$$
 = 450 ps (250 ps)

→ Project goal

→
$$\Delta t_{FWHM}$$
 = 200 ps → x = 3cm

Benefits of TOF

→ Improved lesion detectability while keeping scanning time constant

Fig. 1 Coronal images reconstructed from a non-TOF scan (*left*) and a TOF scan (*right*) in a patient with lung cancer. The acquisition time was 3 min per bed position for both images. At the same number of counts, the image quality is better with the TOF reconstruction

M. Conti - Eur J Nucl Med Mol Imaging (2011) 38:1147–1157

Benefits of TOF

- Improved lesion detectability while keeping scanning time constant
- → Reduced scan times for the same lesion detectability

Fig. 2 Coronal images reconstructed from a non-TOF scan (*left*) and a TOF scan (*right*). The acquisition time was 2 min per bed position for the non-TOF scan and 1 min per bed position for the TOF scan. The quality of the non-TOF image and that of the TOF image with half of the counts are similar

M. Conti - Eur J Nucl Med Mol Imaging (2011) 38:1147–1157

Benefits of TOF

- → Improved lesion detectability while keeping scanning time constant
- → Reduced scan times for the same lesion detectability
- → Fewer iterations of reconstruction algorithms required to maximize lesion contrast -> lower image noise

Figure 2. Reconstructed transverse slices of a clinical ¹⁸F-FDG study. As indicated, images are shown for Non-TOF and TOF reconstruction and for iterations 3 and 10 of the reconstruction algorithm. The arrow indicates the lesion for which an accurate SUV is measured after 3 iterations of the TOF reconstruction algorithm.

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12–22
Benefits of TOF

- Improved lesion detectability while keeping scanning time constant
- → Reduced scan times for the same lesion detectability
- Fewer iterations of reconstruction algorithms required to maximize lesion contrast -> lower image noise

 Better lesion detectability for larger objects

Reconstructed coronal slices of an 18F-FDG study for a heavy (140 kg) patient diagnosed with non-Hodgkins lymphoma. The images are (left) Non-TOF reconstruction and (right) TOF reconstruction using all collected counts. Arrows indicate a lesion that has higher uptake and is better discriminated in the TOF image.

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12–22

Benefits of TOF

- → Improved lesion detectability while keeping scanning time constant
- → Reduced scan times for the same lesion detectability
- Fewer iterations of reconstruction algorithms required to maximize lesion contrast -> lower image noise
- → Better lesion detectability for larger objects

Figure 4. Reconstructed images from a NEMA image quality phantom using full or partial angular data acquired on a clinical TOF PET/CT. The six hot spheres in a ring have diameters of 37, 28, 22, 17, 13, and 10 mm and have an activity uptake of 9.7:1 with respect to background. The central cold region is a lung insert.

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12–22

→ Better image reconstruction for limited angle PET acquisitions

EndoTOFPET and the next frontier

EndoTOFPET and the next frontier

→ @200ps CTR → Background rejection

Marco Pizzichemi (CERN) International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

EndoTOFPET and the next frontier

- → @200ps CTR → Background rejection
- → @100ps CTR \rightarrow SNR improved by factor 5

Marco Pizzichemi (CERN) International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

- → @200ps CTR → Background rejection
- → @100ps CTR \rightarrow SNR improved by factor 5
- → @ 10ps CTR \rightarrow Access to direct 3D information

Detector design

→ **Two plates** produced (one for prostate detector, one for pancreas detector)

Marco Pizzichemi (CERN) International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

→ **Two plates** produced (one for prostate detector, one for pancreas detector)

- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M

→ **Two plates** produced (one for prostate detector, one for pancreas detector)

- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M

→ Discrete Silicon-through-via (TSV) MPPCs by Hamamatsu, RTV 3145 glue

→ **Two plates** produced (one for prostate detector, one for pancreas detector)

→ 256 arrays of 4x4 LYSO:Ce scintillators for each plate

- Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
- Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
- Coating material: ESR by 3M

→ Discrete Silicon-through-via (TSV) MPPCs by Hamamatsu, RTV 3145 glue

→ **Two plates** produced (one for prostate detector, one for pancreas detector)

- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) **MPPCs** by Hamamatsu, RTV 3145 glue
- → FEB/A with 8 modules and 2x64ch readout ASICs, 4 FEB/D with 8 FEB/A each

- → **Two plates** produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) **MPPCs** by Hamamatsu, RTV 3145 glue
- → FEB/A with 8 modules and 2x64ch readout ASICs, 4 FEB/D with 8 FEB/A each

- → **Two plates** produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) **MPPCs** by Hamamatsu, RTV 3145 glue
- → FEB/A with 8 modules and 2x64ch readout ASICs, 4 FEB/D with 8 FEB/A each
- → Cooling system, mechanical arm

- → **Two plates** produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) **MPPCs** by Hamamatsu, RTV 3145 glue
- → FEB/A with 8 modules and 2x64ch readout ASICs, 4 FEB/D with 8 FEB/A each
- → Cooling system, mechanical arm

→ Two different versions under development:

→ Two different versions under development:

- > Pancreas probe, diameter **15 mm**
 - Clamped on Fujinon EG-530UR2

→ Two different versions under development:

- Pancreas probe, diameter 15 mm
 - Clamped on Fujinon EG-530UR2
- Prostate probe, diameter 23 mm
 - Clamped on Hitachi EUP-U533

Two different versions under development:

- Pancreas probe, diameter 15 mm
 - Clamped on Fujinon EG-530UR2
- Prostate probe, diameter 23 mm
 - Clamped on Hitachi EUP-U533
- → Scintillators: 1 (pancreas) or 2 (prostate) arrays of 9x18 LYSO:Ce
 - Individual crystal size 0.71x0.71x15(or 10) mm³
 - Crystal pitch 800 μm
 - ➢ Coating material: ESR by 3M

Two different versions under development:

- Pancreas probe, diameter 15 mm
 - Clamped on Fujinon EG-530UR2
- Prostate probe, diameter 23 mm
 - Clamped on Hitachi EUP-U533
- → Scintillators: 1 (pancreas) or 2 (prostate) arrays of 9x18 LYSO:Ce
 - Individual crystal size 0.71x0.71x15(or 10) mm³
 - Crystal pitch 800 μm
 - Coating material: ESR by 3M

Photo-detector: custom MD-SiPM developed within the collaboration

Two different versions under development:

- Pancreas probe, diameter 15 mm
 - Clamped on Fujinon EG-530UR2
- Prostate probe, diameter 23 mm
 - Clamped on Hitachi EUP-U533
- → Scintillators: 1 (pancreas) or 2 (prostate) arrays of 9x18 LYSO:Ce
 - Individual crystal size 0.71x0.71x15(or 10) mm³
 - Crystal pitch 800 μm
 - Coating material: ESR by 3M

→ Photo-detector: custom MD-SiPM developed within the collaboration

→ EM, and optical **tracking**, water **cooling**

Detector performance

PET detector performance: scintillators

- → LYSO:Ce polished scintillators, coating with ESR
- → Required light output to reach 200ps = 20000-25000 Ph/MeV
- → 9x18 arrays of internal probes tested on standard PMTs (optical grease coupling)
 - > Narrow sum photopeak ensure uniform light output within individual arrays
 - Average light output = 28000 +/- 1000 Ph/MeV

PET detector performance: scintillators

- LYSO:Ce polished scintillators, coating with ESR \rightarrow
- Required light output to reach 200ps = 20000-25000 Ph/MeV \rightarrow
- 9x18 arrays of internal probes tested on standard PMTs (optical grease coupling) \rightarrow
 - Narrow sum photopeak ensure uniform light output within individual arrays
 - Average light output 28000 +/- 1000 Ph/MeV
- Characterization of 276(x2) arrays produced for external plates with **MiniACCOS** \rightarrow
 - 25 arrays per teflon plate \succ
 - Motorized X-Y movements \succ
 - Average light output (Prostate) \succ
 - Average light output (Pancreas) \succ

- 32000 +/- 2000 Ph/MeV =
- 37000 +/- 3000 Ph/MeV =

Marco Pizzichemi (CERN)

International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

PET detector performance: MPPCs

Characterization of breakdown voltage (V_{bd}) with I-V curves

- Measured with Keithley 2410 for each channel of the 256 MPPCs, at 19 °C
- **Excellent homogeneity** within 16 channels of each array
- > MPPCs sorted on the bases of V_{bd} distribution (common bias for 4 MPPCs)
- Operational voltage set to V_{bd} + 2.5 V

→ Average Dark Count Rate (DCR) and Cross Talk

- > DCR measured as a function of the NINO amplifier/discriminator threshold
- > Average **DCR** at 19 °C = **0.88 MHz**
- > Cross Talk between SPADs measured as the ratio of DCR at 1.5 to 0.5 photoelectrons
- Average SPAD cross talk at 19 °C = 41.4%

PET detector performance: modules

→ Light Output of all modules determined as number of pixels fired

- Module excited with ²²Na source
- Current output integrated by QDC over 100 ns gate
- Mean Light Output = 1876 +/- 100 pixels fired
- Mean Energy Resolution FWHM = 12.8%

→ Coincidence Time Resolution (CTR)

- Measured with NINO and HPTDC for each module against a reference module
- Average prostate plate CTR_{FWHM} = 239.5 ps
- Average pancreas plate CTR_{FWHM} = 223.5 ps

	STiC	TOFPET-ASIC
Jitter (at $>5pC$)	< 30 ps	< 25 ps
Input bias lin. range	$0.7 \mathrm{~V}$	$0.5 \mathrm{V}$
TDC time bin width	$50 \ \mathrm{ps}$	$50 \mathrm{\ ps}$
Power consumption	19 mW/ch.	$8 \mathrm{~mW/ch}$
Output rate	160 MBit/s	160 MBit/s

→ Two dedicated fast 64 channel ASICs developed: **StiC** and **TOFPET**

- Leading edge technique to get timing information
- Linearized Time-Over-Threshold method to provide energy information
- Low noise, low timing-jitter, low power consumption

PET detector performance: ASICs

→ Two dedicated fast 64 channel ASICs developed: **StiC** and **TOFPET**

- Leading edge technique to get timing information
- Linearized Time-Over-Threshold method to provide energy information
- Low noise, low timing-jitter, low power consumption

→ CTR measured for both ASICs

- Single 3.1x3.1x15 mm³ crystals coupled to 2 Hamamatsu MPPCs
- > 22 Na source
- > StiC average CTR_{FWHM} = 240 ps
- ➢ TOFPET average CTR_{FWHM}

= 270 ps

Marco Pizzichemi (CERN) International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

Endoscopic probe: MD-SiPM

→ Individual SPADs size **30x50 μm**, 57% fill factor

- 1-bit counter per SPAD provides digital count of pixels fired
- → 416 SPADs per MD-SiPM (16x26 array), size **780x800µm**
 - Pixel masking

→ Array of **9x18 MD-SiPMs** matching the scintillator matrix

- 432 column-parallel TDCs (48 per column)
- > Combining information of first 48 photons reaching **lower bound** of theoretically achievable CTR

→ DCR measured for different temperatures and bias voltages

- DCR 41 MHz at 20 °C and 3 V excess bias
- Can be reduced to 23 MHz with 10% masking
- PDE after masking about 12%

Endoscopic probe: MD-SiPM

→ DCR measured for different temperatures and bias voltages

- DCR 41 MHz at 20 °C and 3 V excess bias
- Can be reduced to 23 MHz with 10% masking
- PDE after masking about 12%

→ Single Photon Timing Resolution (SPTR) evaluated

- Pulsed laser (250 mW, 405 nm, 40ps pulse width)
- Internal TDCs (45 ps LSB)
- SPTR_{FWHM} measured in **121 ps** for single SPAD and **179 ps** for entire 16x26 array
Reconstruction Algorithm - Simulations

Transverse

Coronal

→ Dedicated reconstruction algorithm developed within the collaboration

- Iterative histogram based ML-EM reconstruction
- Incorporates TOF information
- Copes with detector asymmetry
- Takes into account the limited rotation capabilities
- Massive parallelization by GPU programming

→ Expected performance tested on simulated datasets

- Based on GAMOS toolkit
- > 1 mm resolution within reach with 10 minutes scan time

→ **Provisional probe** with 2 MPPCs and 2 4x4 LYSO:Ce arrays (3.1x3.1x15 mm³)

Marco Pizzichemi (CERN) International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

Commissioning and testing of first prototype

→ Provisional probe with 2 MPPCs and 2 4x4 LYSO:Ce arrays (3.1x3.1x15 mm³)
→ Clamping on prostate US endoscope

Commissioning and testing of first prototype

- \rightarrow **Provisional probe** with 2 MPPCs and 2 4x4 LYSO:Ce arrays (3.1x3.1x15 mm³)
- → Clamping on prostate US endoscope
- → Preliminary images obtained at CERIMED-Marseille on cylinders filled with FDG

Marco Pizzichemi (CERN)

Development of new biomarkers

→ Pancreas cancer: mAb16D10

- Recognizes human pancreatic tumor cells
- > **Does not recognize** non-tumoral pancreatic tissue, other cancers or normal tissue
- Therapeutic properties: decreases tumor growth and mobility

Development of new biomarkers

68Ga-PSMA PET/MR in patient with negative prostate biopsy

→ Pancreas cancer: mAb16D10

- Recognizes human pancreatic tumor cells
- Does not recognize non-tumoral pancreatic tissue, other cancers or normal tissue
- Therapeutic properties: decreases tumor growth and mobility

→ Prostate cancer: ⁶⁸Ga-PSMA

- > **Enzyme** expressed by prostate epithelial cells
- > **More specific** as compared to standard ¹⁸F and ¹¹C tracers

Ρ

ROSTATE

→ Several positive **by-products** of research

- Investigation of new crystals (garnets, ...)
- Study on diffractive optics and photonic crystals
- > Necessity to focus on new light sources for the 10ps frontier (nanocrystal, ...)
- > **TOFPET ASIC** selected for the CMS detector upgrade @LHC
- First stage of development of the MD-SiPM

→ Several positive **by-products** of research

- Investigation of new crystals (garnets, ...)
- Study on diffractive optics and photonic crystals
- > Necessity to focus on new light sources for the 10ps frontier (nanocrystal, ...)
- > **TOFPET ASIC** selected for the CMS detector upgrade @LHC
- First stage of development of the MD-SiPM

→ Need to rethink (or integrate) the way EU is **financing** frontier projects

- > Very ambitious projects cannot bring to a complete system in the turn of 5 years
- > New funding schemes are in fact under study by the EU Commission

Conclusions

→ The EndoTOFPET-US collaboration is developing a multi-modal PET-US scanner for early detection of prostate and pancreas cancer

- → The EndoTOFPET-US collaboration is developing a multi-modal PET-US scanner for early detection of prostate and pancreas cancer
- → The PET scanner design aims to **1-2 mm** spatial resolution and **200 ps** FWHM CTR
 - > Early diagnosis, via spatial resolution and SNR and NEC improvement from TOF
 - > Tool for development of new **biomarkers**
 - Research to develop this scanner will be instrumental in the effort towards the "10 ps PET" (e.g. MD-SiPM, fast ASICs, scintillators, etc.)

- → The EndoTOFPET-US collaboration is developing a multi-modal PET-US scanner for early detection of prostate and pancreas cancer
- → The PET scanner design aims to **1-2 mm** spatial resolution and **200 ps** FWHM CTR
 - > Early diagnosis, via spatial resolution and SNR and NEC improvement from TOF
 - > Tool for development of new **biomarkers**
 - Research to develop this scanner will be instrumental in the effort towards the "10 ps PET" (e.g. MD-SiPM, fast ASICs, scintillators, etc.)
- → Performance of single components evaluated, design targets within reach
- → Two external detectors assembled, **first tests** with provisional internal probe
- → Several lessons learned

Marco Pizzichemi (CERN) International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018

Thank you for your attention!

Thanks to all the collaborators of EndoTOFPET-US and PicoSEC-MCNet

This project have been partially funded by from the European Union 7th Framework Program (FP7/ 2007-2013) under Grant Agreement No. 256984 (EndoTOFPET-US) and is supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2011-289355-PicoSEC-MCNet)

Marco Pizzichemi (CERN)

International Medical Physics and Biomedical Engineering Workshop - Ohrid, Macedonia, July 25-28 2018