Brookhaven National Lab

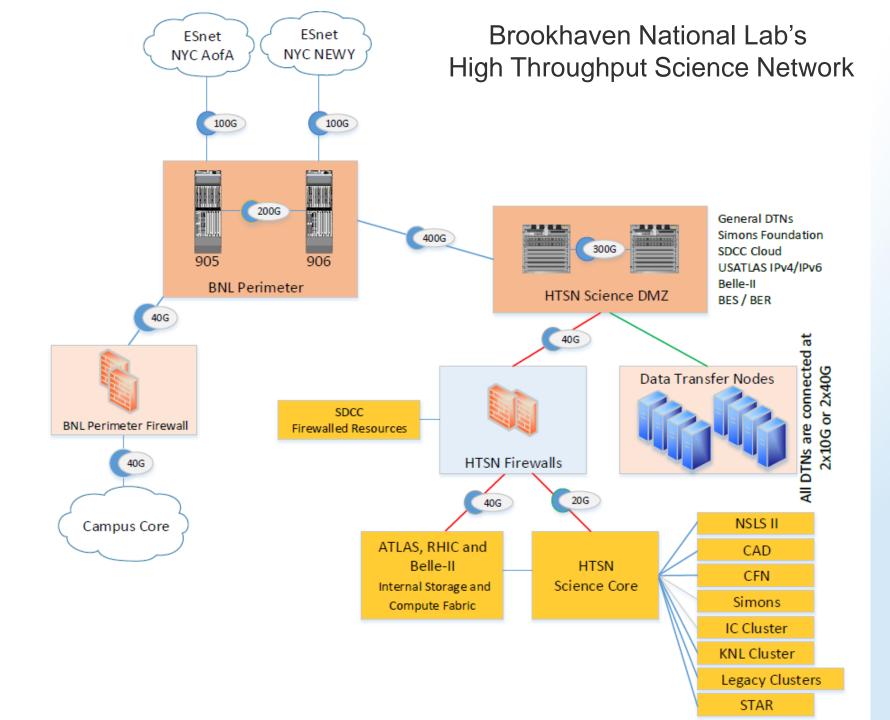
LHCOPN/ONE Fall 2017

KEK

Mark Lukasczyk

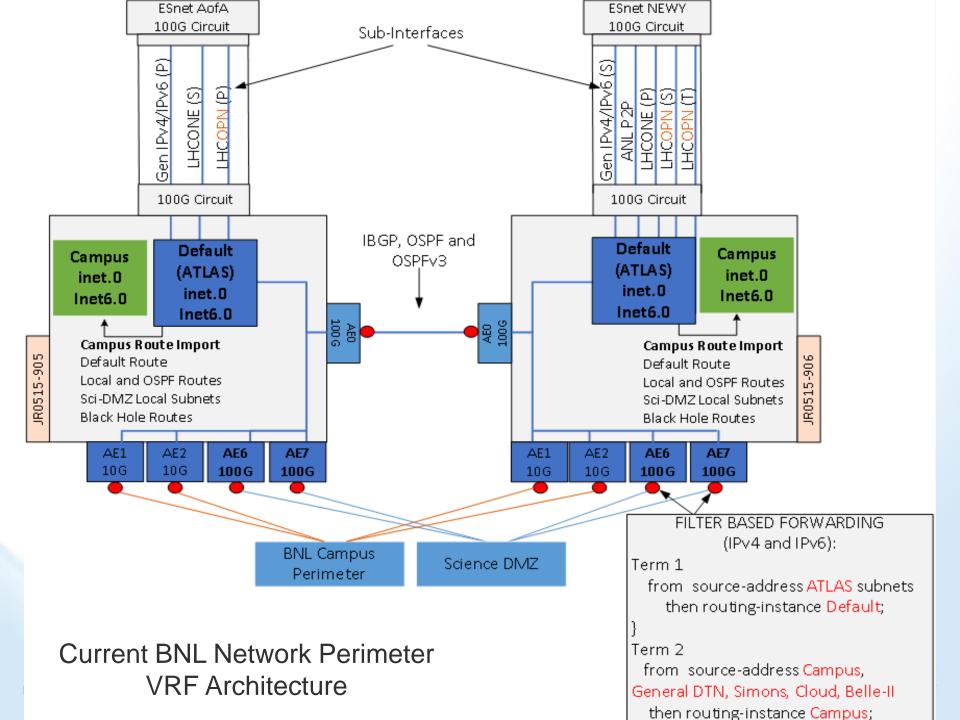
a passion for discovery

BNL Multipurpose Scientific Lab


- BNL is a multifaceted laboratory that hosts numerous scientific programs including:
 - Basic Energy Sciences (BES)
 - National Synchrotron Light Source II (NSLS-II)
 - Center for Functional Nanomaterials (CFN)
 - Biological and Environmental Research (BER)
 - Cryo-EM (FY18-19)
 - High-Energy Physics (HEP)
 - ATLAS Tier-1 Computing Facility
 - Belle-II Tier-1 Computing Facility
 - Nuclear Physics
 - Relativistic Heavy Ion Collider (RHIC)
 - STAR
 - PHENIX
 - RHIC Computing Facility

BNL's Unified Network Architecture

- Unified Network Perimeter
 - Two Diverse 100G circuits that peer with ESnet in New York City.
 - These 100G circuits are utilized by all scientific and administrative communities at BNL.
 - All traffic to and from BNL flows through either of these two circuits.
- Unified Science DMZ
 - Procured and architected by BNL to support open, high-speed WAN access for all scientific collaborations throughout the BNL campus.
 - All collaborations connecting to the BNL Science DMZ must have approval from BNL's Cyber Security group and have a valid cyber security plan which follows The Federal Information Security Management Act (FISMA).



Complexities Operating Unified Network Perimeter and Science DMZ

- Adherence to the LHCOPN/ONE AUPs in a multipurpose lab utilizing a unified network perimeter becomes exponentially complex as scientific programs want exclusivity over a Virtual Private LAN Service (VPLS) or L3VPN circuits while utilizing BGP (e.g. LHCONE and LHCOPN).
- Complexities include:
 - Implementation of separate routing tables
 - Implementation of policy based routing
 - Increased cost in border routers
 - Increased operational complexities
 - Limits the number of vendors to choose from
- The addition of Belle-II to BNL demonstrates some of these complexities.

Belle-II Computing Center At BNL

- BNL is currently transitioning to a Tier-1 computing center for Belle-II.
- Belle-II requires access to general Internet and LHCONE
- Adhering to the LHCOPN/ONE AUP's while implementing Belle-II resources creates a multitude of complexities.

Belle-II Complexities Due to AUPs

IP Addressing Complexities

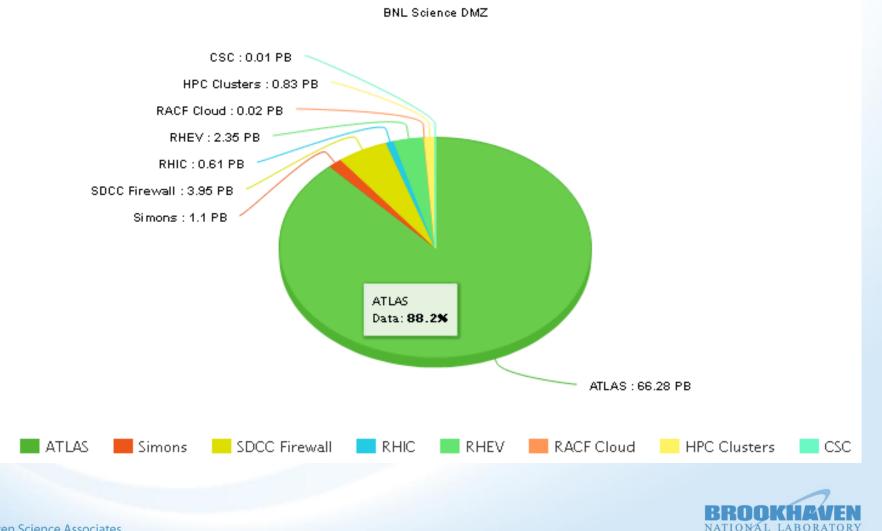
- Because current general purpose DTN subnets are not HEP they are not permitted on LHCONE or LHCOPN.
- Can't utilize USATLAS subnets since Belle-II isn't permitted on LHCOPN.
- BNL had to allocate dedicated direct assignment IPv4 space.
- This WAN complexity also leads to system administrators needing to follow a complex matrix to determine what subnet their DTN's should be assigned too.

Belle-II Complexities Due to AUPs

- Belle-II Routing Complexities at BNL
 - Since Belle-II isn't permitted on LHCOPN it can't utilize the current "Default" routing table as USATLAS does.
 - Since Belle-II requires LHCONE access it can't utilize the current "Campus" routing table.

Adhering to the current AUP is Complicated & Difficult

- Continue adding Perimeter VRFs to split traffic
 - Increases complexity. Requires additional EBGP (LHCONE) and IBGP/IGP peering's.
 - Still requires separate routing tables and Policy Based Routing.
 - Longer time to deploy
 - Locks us into very expensive hardware
- Use point solutions per Scientific program
 - Provide dedicated equipment, circuits and peering's
 - Adds significant costs for procurement, maintenance and management.
 - Longer time to deploy
 - Moves in the opposite direction of a unified network
 - Who is supposed to pay for this?



Belle-II's Current State at BNL

- At what point does the cost and complexity of these solutions no longer justify strict compliance to the AUPs?
- These AUPs are forcing BNL to migrate away from an "end site" architecture and begin to mimic a service provider environment.
- BNL has made an internal decision not incur the additional complexities of creating another Perimeter VRF or procuring a point solution.
- Given the short time frame for implementation, advertising Belle-II's address space through the LHCOPN was the only viable cost effective and manageable option.

BNL Scientific FY17 Traffic

Brookhaven Science Associates

Costs Incurred to Support AUPs

- Given that commodity ASICs can now support full Internet routing tables (e.g. Arista), BNL is strongly investigating the possibility to reduce costs by utilizing these appliances on its Network Perimeter.
- Given BNL's FY17 scientific traffic, it isn't practical to keep procuring expensive network hardware to detour BNL's 12% of non HEP scientific data away from possibly utilizing LHCOPN/ONE.
- Given the fiscal climate and the growth of additional scientific programs at BNL, these AUPs will only continue to increase operational complexities and drive hardware costs higher.

BNL's Aspiration

Remove the complexities of source based routing and revert to destination based routing which will eliminate operational complexity and reduce costs.

