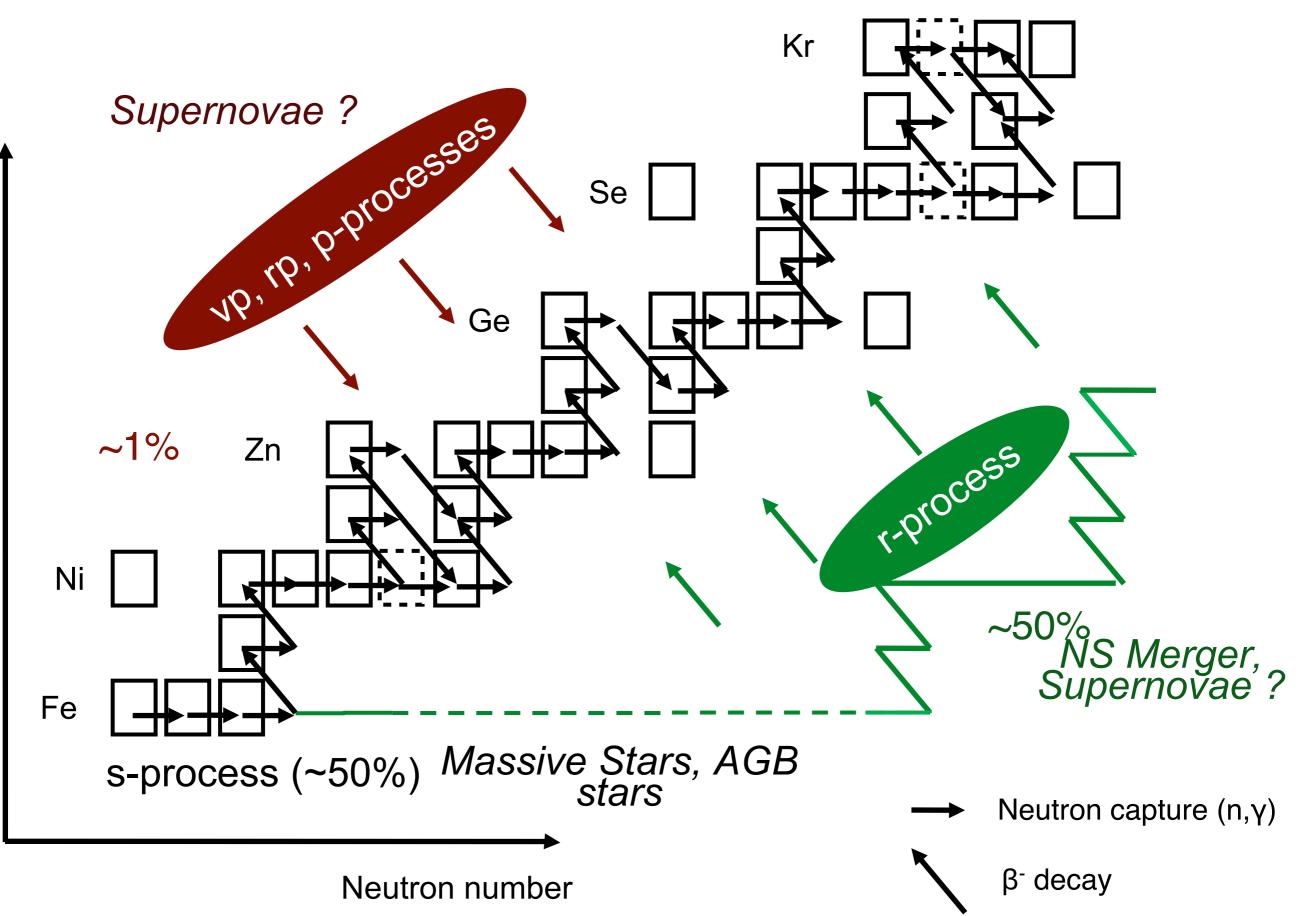
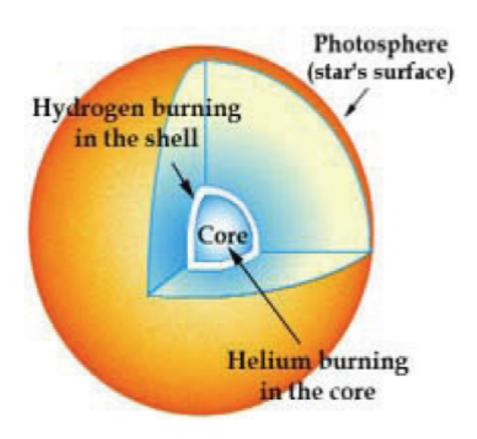
INTC-P-509

Neutron Capture on ⁷⁷Se, ⁷⁸Se and ⁶⁸Zn, and the origin of Se in massive stars

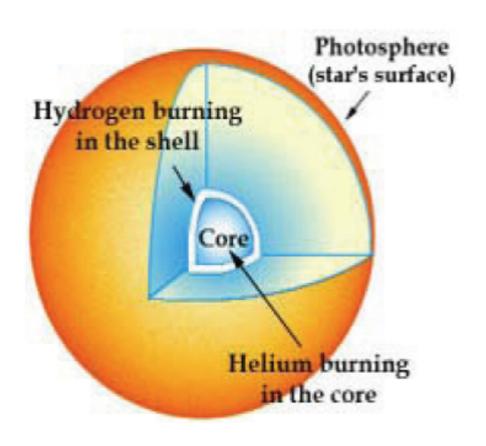
<u>C. Lederer-Woods^{1,11}</u>, A. St. J. Murphy^{1,11}, G. Cescutti^{2,11}, M. Dietz¹, C. Domingo-Pardo³, R. Garg¹, A. Gawlik⁴, K. Göbel ⁵, R. Hirschi^{6,10}, F. Käppeler⁷, D. Kurtulgil⁵, S.J. Lonsdale¹, N. Nishimura^{8,11}, J. Perkowski⁴, T. Rauscher^{9,10,11}, R. Reifarth⁵, P.J. Woods^{1,11}, and the n_TOF Collaboration.





Nucleosynthesis of the heavy elements

Proton number



s-process in Massive Stars

- weak s-process in massive stars (>8 solar masses)
- During He Core burning and C shell burning
- Mainly elements from Fe to Zr
- Stellar temperatures kT~25 keV, and kT~90 keV
- Neutron capture cross sections up to ~200 keV
- one reaction rate may affect a number of isotopic abundances

s-process in Massive Stars

- **weak s-process** in massive stars (>8 solar masses)
- During He Core burning and C shell burning
- Mainly elements from Fe to Zr
- Stellar temperatures kT~25 keV, and kT~90 keV
- Neutron capture cross sections up to ~200 keV
- one reaction rate may affect a number of isotopic abundances

enhanced s-process

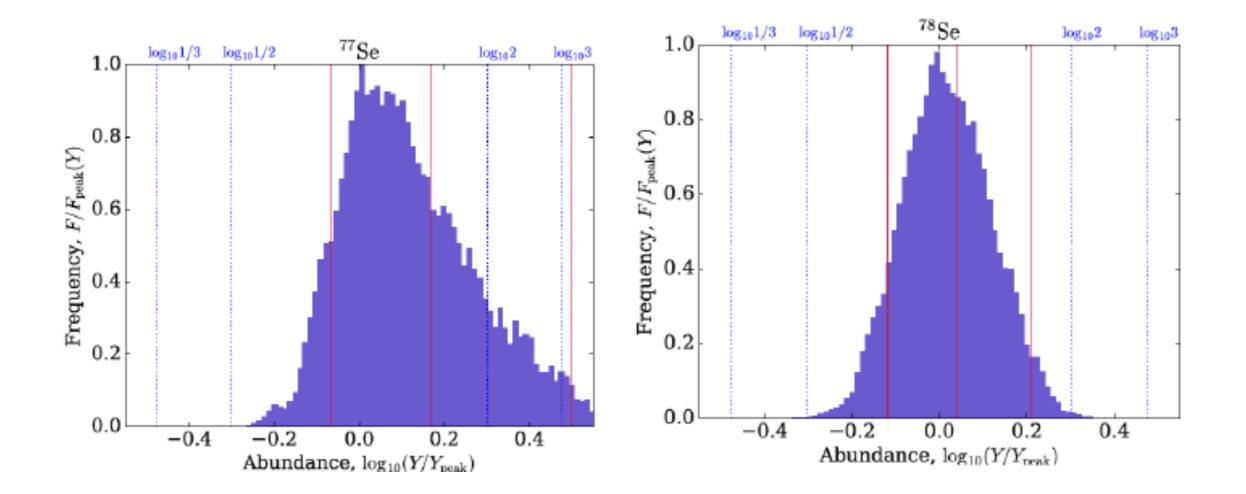
- Rotation mixing leads to higher production of neutron source ²²Ne
- enhanced production of weak s isotopes
- if star metal poor, element production up to Ba possible (Frischknecht U., Hirschi R., Thielemann F.-K., 2012, A&A, 538, L2)

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

Uncertainties in *s*-process nucleosynthesis in massive stars determined by Monte Carlo variations

N. Nishimura (西村信哉),^{1,2*}† R. Hirschi,^{1,3}† T. Rauscher,^{4,5}† A. St. J. Murphy⁶† and G. Cescutti^{5,7}†

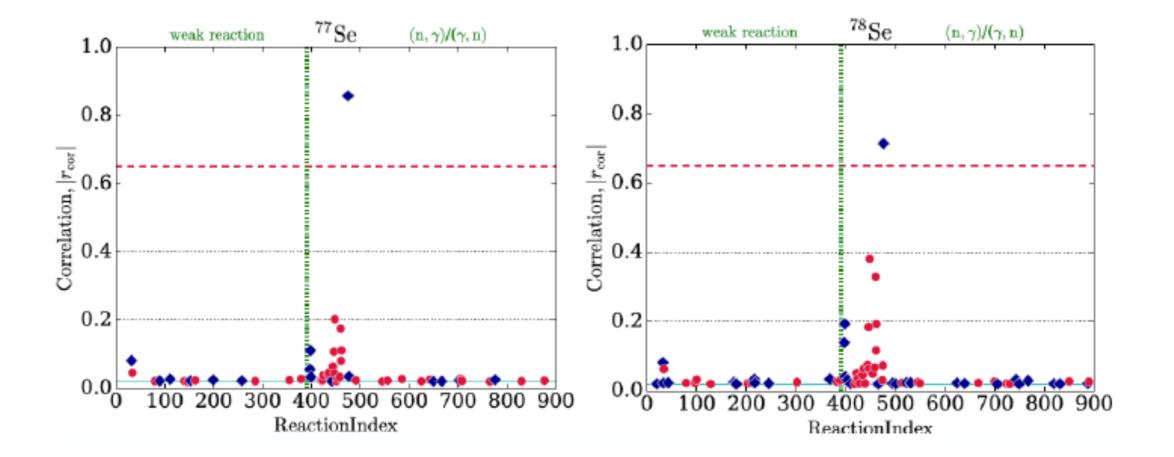
- Simultaneous variation of (n, γ) rates and beta decays
- Rates varied by experimental or theoretical uncertainties
- Extract correlation between reaction rate and final abundance
- If correlation over a certain value, reaction considered "key reaction"


Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 469, 1752–1767 (2017) Advance Access publication 2017 March 22

Uncertainties in *s*-process nucleosynthesis in massive stars determined by Monte Carlo variations

N. Nishimura (西村信哉),^{1,2*}† R. Hirschi,^{1,3}† T. Rauscher,^{4,5}† A. St. J. Murphy⁶† and G. Cescutti^{5,7}†


Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 469, 1752–1767 (2017) Advance Access publication 2017 March 22

Uncertainties in *s*-process nucleosynthesis in massive stars determined by Monte Carlo variations

N. Nishimura (西村信哉),^{1,2*}† R. Hirschi,^{1,3}† T. Rauscher,^{4,5}† A. St. J. Murphy⁶† and G. Cescutti^{5,7}†

Key reactions in the weak s-process

Nuclide	r _{cor,0}	r _{cor,1}	r _{cor,2}	Key Rate Level 1	Key Rate Level 2	Key Rate Level 3	X ₀ (8, 30 keV)	Weak Rate (8, 30 keV)
⁶⁴ Zn	0.76			$^{64}Cu(\beta^{-})^{64}Zn$				1.30, 1.36
	0.76 -0.46	-0.73		•	⁶⁴ Cu(e ⁻ , ν _e) ⁶⁴ Ni			e ⁻ capture
⁶⁷ Zn	-0.67			67 Zn(n, γ) 68 Zn			1.00, 1.00	
⁷² Ge	-0.85			72 Ge(n, γ) 73 Ge			1.00, 1.00	
⁷³ Ge	-0.84			73 Ge(n, γ) 74 Ge			0.88, 0.81	
⁷⁴ Ge	-0.44	-0.54	-0.67			⁷⁴ Ge(n, γ) ⁷⁵ Ge	1.00, 1.00	
75 _{As}	-0.50	-0.59	-0.70			$75 As(n, \gamma)^{76} As$	1.00. 1.00	
77 Se	-0.86			77 Se(n, γ) 78 Se			1.00, 1.00	
⁷⁸ Se	-0.71			78 Se(n, γ) 79 Se			1.00, 1.00	
	0.38	0.68			68 Zn(n, γ) 69 Zn		1.00, 1.00	
^{eo} Se	-0.76			⁸⁰ Br(β ⁻) ⁸⁰ Kr				1.31, 4.70
	0.27	0.73			${}^{80}{ m Br}(\beta^+){}^{80}{ m Se}$			1.31, 4.70
-	0.16	0.44	0.88		-	⁸⁰ Br(e ⁻ , ν _ε) ⁸⁰ Se		e ⁻ capture
⁷⁹ Br	-0.64	-0.73			79 Br(n, γ) 80 Br		1.00, 1.00	
⁸¹ Br	-0.80			81 Kr(n, γ) 82 Kr			1.00, 0.98	
⁸³ Kr	-0.76			⁸³ Kr(n, γ) ⁸⁴ Kr			0.81, 0.74	
⁸⁴ Kr	-0.49	-0.65	-0.76			⁸⁴ Kr(n, γ) ⁸⁵ Kr	1.00, 1.00	
⁸⁶ Kr	0.84			⁸⁵ Kr(n, γ) ⁸⁶ Kr			1.00, 1.00	
	-0.30	-0.70			⁸⁶ Kr(n, γ) ⁸⁷ Kr		1.00, 1.00	
	-0.34	-0.62	-0.90			85 Kr(β^{-}) 85 Rb		1.30, 1.30
⁸⁷ Rb	-0.56	-0.65	-0.95			87 Rb(n, γ) 88 Rb	1.00, 1.00	

Key reactions in the enhanced weak s-process

Rotation in metal poor stars significantly enhances production of s-process nuclei

Nuclide	r _{cor,0}	r _{cor,1}	r _{cor,2}	Key Rate Level 1	Key Rate Level 2	Key Rate Level 3	X_0 (8, 30 keV)	Weak Rate (8, 30 keV)
⁶⁵ Cu	-0.83			65 Cu(n, γ) 66 Cu			1.00, 1.00	
⁶⁴ Zn	0.72			$^{64}Cu(\beta^{-})^{64}Zn$				1.30, 1.36
	-0.45	-0.67			⁶⁴ Cu(e ⁻ , v _e) ⁶⁴ Ni			e ⁻ capture
	-0.36	-0.52	-0.72			64 Zn(n, γ) 65 Zn	1.00, 1.00	
⁶⁶ Zn	-0.96			66 Zn(n, γ) 67 Zn			1.00, 1.00	
	-0.13	-0.58	-0.67			57 Fe(n, γ) 58 Fe	0.73, 0.59	
⁶⁷ Zn	-0.97			67 Zn(n, γ) 68 Zn			1.00, 1.00	_
⁶⁸ Zn	-0.98			68 Zn(n, $\gamma)^{69}$ Zn			1.00, 1.00	
°'Ga	-0.92			⁰⁹ Ga(n, γ) ⁷⁰ Ga			1.00, 1.00	
⁷¹ Ga	-0.97			71 Ga(n, γ) 72 Ga			1.00, 1.00	
70 Ge	-0.95			70 Ge(n, γ) 71 Ge			1.00, 1.00	
^{72}Ge	-0.94			72 Ge(n, γ) 73 Ge			1.00, 1.00	
⁷³ Ge	-0.94			73 Ge(n, γ) 74 Ge			0.88, 0.81	
	0.03	0.82			⁶⁴ Ni(n, γ) ⁶⁵ Ni		1.00, 1.00	
74 Ge	-0.97			74 Ge(n, γ) 75 Ge			1.00, 1.00	
⁷⁵ As	-0.96			75 As(n, γ) 76 As			1.00, 1.00	
760	<u>-0.96</u> 0.90			76g.(,)77g.			1.00, 1.00	1
77 Se	-0.93			77 Se(n, γ) 78 Se			1.00, 1.00	
78 Se	-0.97			78 Se(n, γ) 79 Se			1.00, 1.00	
	0.07	0.46	0.70			56 Fe(n, γ) 57 Fe	1.00, 1.00	
^{ov} Se	-0.78			^{ου} Br(β ⁻) ^{ου} Kr				1.31, 4.70
	0.18	0.47	0.89			${}^{80}{ m Br}(e^-,\nu_e){}^{80}{ m Se}$		e ⁻ capture
⁷⁹ Br	-0.96			$^{79}\mathrm{Br}(\mathrm{n},\gamma)^{80}\mathrm{Br}$			1.00, 1.00	
⁸¹ Br	-0.86			81 Kr(n, $\gamma)^{82}$ Kr			1.00, 0.98	
⁸⁰ Kr	-0.28	-0.78			${}^{80}\mathrm{Br}(\beta^+){}^{80}\mathrm{Se}$			
	-0.30	-0.43	-0.67			80 Kr(n, γ) 81 Kr	1.00, 1.00	

Present Data

⁶⁸Ζn(n,γ)

 One measurement (Garg et al. 1982) at stellar energies (1-350 keV), 12.5% uncertainty of MACS at kT=25 keV. —> We could reach 4.4% uncertainty for ⁶²Ni (similar MACS)

Present Data

⁶⁸Zn(n,γ)

 One measurement (Garg et al. 1982) at stellar energies (1-350 keV), 12.5% uncertainty of MACS at kT=25 keV. —> We could reach 4.4% uncertainty for ⁶²Ni (similar MACS)

⁷⁷Se(n,γ)

- Resolved resonance parameters up to 4 keV—> we can extend resolved resonance region
- One measurement (Igashira et al. 2010) 15-100 keV —> we can extend that to 200 keV which covers entire astrophysical energy range
- Igashira et al. result is **10-20% discrepant** to evaluated cross sections (ENDF, JEFF)

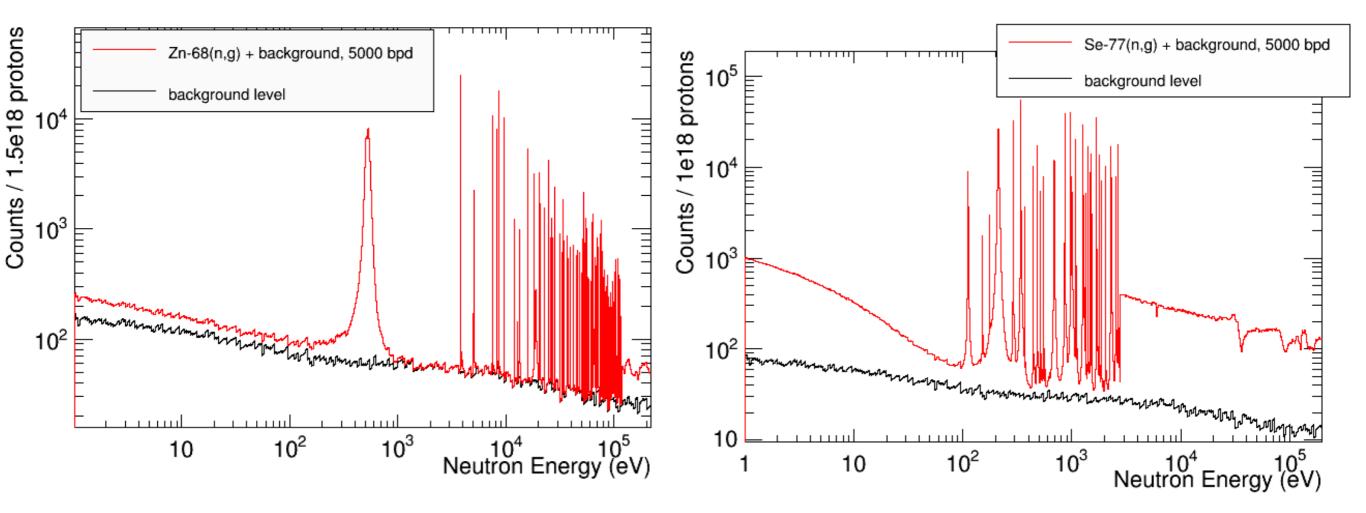
Present Data

⁶⁸Zn(n,γ)

 One measurement (Garg et al. 1982) at stellar energies (1-350 keV), 12.5% uncertainty of MACS at kT=25 keV. —> We could reach 4.4% uncertainty for ⁶²Ni (similar MACS)

⁷⁷Se(n,γ)

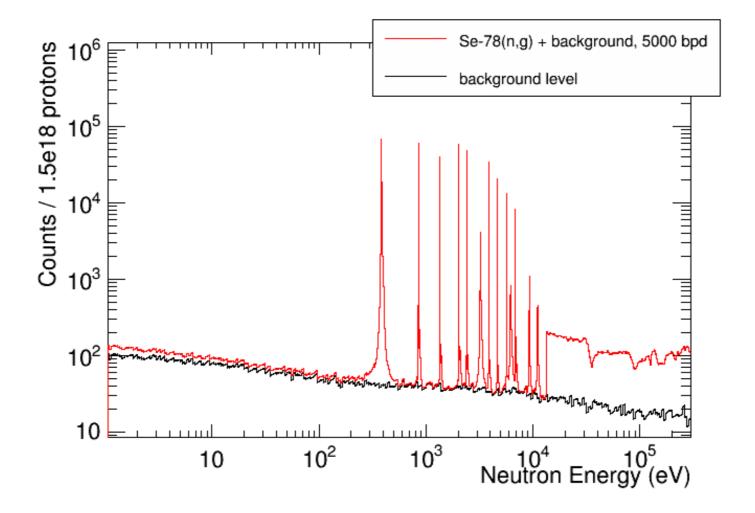
- Resolved resonance parameters up to 4 keV—> we can extend resolved resonance region
- One measurement (Igashira et al. 2010) 15-100 keV —> we can extend that to 200 keV which covers entire astrophysical energy range
- Igashira et al. result is **10-20% discrepant** to evaluated cross sections (ENDF, JEFF)


⁷⁸Se(n,γ)

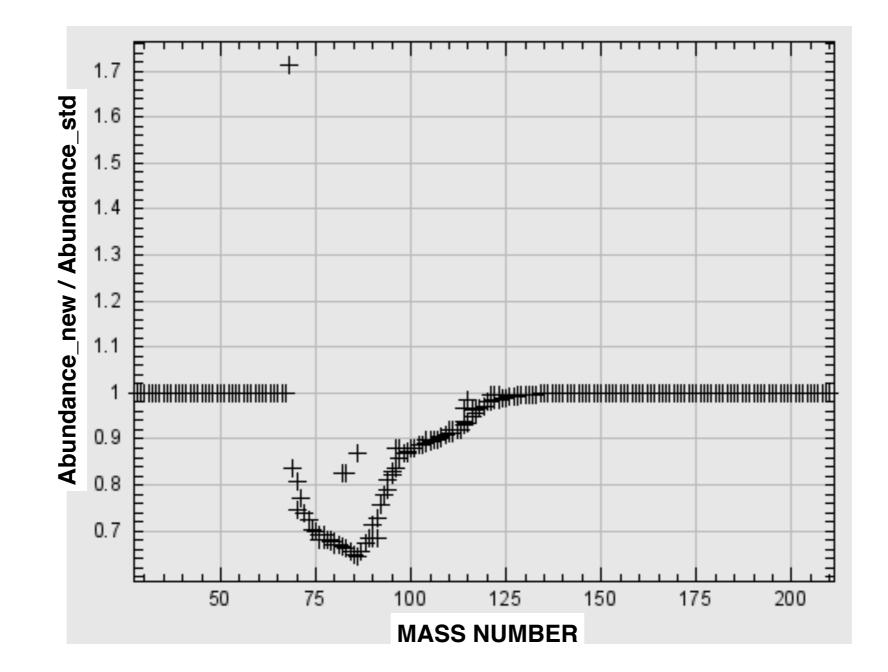
- Resolved resonance parameters up to 7 keV —> we can extend resolved resonance region
- Discrepancy (50%) between activation study (Dillmann et al.) and TOF measurement (Kamada et al.)

Beam Time Request

- n_TOF EAR-1 high neutron energy resolution, high neutron flux
- C_6D_6 Detection system low neutron sensitivity


Sample	Mass (g)	Purity (%)	Thickness (at/b)	No. of Protons (×10 ¹⁸)
⁶⁸ Zn	2	98.2	6×10^{-3}	1.5
⁷⁷ Se	1	95.3	2.5×10^{-3}	1.0
⁷⁸ Se	2	98.2	5×10^{-3}	1.5
Au				0.2
Empty Frame				0.5
Neutron filters				0.3
Total				5.0

Beam Time Request


- n_TOF EAR-1 high neutron energy resolution, high neutron flux
- C₆D₆ Detection system low neutron sensitivity

Sample	Mass (g)	Purity (%)	Thickness (at/b)	No. of Protons (×10 ¹⁸)
⁶⁸ Zn	2	98.2	6×10^{-3}	1.5
⁷⁷ Se	1	95.3	2.5×10^{-3}	1.0
⁷⁸ Se	2	98.2	5×10^{-3}	1.5
Au				0.2
Empty Frame				0.5
Neutron filters				0.3
Total				5.0

Back up slides

⁶⁸Zn(n,γ)x0.5: abundance change with cross section change

NETZ online Tool (M. Weigand, Physical Review C 94 (2015) 045810 (open access)) <u>http://exp-astro.physik.uni-</u>

frankfurt.de/netz/index.php?model_id=1&itype=Zn&mass=68&rtype=ng&factor=0.5