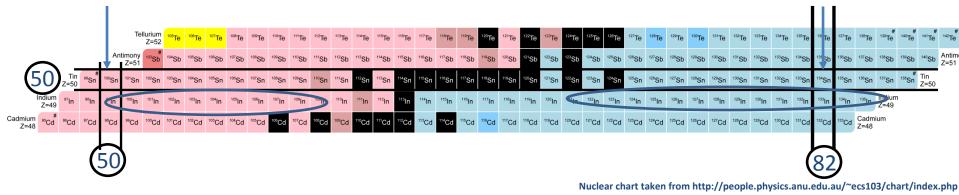

Laser Spectroscopy of exotic neutron-deficient indium (Z = 49) isotopes: approaching N = 50

Addendum to (IS639)

Ronald Fernando Garcia Ruiz *The University of Manchester*

CRIS Collaboration

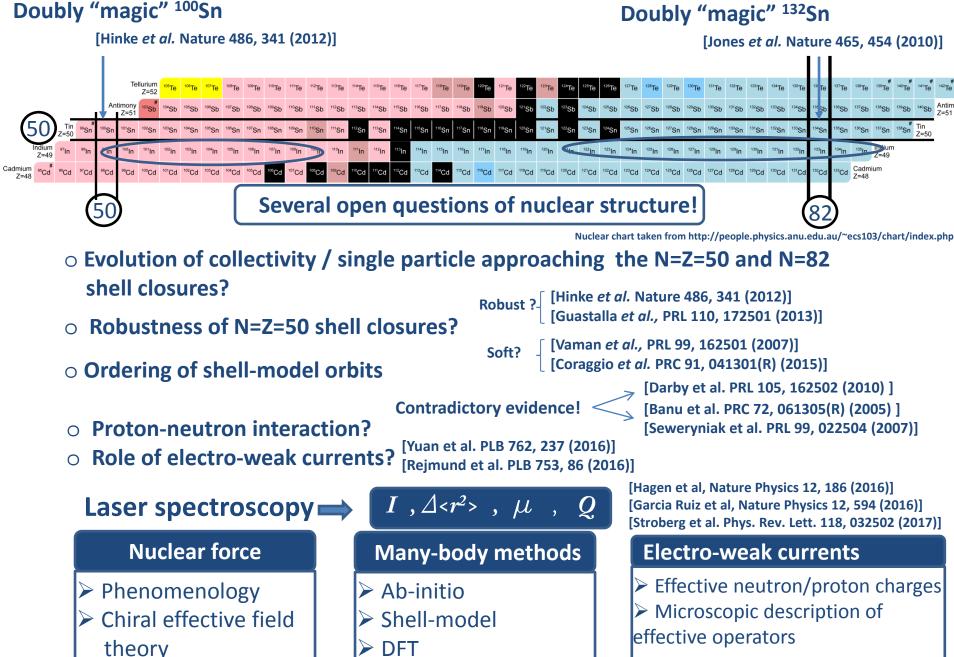
56th Meeting of the INTC


European Research Council

Doubly "magic" ¹⁰⁰Sn

Doubly "magic" ¹³²Sn

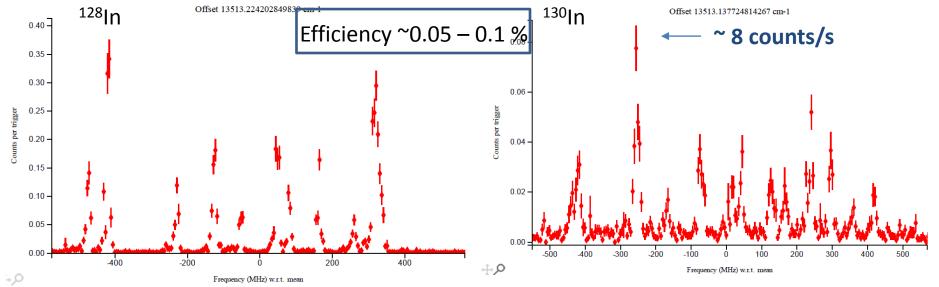
[Hinke et al. Nature 486, 341 (2012)]


[Jones et al. Nature 465, 454 (2010)]

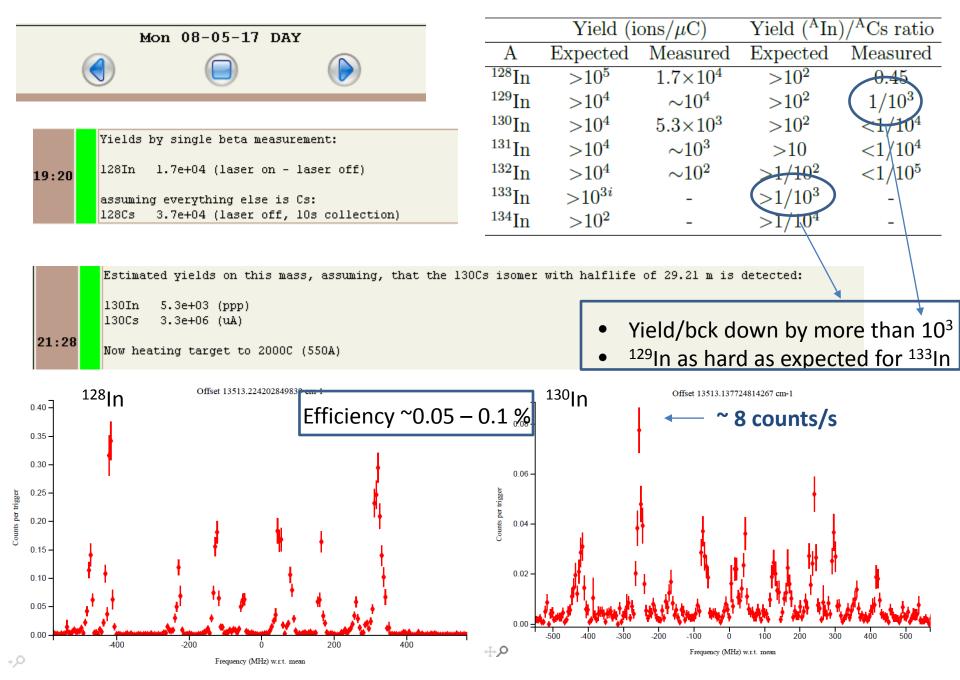
Doubly "magic" ¹⁰⁰Sn Doubly "magic" ¹³²Sn [Hinke et al. Nature 486, 341 (2012)] [Jones et al. Nature 465, 454 (2010)] ¹²²In ¹²³In ¹²⁴In ¹²⁵In ¹²⁶In Z=49 [#] ⁹⁵Cd ⁹⁶Cd Cadmium Z=48 ¹¹³Cd ¹¹⁴Cd 115Cd ¹¹⁶Cd ¹¹⁷Cd ¹¹⁹Cd ¹²⁰Cd ¹²¹Cd ¹²²Cd ¹²³Cd ¹²⁴Cd ¹²⁵Cd ¹²⁶Cd ⁹⁷Cd Several open questions of nuclear structure! Nuclear chart taken from http://people.physics.anu.edu.au/~ecs103/chart/index.php Evolution of collectivity / single particle approaching the N=Z=50 and N=82 shell closures? Robust ?[[Hinke *et al.* Nature 486, 341 (2012)] [Guastalla *et al.*, PRL 110, 172501 (2013)] Robustness of N=Z=50 shell closures? [Vaman *et al.,* PRL 99, 162501 (2007)] [Coraggio *et al.* PRC 91, 041301(R) (2015)] Soft? • Ordering of shell-model orbits [Darby et al. PRL 105, 162502 (2010)] Contradictory evidence! (Banu et al. PRC 72, 061305(R) (2005)] **Proton-neutron interaction?** [Seweryniak et al. PRL 99, 022504 (2007)] [Yuan et al. PLB 762, 237 (2016)] • Role of electro-weak currents? [Rejmund et al. PLB 753, 86 (2016)]

Doubly "magic" ¹⁰⁰Sn Doubly "magic" ¹³²Sn [Hinke et al. Nature 486, 341 (2012)] [Jones et al. Nature 465, 454 (2010)] ¹¹ln ¹²²ln ¹²³ln ¹²⁴ln ¹²⁵ln ¹²⁶ln [#] ⁹⁵Cd ⁹⁶Cd Cadmium Z=48 97Cd ⁰Cd ¹¹³Cd 114Cd 115Cd ¹¹⁶Cd ¹¹⁷Cd ¹¹⁸Cd ¹¹⁹Cd ¹²⁰Cd ¹²¹Cd ¹²²Cd ¹²³Cd ¹²⁴Cd ¹²⁵Cd ¹²⁶Cd Several open questions of nuclear structure! Nuclear chart taken from http://people.physics.anu.edu.au/~ecs103/chart/index.php Evolution of collectivity / single particle approaching the N=Z=50 and N=82 shell closures? Robust ?[[Hinke *et al.* Nature 486, 341 (2012)] [Guastalla *et al.*, PRL 110, 172501 (2013)] Robustness of N=Z=50 shell closures? [Vaman *et al.,* PRL 99, 162501 (2007)] [Coraggio *et al.* PRC 91, 041301(R) (2015)] Soft? • Ordering of shell-model orbits [Darby et al. PRL 105, 162502 (2010)] Contradictory evidence! (Banu et al. PRC 72, 061305(R) (2005)] **Proton-neutron interaction?** [Seweryniak et al. PRL 99, 022504 (2007)] [Yuan et al. PLB 762, 237 (2016)] Role of electro-weak currents? 0 [Rejmund et al. PLB 753, 86 (2016)] Laser spectroscopy \implies $I, \Delta < r^2 >$, μ

Doubly "magic" ¹³²Sn

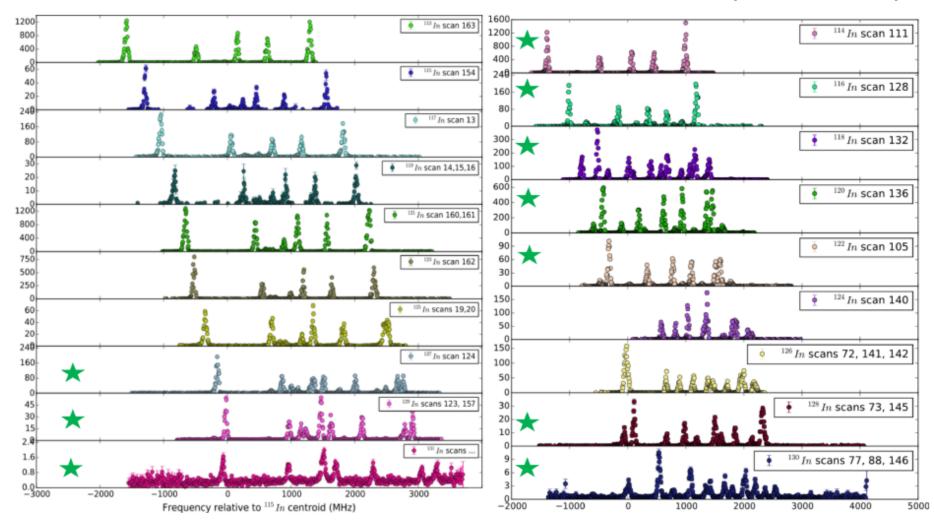

Minutes of the 55th meeting of the INTC

- ✓ The INTC clearly considers the entire proposed program of high scientific interest.
- ✓ Of particular interest is the study of the isotope ¹⁰⁰In for which a number of different theoretical calculations both from traditional shell model as well as ab-initio approaches are available.
- ✓ Since higher yields are anticipated for the most exotic cases on the neutron-rich side (as compared to the more ambitious ¹⁰⁰In) the UCx target run is considered to be the best starting point for this program.

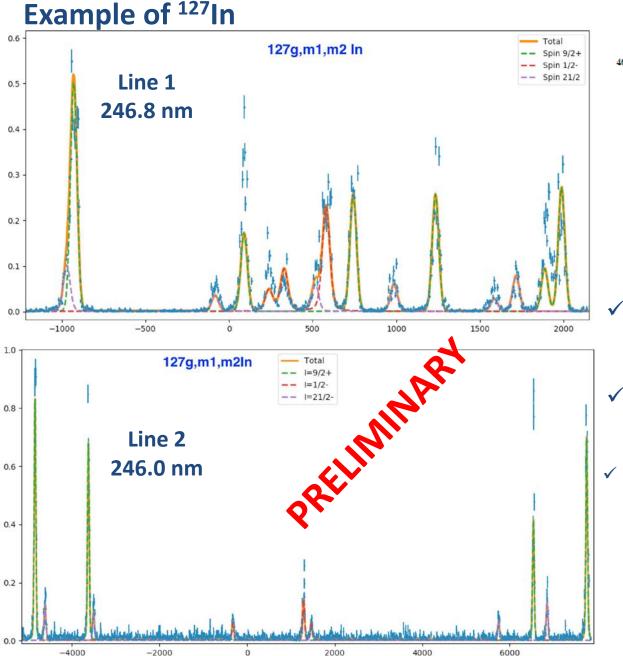

Main challenges: Low yields / high contamination

	Mon 08-05-17 DAY		Yield (i	$ons/\mu C)$	Yield (^A In	$)/^{\rm A}$ Cs ratio
		А	Expected	Measured	Expected	Measured
		128 In	$>10^{5}$	1.7×10^{4}	$>10^{2}$	0.45
		129 In	$> 10^{4}$	$\sim 10^{4}$	$> 10^{2}$	$1/10^{3}$
_		130 In	$> 10^{4}$	5.3×10^{3}	$> 10^{2}$	$< 1/10^4$
	Yields by single beta measurement:	131 In	$>10^{4}$	$\sim 10^{3}$	> 10	$< 1/10^4$
19:20	128In 1.7e+04 (laser on - laser off)	132 In	$> 10^{4}$	${\sim}10^2$	$>1/10^{2}$	$<1/10^{5}$
	assuming everything else is Cs:	133 In	$> 10^{3i}$	-	$>1/10^{3}$	-
	128Cs 3.7e+04 (laser off, 10s collection)	134 In	$> 10^{2}$	-	$>1/10^4$	-

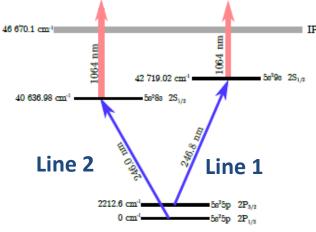
Estimated yields on this mass, assuming, that the 130Cs isomer with halflife of 29.21 m is detected: 130In 5.3e+03 (ppp) 3.3e+06 (uA) 130Cs 21:28 Now heating target to 2000C (550A)



Main challenges: Low yields / high contamination


Measurements from ¹¹³In (N=64) up to ¹³¹In (N=82)

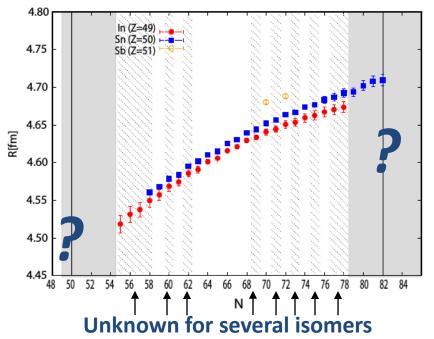
(New results **★**)

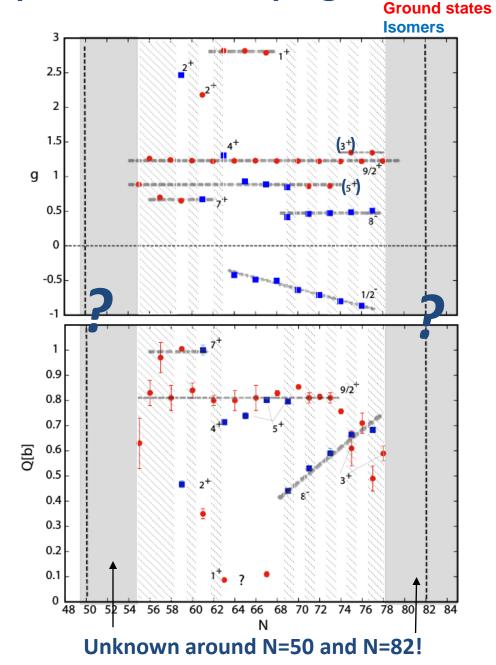


Additionally, two hyperfine structure peaks were identified for ¹³²In!

Two ionization schemes were used online

(Tested for first time at CRIS)

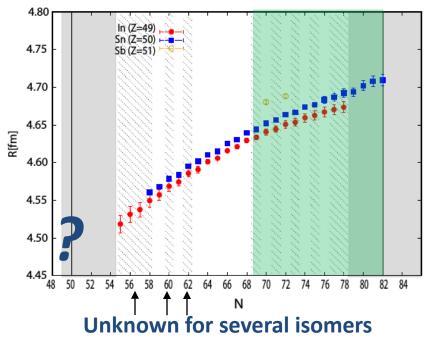

- In I Unambiguous identification of hfs peaks
- Further constraints to nuclear structure observables
- New developments fully tested:
 - Charge exchange chamber
 - Laser ionization schemes were developed offline

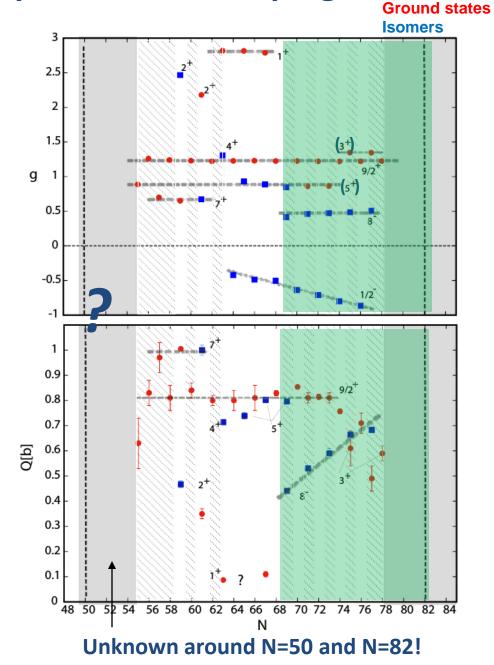

A successful experimental campaign!

Several new results for electromagnetic moments and charge radii of:

- ✓ 1+ states in 114, 116, 118, 120, 122
- ✓ 9/2 states in 129, 131
- ✓ 1/2 states in 127, 129 and 131
- ✓ high spin isomers (>21/2) in 127, 129
- ✓ ground and isomeric states in 128 3+, 8-
- ✓ ground and isomeric states in 130: 1-, 10-, 5+

High-precision isomer shifts will be obtained!



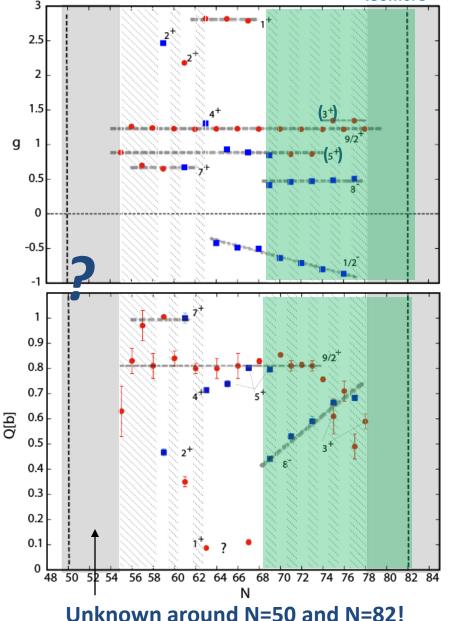

A successful experimental campaign!

Several new results for electromagnetic moments and charge radii of:

- ✓ 1+ states in 114, 116, 118, 120, 122
- ✓ 9/2 states in 129, 131
- ✓ 1/2 states in 127, 129 and 131
- ✓ high spin isomers (>21/2) in 127, 129
- ✓ ground and isomeric states in 128 3+, 8-
- ✓ ground and isomeric states in 130: 1-, 10-, 5+

High-precision isomer shifts will be obtained!

A successful experimental campaign!


Several new results for electromagnetic moments and charge radii of:

- 1+ states in 114, 116, 118, 120, 122
- ✓ 9/2 states in 129, 131
- ✓ 1/2 states in 127, 129 and 131
- ✓ high spin isomers (>21/2) in 127, 129
- ✓ ground and isomeric states in 128 3+, 8-
- ✓ ground and isomeric states in 130: 1-, 10-, 5+

High-precision isomer shifts will be obtained!

- Yields were about two orders of magnitude lower, and the contamination higher than expected -> An accidental vent of the target at high temperature occurred at the start of the run.
- The high efficiency and high selectivity of CRIS was demonstrated

Solid bases for the extension of CRIS experiments towards ¹⁰⁰In

Ground states Isomers

Total=18 shifts

Isotope	Ι	Half life	Yield	(ions/s)	Shifts
<100In	$(6^+, 7^+)$	$7.0 \mathrm{~s}$	>	16	7
101 In	$(9/2^+)$	$15 \mathrm{~s}$		380	2
102 In	(6^{+})	22 s		8.6×10^{3}	0.5
103 In	$(9/2^+)$	$65 \ s$		8.0×10^{4}	0.5
103m In	$(1/2^{-})$	$34 \mathrm{s}$		$> 10^{2}$	1
104m In	(3^{+})	$15.7~\mathrm{s}$		$> 10^{2}$	1
105m In	$(1/2^{-})$	$48 \mathrm{\ s}$		$> 10^{4}$	0.3
106m In	(2^+)	$5.2 \mathrm{m}$		$> 10^{4}$	0.3
107m In	$1/2^{-}$	$50.4 \mathrm{~s}$		$> 10^{5}$	0.3
109m_1 In	$1/2^{-}$	$1.34 \mathrm{~m}$		$> 10^{3}$	0.3
109m_2 In	$(19/2^{-})$	$0.21 \mathrm{~s}$		$> 10^{3}$	0.3
111m In	$(1/2^{-})$	$7.7 \mathrm{m}$		$> 10^{3}$	0.3
$^{112-122}\mathrm{In}^{i}$	_	$>1 \mathrm{s}$		$\geq 10^4$	4

 ✓ ¹⁰⁰In: key physics case for our understanding of nuclear structure around N=Z=50 and the development of inter-nucleon interactions and many-body methods

Total=18 shifts

Isotope	Ι	Half life	Yield	(ions/s)	Shifts
100 In	$(6^+, 7^+)$	$7.0 \mathrm{~s}$		16	7
\bigcirc ¹⁰¹ In	$(9/2^+)$	$15 \mathrm{~s}$	>	380	2
102 In	(6^{+})	22 s		8.6×10^{3}	0.5
\bigcirc ¹⁰³ In	$(9/2^+)$	$65 \mathrm{\ s}$	>	$8.0{ imes}10^4$	0.5
103 <i>m</i> In	$(1/2^{-})$	$34 \mathrm{s}$	>	$> 10^{2}$	1
104mln	(3^+)	$15.7 \mathrm{~s}$		$> 10^{2}$	1
105mIn	$(1/2^{-})$	$48 \mathrm{s}$	>	$> 10^{4}$	0.3
106m In	(2^+)	$5.2 \mathrm{m}$		$> 10^{4}$	0.3
107mIn	$1/2^{-}$	$50.4 \mathrm{~s}$	>	$> 10^{5}$	0.3
$109m_1$ In	$1/2^{-}$	$1.34 \mathrm{~m}$	>	$> 10^{3}$	0.3
$109m_2$ In	$(19/2^{-})$	$0.21 \mathrm{~s}$		$> 10^{3}$	0.3
\subset^{111m} In	$(1/2^{-})$	$7.7 \mathrm{m}$	>	$> 10^{3}$	0.3
$^{112-122}$ In ^{<i>i</i>}		>1 s	-	$\geq 10^4$	4

 ✓ ¹⁰⁰In: key physics case for our understanding of nuclear structure around N=Z=50 and the development of inter-nucleon interactions and many-body methods

✓ *I=9/2* states: Evolution of singleparticle/collectivity approaching N=Z=50 and N=82

 \checkmark *I*=1/2 states: Understating of electro-weak currents in the M1 operator.

Isotope	Ι	Half life	Yield	(ions/s)	Shifts
¹⁰⁰ In	$(6^+, 7^+)$	$7.0 \mathrm{~s}$		16	7
101 In	$(9/2^+)$	$15 \mathrm{~s}$		380	2
102 In	(6^+)	22 s	>	$8.6{ imes}10^3$	0.5
103ln	$(9/2^+)$	$65 \ s$		8.0×10^4	0.5
103m In	$(1/2^{-})$	$34 \mathrm{s}$		$> 10^{2}$	1
104mIn	(3^{+})	$15.7~\mathrm{s}$	>	$> 10^{2}$	1
105m In	$(1/2^{-})$	$48 \mathrm{s}$		$> 10^{4}$	0.3
106mIn	(2^+)	$5.2 \mathrm{m}$	>	$> 10^{4}$	0.3
107m In	$1/2^{-}$	$50.4 \mathrm{~s}$		$> 10^{5}$	0.3
109m_1 In	$1/2^{-}$	$1.34 \mathrm{~m}$		$> 10^{3}$	0.3
109m_2 In	$(19/2^{-})$	$0.21 \mathrm{~s}$		$> 10^{3}$	0.3
111m In	$(1/2^{-})$	$7.7 \mathrm{m}$		$> 10^{3}$	0.3
$^{112-122}\mathrm{In}^{i}$	_	$>1 \mathrm{s}$		$\geq 10^4$	4

 ✓ ¹⁰⁰In: key physics case for our understanding of nuclear structure around N=Z=50 and the development of inter-nucleon interactions and many-body methods

✓ *I=9/2* states: Evolution of singleparticle/collectivity approaching N=Z=50 and N=82

 \checkmark *I=1/2* states: Understating of electro-weak currents in the M1 operator.

 ✓ odd-odd isotopes: Role of proton-neutron interaction and like-nucleon pairing

Isotope	I	Half life	Vield	(ions/s)	Shifts
100-	$\frac{1}{(c+7+)}$	7.0 s	1 ICIU	16	7
101 -					1
$^{101}\mathrm{In}$	$(9/2^+)$	$15 \mathrm{s}$		380	2
\bigcirc ¹⁰² In	(6^{+})	22 s	>	8.6×10^{3}	0.5
$103 \ln$	$(9/2^+)$	$65 \ s$		8.0×10^{4}	0.5
103m In	$(1/2^{-})$	$34 \mathrm{s}$		$> 10^{2}$	1
104mIn	(3^{+})	$15.7~\mathrm{s}$	>	$> 10^{2}$	1
105m In	$(1/2^{-})$	$48 \mathrm{s}$		$> 10^{4}$	0.3
\subset^{106m} In	(2^+)	$5.2 \mathrm{m}$	>	$> 10^{4}$	0.3
107m In	$1/2^{-}$	$50.4 \mathrm{~s}$		$> 10^{5}$	0.3
109m_1 In	$1/2^{-}$	$1.34 \mathrm{~m}$		$> 10^{3}$	0.3
$^{109m_{2}}$ In	$(19/2^{-})$	$0.21 \mathrm{~s}$		$> 10^{3}$	0.3
111m In	$(1/2^{-})$	$7.7 \mathrm{m}$		$> 10^{3}$	0.3
$^{112-122}\mathrm{In}^{i}$	_	$>1 \mathrm{s}$		$\geq 10^4$	4

 ✓ ¹⁰⁰In: key physics case for our understanding of nuclear structure around N=Z=50 and the development of inter-nucleon interactions and many-body methods

 ✓ I=9/2 states: Evolution of singleparticle/collectivity approaching N=Z=50 and N=82

 \checkmark *I=1/2* states: Understating of electro-weak currents in the M1 operator.

✓ odd-odd isotopes: Role of proton-neutron interaction and like-nucleon pairing

TAC (From previous INTC):

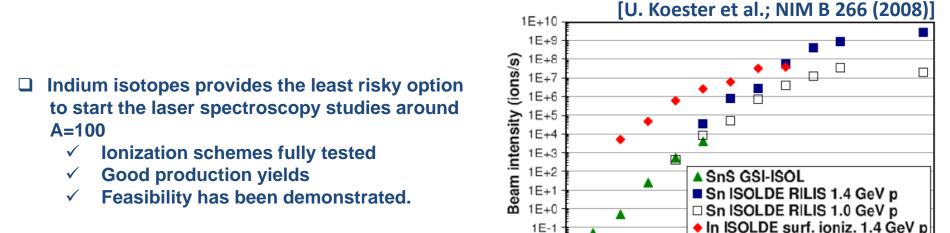
- ¹⁰⁰In 16/s :ok
 - -> 🙄
- NanoLaCx (not currently possible)
- -> Were not asked. Not needed
- Impurities claimed Cs:
- -> Important for neutron-rich

- LaC: fluctuations in yield possible
 -> We quoted lowest reported yields
- RILIS optimization for isomers could be needed for odd isotopes.
- -> Knowledge acquired during previous runs.

Thank you for your attention!

Acknowledgements

Thanks to all ISOLDE stuff for this great run with lots of new physics.


Experiment: CRIS Collaboration

J. Billowes, <u>C.L Binnersley</u>, <u>M.L. Bissell</u>, T.E. Cocolios, <u>R.P. de Groote</u>, <u>G.J. Farooq-Smith</u>, K.T. Flanagan, S. Franchoo, R.F. Garcia Ruiz, G. Georgiev, G. Hagen, <u>W. Gins</u>, <u>A. Koszorus</u>, <u>K.M. Lynch</u>, B.A. Marsh, G. Neyens, H.H. Stroke, <u>A.R. Vernon</u>, K. Wendt<u>, S.G Wilkins</u>, <u>X.F. Yang</u>, D.T. Yordanov

Theory:

G. Hagen (ORNL) J. Holt (TRIUMF)

Laser spectroscopy around A=100

- ✓ New Charge exchange chamber was recently installed
- ✓ New offline ion source has been developed to produce In and Sn beams

1E-1 1E-2

100

102

104

106

Mass

108

110

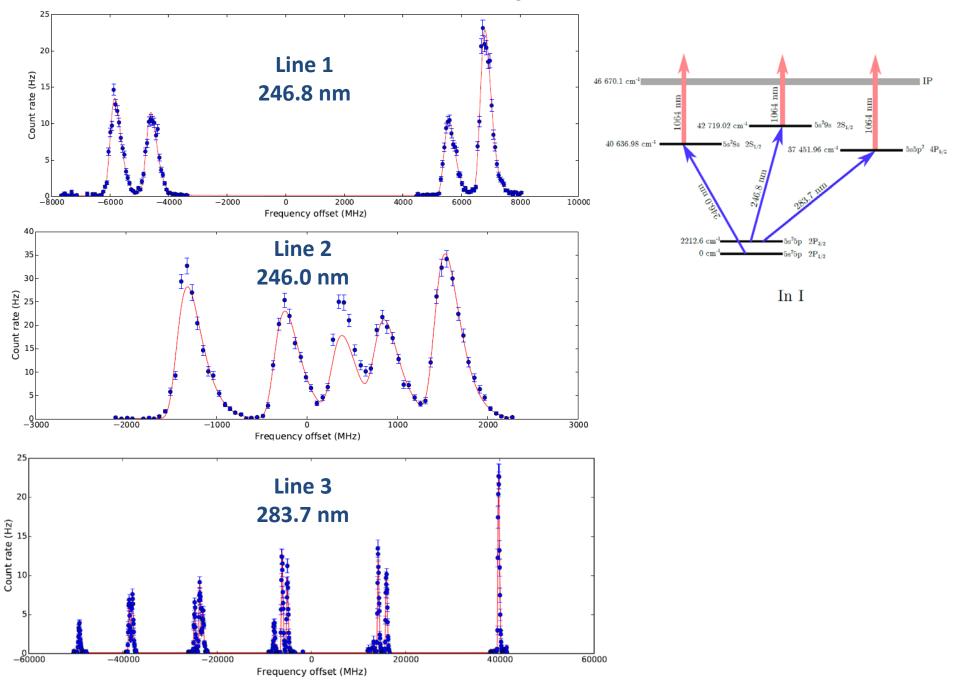
112

- Neutralization tests for Sn and In have been performed
- ✓ First tests of RIS with Sn and In
- First CRIS off-line measurements of In were performed with the ablation ion source
- Developments of Sn ionization schemes are ongoing
- A new NEG pump setup will be installed in summer 2017 to improve UHV -> further background suppression.

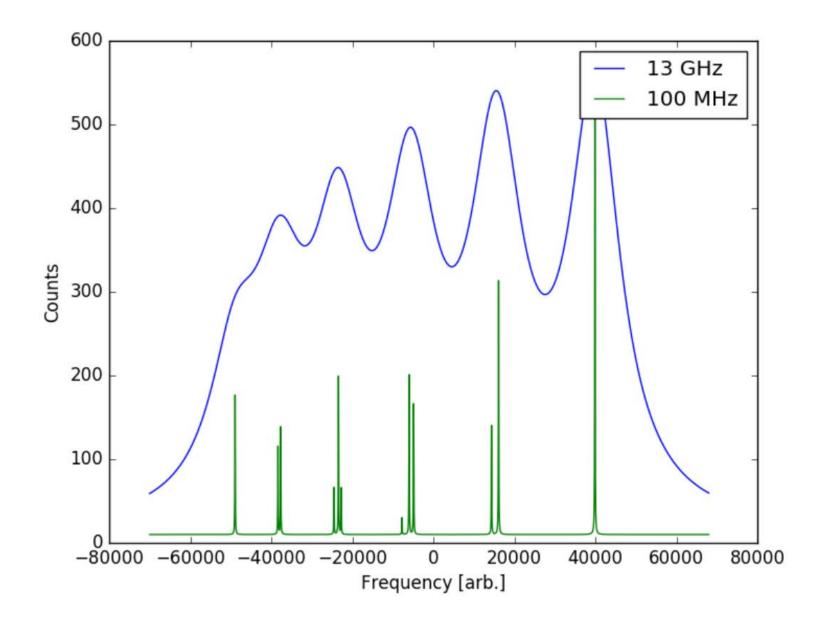
Off-line Developments

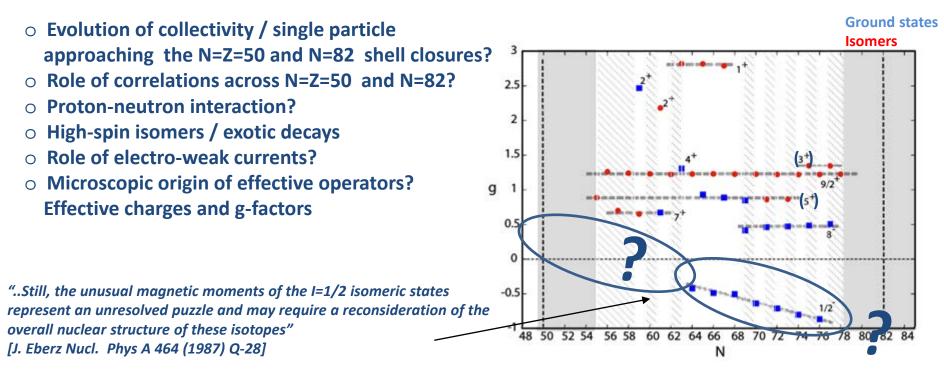
New CRIS offline Ion Source

- \checkmark Ion source working up to 30 kV
- ✓ New ion beam optics allows for
 - ✓ Surface ion source
 - ✓ Plasma ion source
 - ✓ Ablation ion source
- ✓ Channeltron setup installed to be used as well as atomic beam/ laser ion source


- **Neutralization tests for Sn and In**
- ✓ First tests of RIS with Sn and In
- ✓ First CRIS off-line measurements of In were performed with ablation ion source

New CEC chamber at CRIS

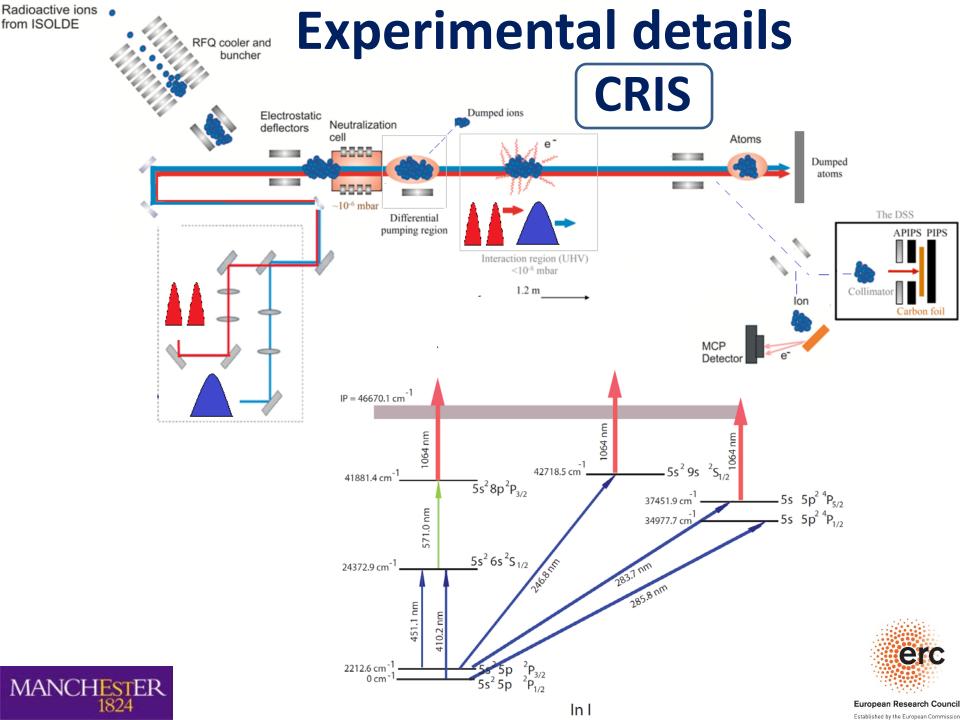

- ✓ Vacuum improved by more than x 10
- ✓ Passive cooling avoids using oil
- Higher temperatures can be reached to use different vapour gasses.


Firs CRIS off-line experiments: ¹¹⁵In

Simulations ¹¹⁵In

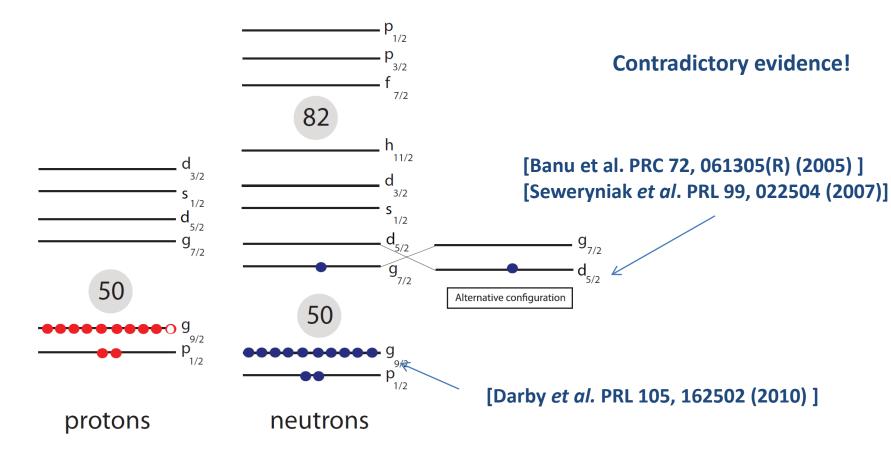
Charge radii and electromagnetic moments

$$\mu \equiv \langle I, m = I \mid \mathbf{M_1} \mid I, m = I \rangle$$

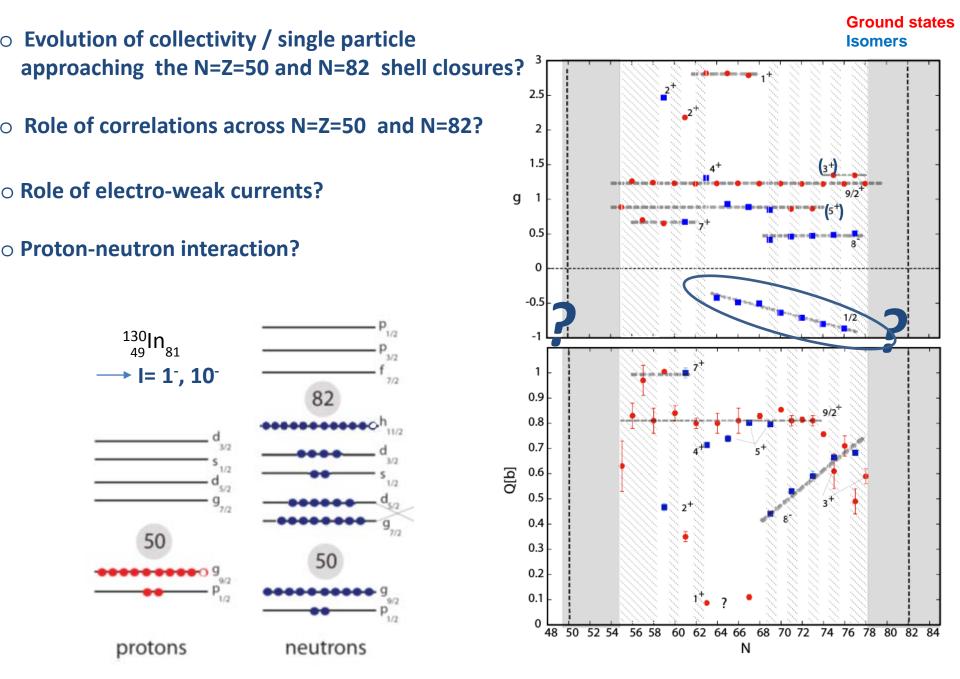

Evolution of $p_{1/2}$ moments → Sensitive to many-body currents (?) → p. ... moments insensitive to first-order core polarisation $\rightarrow p_{1/2}$ moments $-\frac{(l+2)l_1}{(2l+3)(2l_1+1)} \times \left\{ \dots \right.$ 1+1/2 odd proton $\frac{(l-1)l_1}{(2l+1)(2l_1+1)} \times \{\cdots$

[Arima and H. Horie, Prog. Theor. Phys. 12, 623 (1954)]

 \rightarrow Sensitive to many-body currents (?)


l - 1/2

Electromagnetic moments are sensitive probes to the role of electro-weak currents


Ground-state spins

Shell evolution towards N=Z=50 and N=82?
Ordering of shell-model orbits towards ?

Ground-state spins are essential observables for our understanding of nuclear structure

Charge radii and electromagnetic moments

Open questions

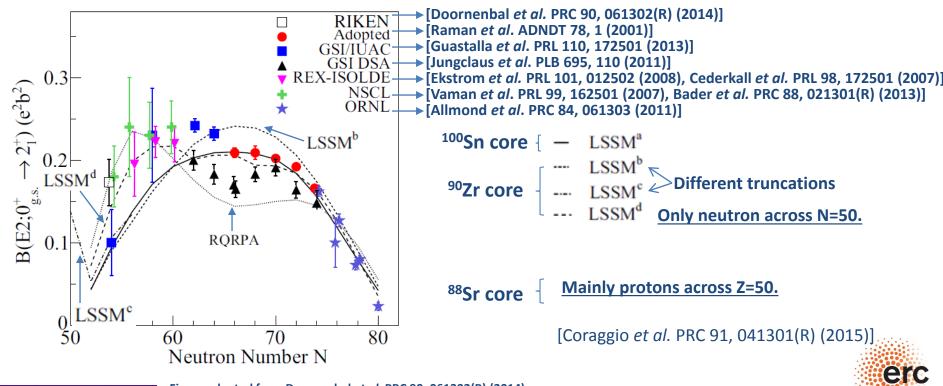
o Shell evolution towards N=Z=50 ?

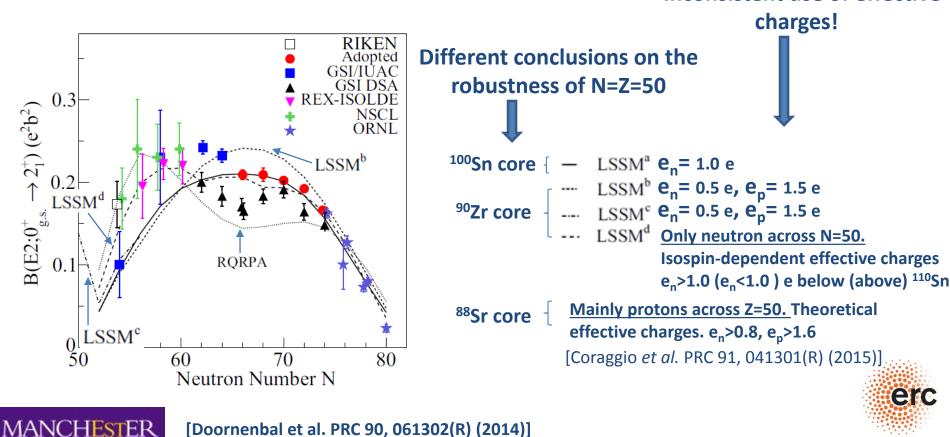
o Correlations across N=Z=50?

- \odot Ordering of shell model orbits ?
- o Robustness of N=Z=50 shell closures?
- **o Proton-neutron correlations?**

MANCHESTER

1824

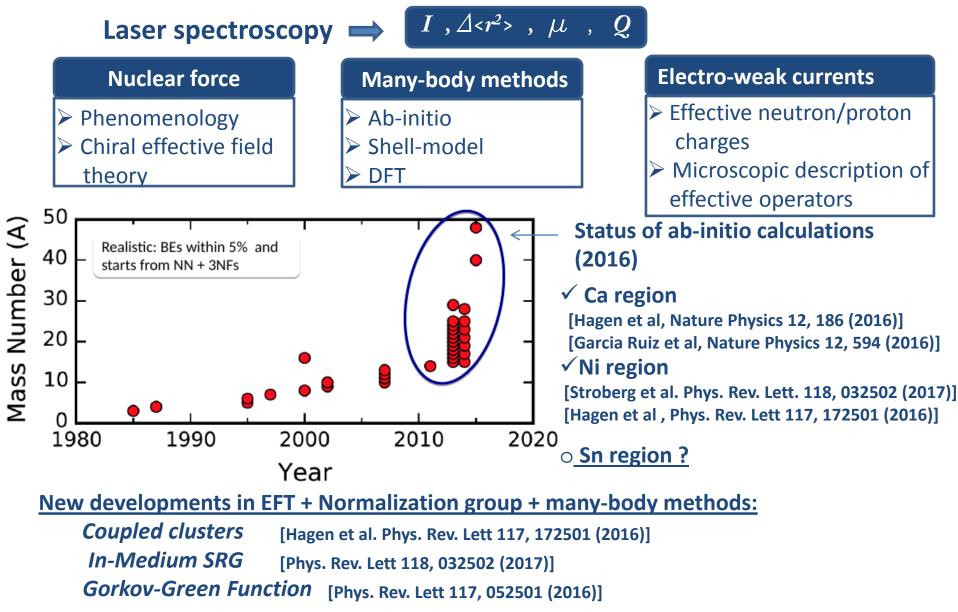



Figure adapted from Doornenbal et al. PRC 90, 061302(R) (2014).

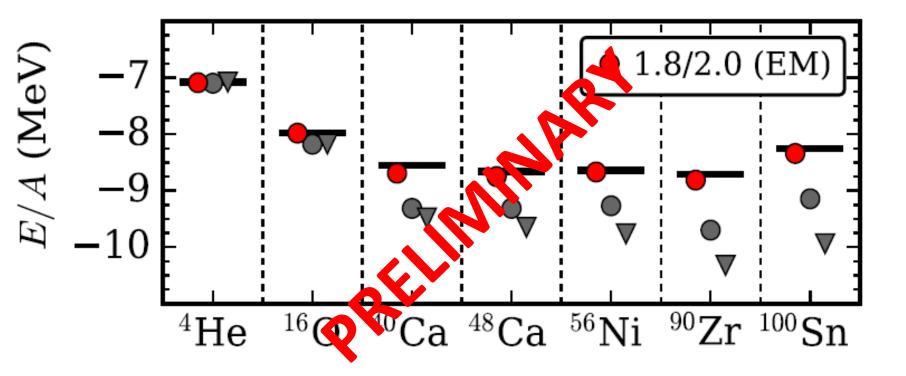
Open questions

- Shell evolution towards N=Z=50 ?
- Ordering of shell model orbits ?
- Robustness of N=Z=50 shell closures?
- o Proton-neutron correlations?

1824

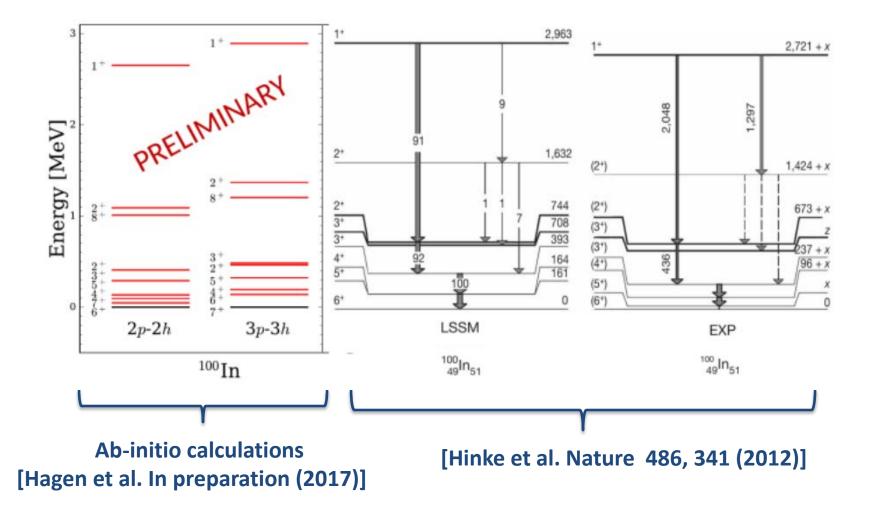

- Correlations across N=Z=50
- Effective operators? **Effective charges and g-factors**

[Doornenbal et al. PRC 90, 061302(R) (2014)]


European Research Council Established by the European Commissio

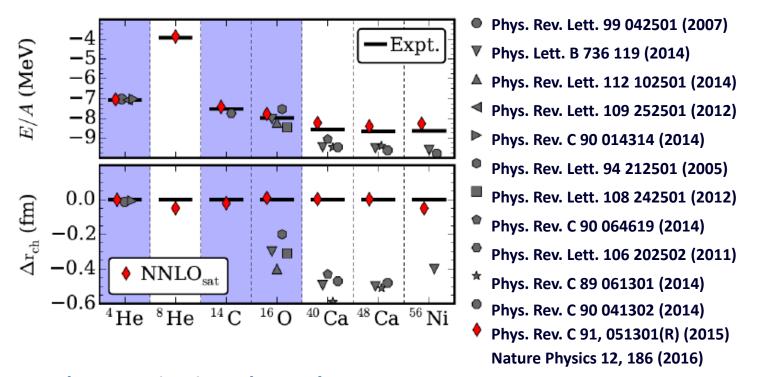
Inconsistent use of effective

...


Ab-initio calculations of heavy-nuclei (CC)

1.8/2.0(EM): Accurate BEs Soft interaction: SRG NN from Entem& Machleidt with 3NF from chiral EFT 1.8/2.0 (EM) from K. Hebeler *et al* PRC (2011). The other chiral NN + 3NFs are from Binder et al, PLB (2014)

[Hagen et al. In preparation (2017)]

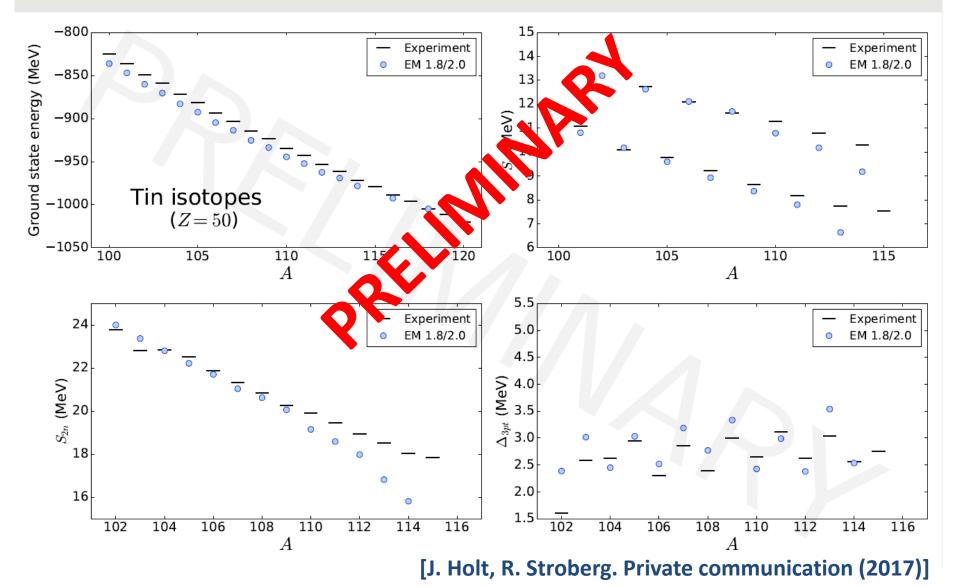

Ab-initio results around ¹⁰⁰In

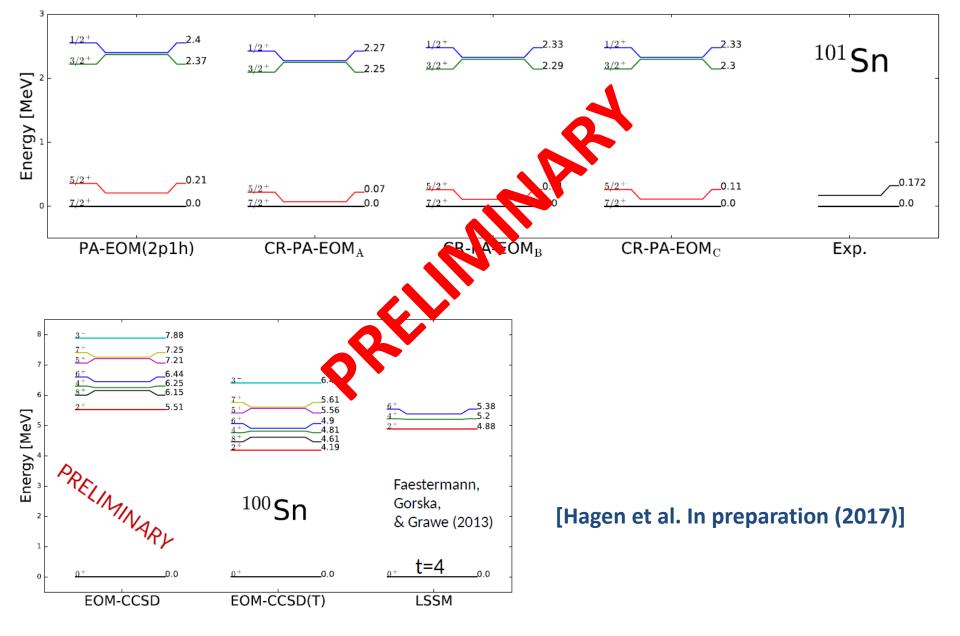
Ground-state spins are essential observables for our understanding of nuclear structure

$$\begin{array}{c} \mbox{Charge radii}\\ \mbox{Laser spectroscopy} \implies I \ , \ < r^{2>} \ , \ \mu \ \ , \ Q \end{array}$$

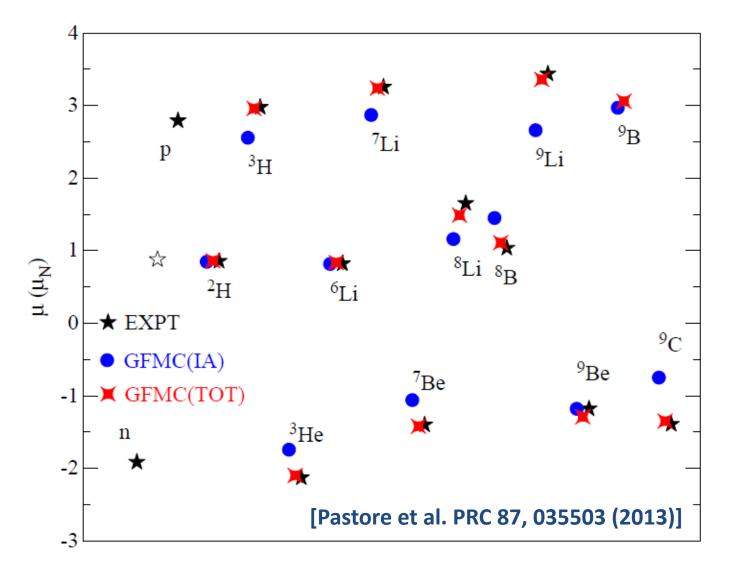
Simultaneous reproduction of charge radii and binding energies has been a longstanding challenges for nuclear theory.

Extension to the Sn region is underway! [Hagen et *al.* In preparation (2017)] [J. Holt. Private commun. (2017)] Ground-state spin are essential observables for our understanding of nuclear structure Charge radii provides a test to inter-nucleon interactions and many-body methods


VS-IMSRG

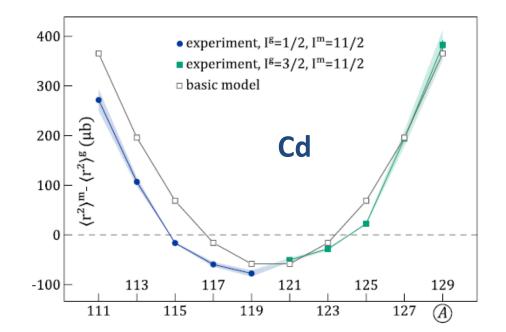

[J. Holt, R. Stroberg. Private communication (2017)]

VS-IMSRG

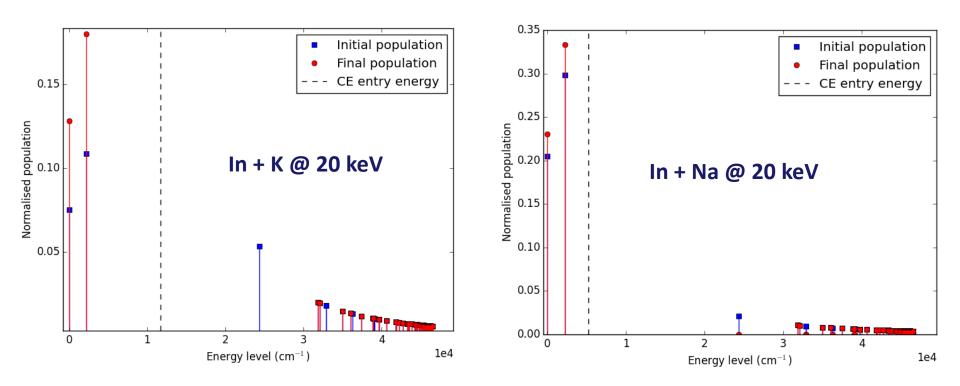

Isotopic chain with $\hbar \omega = 16$, $e_{max} = 14$, $E3_{max} = 16$

Structure of the ligthest tin isotopes

Electromagnetic moments and many-body currents


Quantum Monte Calculations + up to two-body currents (MEC) derived from chiral EFT -> Magnetic moments are highly sensitive: changes up to MEC ~40% for ⁹C

Work in progress to include MEC in medium mass nuclei [A. Ekstrom et al. PRL 113, 262504 (2014)]


Isomer shifts

[Yordanov et al. PRL 116, 032501 (2016)]

-> "Rms charge-radii changes from ground states to isomers of Cd isotopes follow a distinct parabolic dependence as a function of the atomic mass number"

Population of states after CEC

