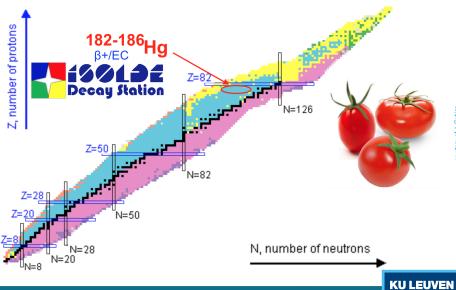


The structure of the low-lying excited states in $^{182,184,186}\mathrm{Hg}$ studied through β^+/EC decay of $^{182,184,186}\mathrm{TI}$ at IDS

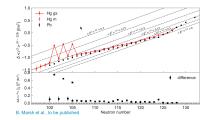
Kseniia Rezynkina, KU Leuven

56th Meeting of the INTC

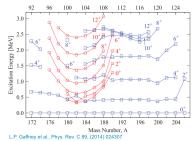
June 28, 2017



Shape coexistence in Hg isotopes



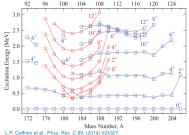
③ Experimental setup


• "Shape-staggering" in ^{181–185}Hg

Excited states in $^{182-6}$ Hg studied through eta-decay — Kseniia Rezynkina, KU Leuven

KU LEUVEN

- \bullet "Shape-staggering" in $^{181-185}\mathrm{Hg}$
- Intruder states come down and mix with the g.s. band

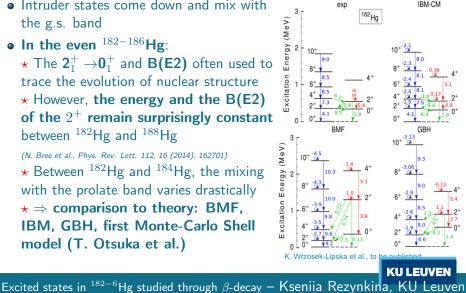


KU LEUVEN

- \bullet "Shape-staggering" in $^{181-185}\mathrm{Hg}$
- Intruder states come down and mix with the g.s. band
- In the even $^{182-186}$ Hg:

* The $\mathbf{2}_1^+ \rightarrow \mathbf{0}_1^+$ and $\mathbf{B}(\mathbf{E2})$ often used to trace the evolution of nuclear structure * However, the energy and the $\mathbf{B}(\mathbf{E2})$ of the 2^+ remain surprisingly constant between ¹⁸²Hg and ¹⁸⁸Hg

```
    (N. Bree et al., Phys. Rev. Lett. 112, 16 (2014), 162701)
    ★ Between <sup>182</sup>Hg and <sup>184</sup>Hg, the mixing with the prolate band varies drastically
    ★ ⇒ comparison to theory: BMF, IBM, GBH, first Monte-Carlo Shell model (T. Otsuka et al.)
```

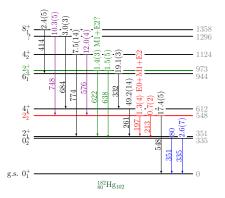


KULEUVEN

- "Shape-staggering" in ^{181–185}Hg
- Intruder states come down and mix with the g.s. band
- In the even $^{182-186}$ Hg:

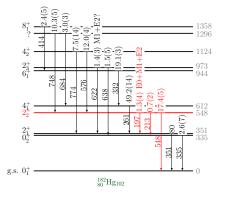
***** The $\mathbf{2}_{1}^{+} \rightarrow \mathbf{0}_{1}^{+}$ and **B(E2)** often used to trace the evolution of nuclear structure ★ However, the energy and the B(E2) of the 2^+ remain surprisingly constant between ¹⁸²Hg and ¹⁸⁸Hg

(N. Bree et al., Phys. Rev. Lett. 112, 16 (2014), 162701) \star Between ¹⁸²Hg and ¹⁸⁴Hg, the mixing with the prolate band varies drastically $\star \Rightarrow$ comparison to theory: BMF, IBM, GBH, first Monte-Carlo Shell model (T. Otsuka et al.)

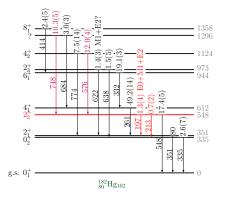

1 - Combining coulex and decay data

- coulex data (REX-ISOLDE: IS452, HIE-ISOLDE: IS563) ⇒
 transitional matrix elements, quadrupole moments and their signs
- Crucially need accurate BR, ICC , δ to extract the ME the non-yrast levels will be populated in the HIE-ISOLDE experiment
- this experiment + coulex \Rightarrow precise monopole transition strenghts $(2^+ \rightarrow 2^+)$ and quadrupole moments that can be compared to theory

			$ \mathbf{Q}_t [\mathbf{eb}] / \mathbf{Q}_s \ [\mathbf{eb}]$		
Isotope		Experiment	IBM	BMF	GBH
$^{182}\mathrm{Hg}$	$2^+_1 \rightarrow 0^+_1$	$4.09 \ ^{+0.13}_{-0.09}$	4.11	9.18	6.63
	$4^+_1 \rightarrow 2^+_1$	7.34(12)	7.51	9.58	7.96
	$6_1^+ \to 4_1^+$	$8.5 (3)^a$	8.13	9.77	8.55
	$8^+_1 \to 6^+_1$	$8.4 (5)^a$	8.13	9.99	8.97
	$10^+_1 \rightarrow 8^+_1$	$9 (1)^a$	alim 8.04	10.27	9.34
	$2^+_2 \to 0^+_1$	1.93 (9)	1.64	0.13	1.37
	$0^+_2 \rightarrow 2^+_1$	$8.5 \ ^{+0.5}_{-0.4}$	6.39	2.46	4.21
	$2^+_2 \rightarrow 0^+_2$	5.4(6)	3.87	3.65	2.73
	$2^+_2 \to 2^+_1$	5.84(106)	4.59	0.74	4.54
	$4^+_1 \rightarrow 2^+_2$	6.1(6)	2.96	0.72	1.31
	$2^+_1 \to 2^+_1$	$-0.03 \ ^{+0.98}_{-1.06}$	-1.53	-2.71	-1.89
	$2^+_2 \to 2^+_2$	$0.6 ^{+0.8}_{-0.6}$	0.17	1.0	1.1

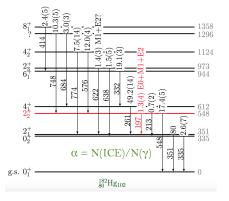

Excited states in $^{182-6}$ Hg studied through β -decay – Kseniia Rezynkina, KU Leuven

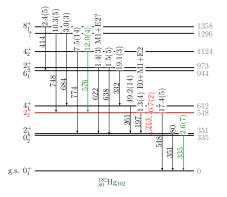
KU LEUVEN



Excited states in $^{182-6}$ Hg studied through eta-decay — Kseniia Rezynkina, KU Leuven

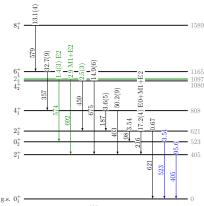

KU LEUVEN


• BR uncertainties for the $2^+_2 \rightarrow 2^+_1$ & $2^+_2 \rightarrow 0^+_2$ of ~30%


- BR uncertainties for the $2^+_2 \rightarrow 2^+_1$ & $2^+_2 \rightarrow 0^+_2$ of ~30%
- Gating on the feeding transitions

- BR uncertainties for the $2^+_2 \rightarrow 2^+_1$ & $2^+_2 \rightarrow 0^+_2$ of ~30%
- Gating on the feeding transitions
- ICE spectra to meacure te ICC for the 197 keV transition

- BR uncertainties for the $2^+_2 \rightarrow 2^+_1$ & $2^+_2 \rightarrow 0^+_2$ of ~30%
- Gating on the feeding transitions
- ICE spectra to meacure te ICC for the 197 keV transition
- ICC through the K-X-rays for cross-check



- BR uncertainties for the $2^+_2 \rightarrow 2^+_1$ & $2^+_2 \rightarrow 0^+_2$ of ~30%
- Gating on the feeding transitions
- ICE spectra to meacure te ICC for the 197 keV transition
- ICC through the K-X-rays for cross-check
- 213 keV transition was not observed directly

2 – **2**⁺₃ supposed band-head of a γ -vibrational band

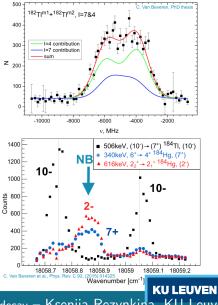
- Built on prolate-deformed states, enhanced $B(E2) \Rightarrow$ measure of deformation
- This excitated states will be populated with HIE-ISOLDE
- Decay pattern observed in ^{182}Hg , ^{184}Hg , ^{186}Hg : $\mathbf{2}_3^+ \rightarrow \mathbf{2}_1^+$ & $\mathbf{2}_3^+ \rightarrow \mathbf{0}_2^+$
- In ¹⁸⁶Hg the $2^+_3 \rightarrow 2^+_1$ is mixed $\delta(M1/E2) = 3.4^{+6.1}_{-1.8}$ a
- $\bullet~$ no $\delta~$ was measured for $^{182}{\rm Hg}$ and $^{184}{\rm Hg}$
- we will put stringent limits on the BR to the 2^+_2 and the g.s.

Excited states in $^{182-6}$ Hg studied through β -decay – Kseniia Rezynkina, KU Leuven

 $^{186}_{80}{
m Hg_{102}}$

KULEUVEN

^aJ.P.Delaroche et al., Phys. Rev. C 50 (1994) 5

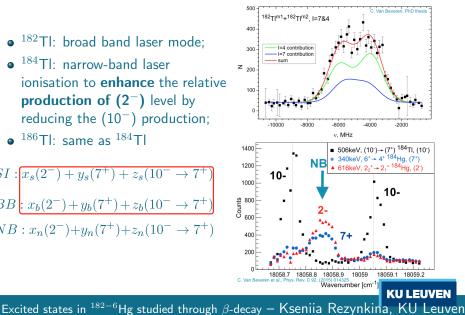

2 - Use of the laser-assisted beams

 ¹⁸²Tl: broad band laser mode;
 ¹⁸⁴Tl: narrow-band laser ionisation to enhance the relative production of (2⁻) level by reducing the (10⁻) production;

• ¹⁸⁶TI: same as ¹⁸⁴TI

$$SI: x_s(2^-) + y_s(7^+) + z_s(10^- \to 7^+)$$

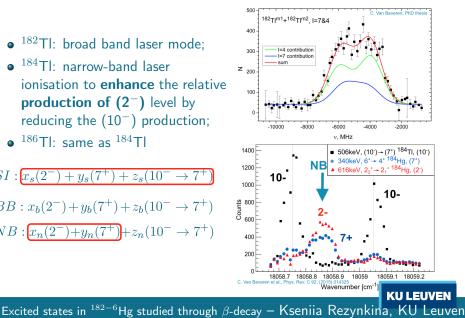
 $BB: x_b(2^-) + y_b(7^+) + z_b(10^- \to 7^+)$ $NB: x_n(2^-) + y_n(7^+) + z_n(10^- \to 7^+)$


2 – Use of the laser-assisted beams

- ¹⁸²TI: broad band laser mode; ¹⁸⁴TI: narrow-band laser ionisation to enhance the relative **production of (2**⁻) level by reducing the (10^{-}) production;
- ¹⁸⁶TI: same as ¹⁸⁴TI

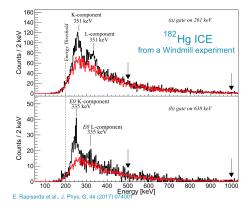
$$SI: x_s(2^-) + y_s(7^+) + z_s(10^- \to 7^+)$$

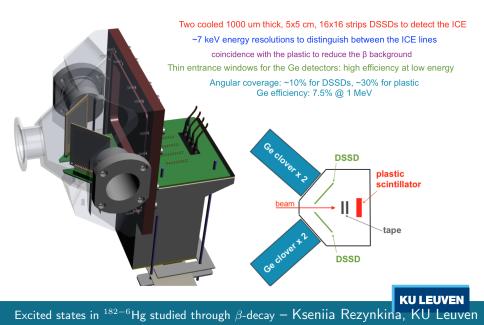
$$BB: x_b(2^-) + y_b(7^+) + z_b(10^- \to 7^+)$$


$$NB: x_n(2^-) + y_n(7^+) + z_n(10^- \to 7^+)$$

2 – Use of the laser-assisted beams

- ¹⁸²TI: broad band laser mode; • ¹⁸⁴TI: narrow-band laser ionisation to enhance the relative **production of (2**⁻) level by reducing the (10^{-}) production;
- ¹⁸⁶TI: same as ¹⁸⁴TI

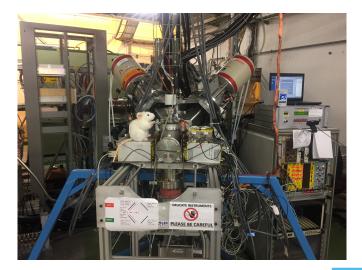

 $SI: x_s(2^-)$ $+ y_s(7^{-})$ $+ z_s(10)$ $BB: x_b(2^-) + y_b(7^+) + z_b(10^- \rightarrow 7^+)$ $NB: x_n(2^-) + y_n(7^+) + z_n(10^- \to 7^+)$


3 - Previous experiment with Windmill

KU LEUVEN

- β background under the lines of interest;
- low energy resolution;
- high energy thresholds;
- γ -ray summing:
 - efficiency reduced;
 - systematic uncertainties on the intensity determination

3 – Experimental setup



Isotope	Yield, ions/ μ C	$BR_{\beta^+/\mathrm{EC}}$	Rate at IDS, ions/s
¹⁸² TI	$3.2 \cdot 10^4$	99.51%	$2.8 \cdot 10^4$
184 Tl	$1.7 \cdot 10^{6}$	98.78%	$1.5 \cdot 10^{6}$
186 Tl	$3.3 \cdot 10^7$	99.4%	$2.9 \cdot 10^{6}$ *

- In total we request **5 shifts**: **2.5** shifts for ¹⁸²TI **1** shift ¹⁸⁴TI **0.5** shift ¹⁸⁶TI **1** shift for the beam tunning
- UC_x target, RILIS ion source

Latest IDS experiment (IS608): transmission 30-70% \Rightarrow we take **50%** as a safe estimate

Thank you!

Excited states in $^{182-6}$ Hg studied through β -decay – Kseniia Rezynkina, KU Leuven

KU LEUVEN