

RDDS Lifetime Measurements after Coulomb-Nuclear Excitation of ⁸⁸Kr — Study of γ Collectivity in the N = 52 Isotones Above ⁷⁸Ni Proposal to the ISOLDE and Neutron Time-of-Flight Committee — P-520

Kevin Moschner

Motivation: γ-collectivity above ⁷⁸Ni

100	64.053 h	58.51 d	3.54 h	10.18 h	18.7 m	10.3 m	5.34 s	3.75 s	0.548
100	04.033 H	30.51 0	3.3411	10.107	20.711	10.3 14	5.34 8	3.731	0.546
Sr 88	Sr 89	Sr 90	Sr 91	Sr 92	Sr 93	Sr 94	Sr 95	Sr 96	Sr 97
82.58	50.53 d	28.90 y	9.63 h	2.66 h	7.43 m	75.3 5	23.90 s	1.07 s	429 m
Rb 87	Rb 88	Rb 89	Rb 90	Rb 91	Rb 92	Rb 93	Rb 94	Rb 95	Rb 9
27.83	17.773 m		158 s	58.4 s	4,492 s	5.84 S	2.702 s	377.7 ms	203 m
Kr 86	Kr 81	Kr 88	r 89	Kr 90	Kr 91	Kr 92	Kr 93	Kr 94	Kr 95
17.279	76.3 n	2.84 h	.15 m	32.32 s	8.57 s	1.840 s	1.286 s	212 ms	0.114
Br 85	Br 86	Dietr	Br 88	Br 89	Br 90	Br 91	Br 92	Br 93	Br 94
2.90 m	55.1 s	55.55.4	16.29 s	4.40 s	1.91 s	0.541 s	0.343 s	102 ms	70 ms
Se 84	Se 8	Se 86	e 87	Se 88	Se 89	Se 90	Se 91	Se 92	Se 93
3.26 m	32.91	14.3 s	.50 s	1.53 s	0.41 s	> 300 ns	0.27 s	7	7
As 83	As 84	1000	As 86	As 87	As 88	As 89	As 90	As 91	As 9
13.4 s	4.2.5	2.021 s	0.945 s	0.000	> 300 ns	> 300 ns	> 300 ns	> 150 ns	?
Ge 82	Ge 83	Ge 84	Ge 8	Ge 86	e 87	Ge 88	Ge 89	Ge 90	
4.56 s	1.85 s	0.954 s	0.56 :	> 150 ns	0.14 s	> 300 ns	> 300 ns	> 635 ns	• 5
Ga 81	Ga 82	Ga 83	Ga 84		Ga 86	Ga 87		58	р
1.217 s	0.599 s	308.1 ms	0.085 s	< 100 ms	> 150 ns	> 634 ns			n
Zn 80	Zn 81	Zn 82	Zn 83	Zn 84	Zn 85	56			• E
0.54 s	304 ms	> 150 ns	> 300 ns	> 633 ns	> 637 ns				8
Cu 79	Cu 80	Cu 81	Cu 82	54					• F
188 ms	0.17 s	> 632 ns	> 636 ns						• F
Ni 78	Ni 79 52 • L								• L
0.11 s									
(2013).									

- 50 [2] T. R. Rodríguez, Phys. Rev. C 90, 34306 (2014).
 [3] T. Materna et al., Phys. Rev. C 92, 34305 (2015).
 [5] Nuclear Data Sheets.
 - [4] M. Lettmann et al., accepted for Phys. Rev. C.

- Shell model and beyond mean field studies predict non axiality and γ -collectivity in Se and Ge nuclei close to N = 50 [1,2]
- Experimentally supported by candidate 3⁺ state in ⁸⁶Se [3]
- Possible counterparts also in ⁸⁸Kr and ⁹²Zr [4]
- Lowering of these states leading towards lower proton number and maximum triaxiality for ⁸⁶Ge predicted
- Recently confirmed by low lying 3⁺ in ⁸⁶Ge [5]

Motivation: γ-collectivity above ⁷⁸Ni

100	64.053 h	58.51 d	3.54 h	10.18 h	18.7 m	10.3 m	5.34 s	3.75 s	0.548 s
Sr 88	Sr 89	Sr 90	Sr 91	Sr 92	Sr 93	Sr 94	Sr 95	Sr 96	Sr 97
82.58	50.53 d	28.90 y	9.63 h	2.66 h	7.43 m	75.3 5	23.90 s	1.07 s	429 ms
Rb 87	Rb 88	Rb 89	Rb 90	Rb 91	Rb 92	Rb 93	Rb 94	Rb 95	Rb 96
27.83	17.773 m		158 s	58.4 s	4,492 5	5.84 S	2.702 s	377.7 ms	203 ms
Kr 86	Kr 81	Kr 88	r 89	Kr 90	Kr 91	Kr 92	Kr 93	Kr 94	Kr 95
17.279	76.3 n	2.84 h	.15 m	32.32 s	8.57 s	1.840 s	1.286 s	212 ms	0.114 :
Br 85	Br 86	Diar	Br 88	Br 89	Br 90	Br 91	Br 92	Br 93	Br 94
2.90 m	55.1 s	55.65.4	16.29 s	4.40 s	1.91 s	0.541 s	0.343 s	102 ms	70 ms
Se 84	Se 8	Se 86	. e 87	Se 88	Se 89	Se 90	Se 91	Se 92	Se 93
3.26 m	32.9 1	14.3 s	.50 s	1.53 s	0.41 s	> 300 ns	0.27 s	7	7
As 83	As 84	1000	As 86	As 87	As 88	As 89	As 90	As 91	As 92
13.4 s	4.2.5	2.021 s	0.945 s		> 300 ns	> 300 ns	> 300 ns	> 150 ns	1
Ge 82	Ge 83	Ge 84	Ge 8	Ge 86	e 87	Ge 88	Ge 89	Ge 90	
4.56 s	1.85 s	0.954 s	0.56	> 150 ns	0.14 s	> 300 ns	> 300 ns	> 635 ns	
Ga 81	Ga 82	Ga 83	Ga 84		Ga 86	Ga 87		58	
1.217 s	0.599 s	308.1 ms	0.085 s	< 100 ms	> 150 ns	> 634 ns			~
Zn 80	Zn 81	Zn 82	Zn 83	Zn 84	Zn 85	56			• S
0.54 s	304 ms	> 150 ns	> 300 ns	> 633 ns	> 637 ns				ir
Cu 79	Cu 80	Cu 81	Cu 82	54					⇒ls
188 ms	0.17 s	> 632 ns	> 636 ns						⇒P
Ni 78	Ni 79	52							а
0.11 s									
	(2013).								

[2] T. R. Rodríguez, Phys. Rev. C 90, 34306 (2014).
 [3] T. Materna et al., Phys. Rev. C 92, 34305 (2015).

[5] Nuclear Data Sheets.

[4] M. Lettmann et al., accepted for Phys. Rev. C.

- Phys. Rev. C 90, 34306 (2014) S 06 0⁺_{0.6} ^{*O*}.∂ 60 (deg) ^{*O*}.∂ 60 (deg) 0_{2}^{+} 0_{.6} 40 40 0_{.4} 30 0_{.∢} 30 0^{+}_{2} 20 20 0_{.2} _{ج.}0 0^{+}_{1} 10 10 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 0 ⁸⁸Kr β₂ β₂ 0_{.8 60} 0.8 60 (deg) 2^{+}_{1} (deg) **2**⁺₂ 50 50 0_{.6} 0_{.6} 40 40 2^{+}_{2} 0_{.4} 30 0.4 30 20 20 ج.0 0_{.2} 2^{+}_{1} 10 10 0 0 -0.5 0 0.5 0.2 0.4 0.6 0.8 β2 0 0.2 0.4 0.6 0.8 0 β₂ β₂
- SCCM calculations predict axial deformation also in ⁸⁸Kr
- Isolde provides high intensity beams
- Possibility to gain information on γ-collectivity, also essential for the more exotic Se and Ge nuclei

Motivation: Extensive Predictions by Shell Model

B(E2) [W.u.]

- Most experimental work in the region focused on establishing energetic level scheme
 - Good agreement for low lying yrast states including gap between 4₁⁺ and 6₁⁺
 - Less good understanding of non-yrast states and branchings into the yrast band
- Almost no information on transition strengths, which will help to constrain shell model description
- Ambiguity even for the $2_1^+ \rightarrow 0_1^+$ transition:
 - COULEX at Isolde: B(E2)↓ = 8.0 (8) W.u.
 (D. Mücher et al., in AIP Conf. Proc. 1090, 587 (2009))
 - Fast timing: B(E2)↓ = 15 (3) W.u. (preliminary value given in: H. Mach et al., Nucl. Phys. A 523, 197 (1991))
 - Shell model also favours higher B(E2)
 - Trend continued in ⁸⁶Se: $B(E2) = 19^{+11}_{-8}$ W.u.
- RDDS measurement will provide model independent lifetimes in a wide range for the mentioned states

➡THIS PROPOSAL

The Recoil Distance Doppler Shift (RDDS) Method and the Differential Plunger for MINIBALL

- Plot ratio $I_1/(I_1+I_2)$ vs. distance
- Every distance in sensitive range gives a lifetime value

5

Proposed experiment - RDDS measurement of ⁸⁸Kr

- Coulomb-Nuclear Excitation (CNE) of ⁸⁸Kr beam at beam energy of 5.34 MeV/u on ¹⁹⁶Pt target
- MINIBALL for detection of emitted γ rays. Efficiency about 2-3% in each angular ring
- Use 2 mg/cm^{2 196}Pt target and 7.5 mg/cm^{2 181}Ta degrader for desired velocities and sensitivity for lifetimes in the range from 1 ps to 250 ps

Proposed experiment - Additional sensitivity via DSAM

- Coulomb-Nuclear Excitation (CNE) of ⁸⁸Kr beam at beam energy of 5.34 MeV/u on ¹⁹⁶Pt target
- MINIBALL for detection of emitted y rays. Efficiency about 2-3% in each angular ring
- Use 2 mg/cm²¹⁹⁶Pt target and 7.5 mg/cm²¹⁸¹Ta degrader for desired velocities and sensitivity for lifetimes in the range from 1 ps to 250 ps
- Additionally use 4.4 mg/cm² Rh backing for sensitivity below ~1 ps via DSAM
 - Does not affect sensitivity for longer lifetimes
 - ⇒Possibility to directly measure $\tau(2_3^+) = 28(14)$ fs (from relative B(E2)↑/norm. to $2_1^+ > 0_1^+$ [1])

Doppler Shift Attenuation Method

7

Proposed experiment - Additional sensitivity via DSAM

- Coulomb-Nuclear Excitation (CNE) of ⁸⁸Kr beam at beam energy of 5.34 MeV/u on ¹⁹⁶Pt target
- MINIBALL for detection of emitted γ rays. Efficiency about 2-3% in each angular ring
- Use 2 mg/cm^{2 196}Pt target and 7.5 mg/cm^{2 181}Ta degrader for desired velocities and sensitivity for lifetimes in the range from 1 ps to 250 ps
- Additionally use 4.4 mg/cm² Rh backing for sensitivity below ~1 ps via DSAM
 - Does not affect sensitivity for longer lifetimes
 - ⇒Possibility to directly measure $\tau(2_3^+) = 28(14)$ fs (from relative B(E2)↑/norm. to $2_1^+ > 0_1^+$ [1])

Reaction Kinematics / Detection of Scattered Projectiles

Reaction Kinematics / Detection of Scattered Projectiles

CNE: Cross section calculated with FRESCO

FRESCO calculations by B.S. Nara Singh

Scatt. Ang. CMS [deg.]

Proposed experiment - Yield calculations

- Assuming 1.0x10⁹ ions of ⁸⁸Kr produced per second in PbBi target and transmission of 1% we estimated secondary beam intensity of 1.0x10⁷ on the MINIBALL target.
- Transitions matrix elements from large-scale shell-model calculations in $\pi(1f_{5/2}, 2p_{1/2}, 2p_{3/2}, 1g_{9/2})$, v(2d_{5/2}, 3s_{1/2}, 2d_{3/2}, 1g_{7/2}, 1h_{11/2}) space and lower experimental value for 2₁⁺ -> 0₁⁺
- Using CNE at 470 MeV (5.35MeV/u) drastically increases cross rates and enables study of higher lying states
- Staying for 48h on one RDDS distance enables γ-γ coincidence analysis
- Expected yield leads to statistical uncertainties of lifetimes below 20% for all considered states

Initial state	Initial state $\tau[ps]$		$E_{\gamma} \; [\text{keV}]$	N_{γ} [Counts per angular ring]
2_{1}^{+}	16.0(17)	$2^+_1 \to 0^+_1$	775.28	517316
4_1^+	10*	$4_1^+ \to 2_1^+$	868.4	9873
6_{1}^{+}	1*	$6_1^+ \to 4_1^+$	1523.4	100
2_{2}^{+}	6.5*	$2_2^+ \to 0_1^+$	1577.41	1144
		$2_2^+ \to 2_1^+$	802.14	6546
2^+_3	0.028(14)	$2^+_3 \to 0^+_1$	2216.3	2976
		$2_3^+ \to 2_1^+$	1440.5	24370
4_{2}^{+}	260*	$4_2^+ \to 2_1^+$	1328.9	9
		$4_2^+ \to 4_1^+$	460.0	136

Expected y-ray yields in 48h - one RDDS distance

Expected sensitivity after 24h / distance (35°)

Simulations by T. Braunroth

Summary

- We propose to use Coulomb-Nuclear Excitation to populate excited states in ⁸⁸Kr
- RDDS measurement using the newly build PLUNGER for MINIBALL will enable model independent measurement of nuclear lifetimes:
 - $2_1^+, 2_2^+$ and 4_1^+ with statistical uncertainty of 1-2%
 - 4_2^+ and 6_1^+ still with statistical uncertainty of < 20%
- Combined DSAM measurement enables determination of lifetimes in the 10 -100 fs regime
 - Direct measurement of 2₃⁺
- Additional possibility to access quadrupole moments by nuclear deorientation effect
- Beam time request:
 - 18 shifts for the measurement RDDS measurement with 3 targetdegrader distances
 - 3 additional shifts for setup and
 - 21 shifts requested in total

Thank you for your attention