

[^0]
Motivation: $\mathbf{\gamma}$-collectivity above ${ }^{78} \mathrm{Ni}$

Motivation: $\mathbf{\gamma}$-collectivity above ${ }^{78} \mathrm{Ni}$

Motivation: Extensive Predictions by Shell Model

- Most experimental work in the region focused on establishing energetic level scheme
- Good agreement for low lying yrast states including gap between 41^{+}and 61^{+}
- Less good understanding of non-yrast states and branchings into the yrast band
- Almost no information on transition strengths, which will help to constrain shell model description
- Ambiguity even for the $21_{1}{ }^{+}->0_{1}+$ transition:
- COULEX at Isolde: B(E2) $\downarrow=8.0$ (8) W.u. (D. Mücher et al., in AIP Conf. Proc. 1090, 587 (2009))
- Fast timing: $B(E 2) \downarrow=15$ (3) W.u. (preliminary value given in: H. Mach et al., Nucl. Phys. A 523, 197 (1991))
- Shell model also favours higher B(E2)
- Trend continued in ${ }^{86} \mathrm{Se}: \mathrm{B}(\mathrm{E} 2)=19^{+11}{ }_{-8} \mathrm{~W} . \mathrm{u}$.
- RDDS measurement will provide model independent lifetimes in a wide range for the mentioned states

The Recoil Distance Doppler Shift (RDDS) Method and the Differential Plunger for MINIBALL

- Plot ratio $l_{1} /\left(l_{1}+l_{2}\right)$ vs. distance
- Every distance in sensitive range gives a lifetime value

Proposed experiment - RDDS measurement of ${ }^{88} \mathrm{Kr}$

- Coulomb-Nuclear Excitation (CNE) of ${ }^{88} \mathrm{Kr}$ beam at beam energy of $5.34 \mathrm{MeV} / \mathrm{u}$ on ${ }^{196} \mathrm{Pt}$ target
- MINIBALL for detection of emitted γ rays. Efficiency about 2-3\% in each angular ring
- Use $2 \mathrm{mg} / \mathrm{cm}^{2}{ }^{196} \mathrm{Pt}$ target and $7.5 \mathrm{mg} / \mathrm{cm}^{2}{ }^{181} \mathrm{Ta}$ degrader for desired velocities and sensitivity for lifetimes in the range from 1 ps to 250 ps

Proposed experiment - Additional sensitivity via DSAM

- Coulomb-Nuclear Excitation (CNE) of ${ }^{88} \mathrm{Kr}$ beam at beam energy of $5.34 \mathrm{MeV} / \mathrm{u}$ on ${ }^{196} \mathrm{Pt}$ target
- MINIBALL for detection of emitted γ rays. Efficiency about 2-3\% in each angular ring
- Use $2 \mathrm{mg} / \mathrm{cm}^{2}{ }^{196} \mathrm{Pt}$ target and $7.5 \mathrm{mg} / \mathrm{cm}^{2}{ }^{181} \mathrm{Ta}$ degrader for desired velocities and sensitivity for lifetimes in the range from 1 ps to 250 ps
- Additionally use $4.4 \mathrm{mg} / \mathrm{cm}^{2}$ Rh backing for sensitivity below $\sim 1 \mathrm{ps}$ via DSAM
\Rightarrow Does not affect sensitivity for longer lifetimes
\Rightarrow Possibility to directly measure $\tau\left(2_{3}{ }^{+}\right)=28(14)$ fs (from relative $B(E 2) \uparrow /$ norm. to $21^{+}->0_{1}{ }^{+}$[1])

Doppler Shift Attenuation Method

$4.4 \mathrm{mg} / \mathrm{cm}^{2}$
[1] K. Moschner et al., Phys. Rev. C 94, 054323 (2016).

Proposed experiment - Additional sensitivity via DSAM

- Coulomb-Nuclear Excitation (CNE) of ${ }^{88} \mathrm{Kr}$ beam at beam energy of $5.34 \mathrm{MeV} / \mathrm{u}$ on ${ }^{196} \mathrm{Pt}$ target
- MINIBALL for detection of emitted γ rays. Efficiency about 2-3\% in each angular ring
- Use $2 \mathrm{mg} / \mathrm{cm}^{2}{ }^{196} \mathrm{Pt}$ target and $7.5 \mathrm{mg} / \mathrm{cm}^{2}{ }^{181} \mathrm{Ta}$ degrader for desired velocities and sensitivity for lifetimes in the range from 1 ps to 250 ps
- Additionally use $4.4 \mathrm{mg} / \mathrm{cm}^{2}$ Rh backing for sensitivity below $\sim 1 \mathrm{ps}$ via DSAM
\Rightarrow Does not affect sensitivity for longer lifetimes
\Rightarrow Possibility to directly measure $\tau\left(2_{3}{ }^{+}\right)=28(14)$ fs (from relative $B(E 2) \uparrow /$ norm. to $21^{+}->0_{1}{ }^{+}$[1])

Reaction Kinematics / Detection of Scattered Projectiles

Reaction Kinematics / Detection of Scattered Projectiles

Good separation of the scattered ${ }^{88} \mathrm{Kr}$ projectiles from target, backing and degrader particles needed for

- clean particle - γ coincidences
- precise determination of particle angles:
- Doppler correction
- Calculation of energy loss in target and degrader

CNE: Cross section calculated with FRESCO

Acceptance of CD: $23^{\circ}-74^{\circ} \mathrm{CMS}$

Proposed experiment - Yield calculations

- Assuming 1.0×109 ions of ${ }^{88} \mathrm{Kr}$ produced per second in PbBi target and transmission of 1% we estimated secondary beam intensity of 1.0×10^{7} on the MINIBALL target.
- Transitions matrix elements from large-scale shell-model calculations in $\pi\left(1 f_{5 / 2}, 2 p_{1 / 2}, 2 p_{3 / 2}\right.$, $\left.1 \mathrm{~g}_{\mathrm{g} / 2}\right)$, $\mathrm{v}\left(2 \mathrm{~d}_{5 / 2}, 3 \mathrm{~s}_{1 / 2}, 2 \mathrm{~d}_{3 / 2}, 1 \mathrm{~g}_{7 / 2}, 1 \mathrm{~h}_{11 / 2}\right)$ space and lower experimental value for $21^{+}->0_{1^{+}}$
- Using CNE at $470 \mathrm{MeV}(5.35 \mathrm{MeV} / \mathrm{u})$ drastically increases cross rates and enables study of higher lying states
- Staying for 48h on one RDDS distance enables $\gamma-\gamma$ coincidence analysis
- Expected yield leads to statistical uncertainties of lifetimes below 20% for all considered states

Expected γ-ray yields in 48h - one RDDS distance

Initial state	$\tau[p s]$	Transition	$E_{\gamma}[\mathrm{keV}]$	N_{γ} [Counts per angular ring]
2_{1}^{+}	$16.0(17)$	$2_{1}^{+} \rightarrow 0_{1}^{+}$	775.28	517316
4_{1}^{+}	10^{*}	$4_{1}^{+} \rightarrow 2_{1}^{+}$	868.4	9873
6_{1}^{+}	1^{*}	$6_{1}^{+} \rightarrow 4_{1}^{+}$	1523.4	100
2_{2}^{+}	6.5^{*}	$2_{2}^{+} \rightarrow 0_{1}^{+}$	1577.41	1144
		802.14	6546	
2_{3}^{+}	$0.028(14)$	$2_{3}^{+} \rightarrow 0_{1}^{+}$	2216.3	2976
		1440.5	24370	
4_{2}^{+}	260^{*}	$4_{2}^{+} \rightarrow 2_{1}^{+}$	1328.9	9
		460.0	136	

Expected sensitivity after 24h / distance (35)

^ə૪ / प৮て / sұunoכ

$10 \mu \mathrm{~m}$
$100 \mu \mathrm{~m}$
$200 \mu \mathrm{~m}$
$500 \mu \mathrm{~m}$
$5000 \mu \mathrm{~m}$

Energy [keV]

Summary

- We propose to use Coulomb-Nuclear Excitation to populate excited states in ${ }^{88} \mathrm{Kr}$
- RDDS measurement using the newly build PLUNGER for MINIBALL will enable model independent measurement of nuclear lifetimes:
- $21^{+}, 2_{2}{ }^{+}$and 41^{+}with statistical uncertainty of 1-2\%
- $4_{2}{ }^{+}$and $61_{1}+$ still with statistical uncertainty of $<20 \%$
- Combined DSAM measurement enables determination of lifetimes in the 10-100 fs regime
- Direct measurement of 23^{+}
- Additional possibility to access quadrupole moments by nuclear deorientation effect
- Beam time request:
- 18 shifts for the measurement RDDS measurement with 3 targetdegrader distances
- 3 additional shifts for setup and
= 21 shifts requested in total

Thank you for your attention

[^0]: RDDS Lifetime Measurements after Coulomb-Nuclear Excitation of ${ }^{88} \mathrm{Kr}$ - Study of y Collectivity in the $\mathbf{N}=52$ Isotones Above ${ }^{78} \mathrm{Ni}$
 Proposal to the ISOLDE and Neutron Time-of-Flight Committee - P-520
 Kevin Moschner

