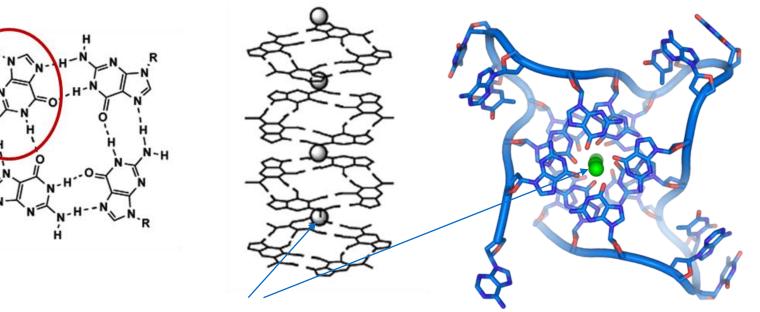


Interaction of Na ions with **DNA G-quadruplex structures** studied directly with Na beta-NMR spectroscopy


M. Kowalska¹, V. Araujo Escalona², M. Baranowski³, L. Cerato⁴, M. Bissell⁴, W. Gins², R. Grzywacz⁶, F. Gustafsson², R. Harding^{1,7}, L. Hemmingsen⁸, F. Hofmann⁸, H. Heylen⁹, A. Kanellakopoulos², V. Kocman¹⁰, M. Kozak³, M. Madurga Flores⁶, G. Neyens², S. Pallada¹, J. Plavec¹⁰, N. Severijns², D. Szunyogh⁸, K. Szutkowski³, P. Thulstrup⁸, M. Walczak¹¹, F. Wienholtz¹, J. Wolak³, X.F. Yang², D. Zakoucky¹²

- EP-Dept, CERN, Geneva, Switzerland 1.
- IKS, KU Leuven, Leuven, Belgium
- 3. Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
- 4. Faculty of Sciences, University of Geneva, Geneva, Switzerland
- School of Physics and Astronomy, Manchester University, Manchester, United Kingdom 5.
- 6. Dept. of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, USA
- Department of Physics, University of York, York, United Kingdom 7.
- 8. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark biophysics, metal-ion studies@ISOLDE
- MPIK, Heidelberg, Germany 9.
- 10. Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia chemistry, NMR, G-quadruplex studies
- 11. Poznan University of Technology, Poznan, Poland
- 12. NPI, Czech Academy of Sciences, Rez, Czech Republic

- biophysics, NMR, DNA studies **Biology, DNA studies**

Motivation: DNA G-quadruplexes

- DNA G-quadruplexes:
 - Formed in guanine-rich DNA fragments
 - ✓ Present in telomeres (ends of chromosomes)
 - ✓ Present in promoter regions of many oncogenes
 - Synthesised for novel applications

- Alkali metals in DNA G-quadruplexes
 - Important for their formation, stability and structural polymorphism
 - Until recently considered invisible in conventional Na+/K+ NMR

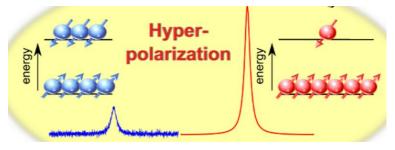
Alkali ions and G-quadruplexes

²³Na NMR

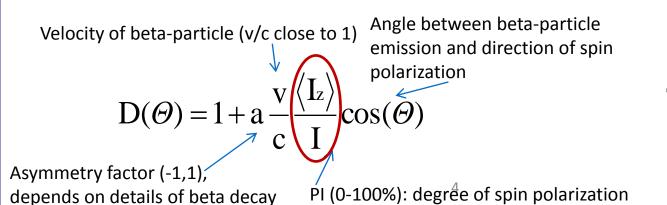
- Techniques used for their studies:
 - solid-state techniques: X-ray crystallography and solid-state NMR,
 - indirect solution NMR methods using spin-1/2 probes, 15NH4+ and 205Tl+
- Tightly bound 'channel' ions considered 'invisible' in solution-NMR
 - Iow signal intensity and unfavourable quadrupole spin relaxation properties
 - Only recently several direct solution NMR studies published [Won05]

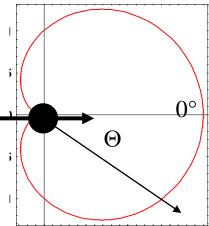
=> still little known about alkali-metal cation dynamics in this important class of nucleic acid structures

Our aim:


Investigate Na interaction with G-quadruplexes using beta-detected 26-28Na NMR

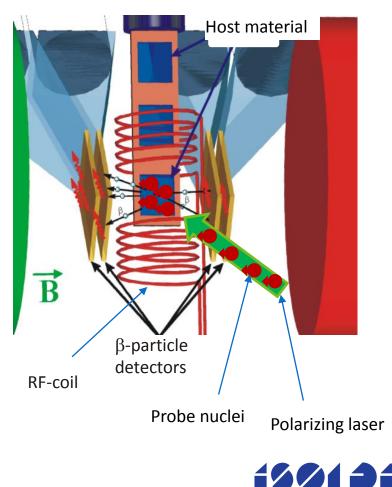
Primary gain: up to billion-times higher sensitivity than conventional 23Na NMR

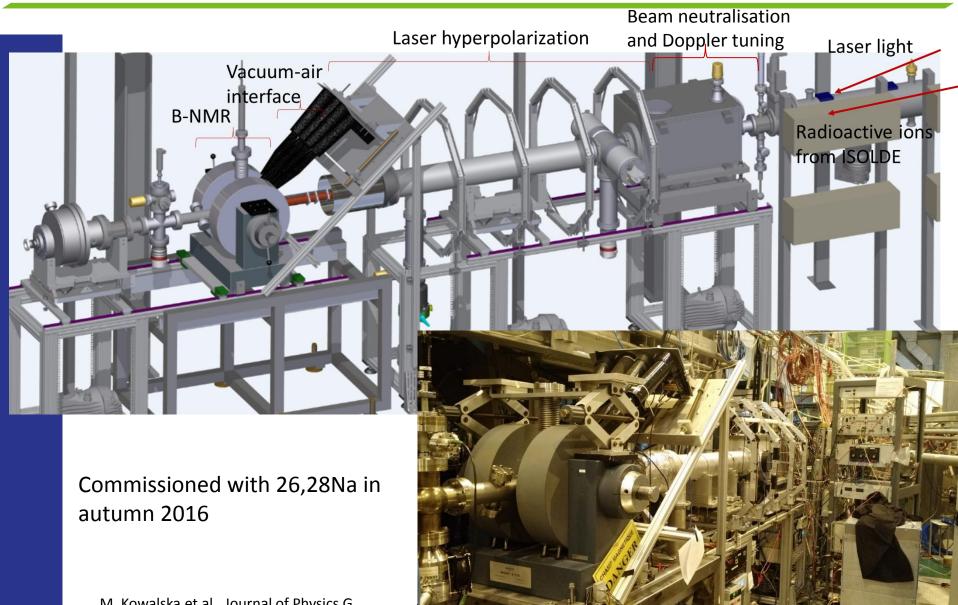

[Won05] A. Wong, R. Ida, G. Wu, Biochem. Biophys. Res. Commun. 337, 363 (2005)


Ultra-sensitivity of beta-NMR

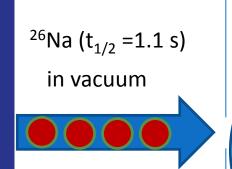
- From low sensitivity of NMR to 1e10 more sensitive beta-NMR:
 - Small degree of (thermal) polarization -> hyperpolarization; 1e5 gain
 - Inefficient resonance detection -> particle detection; 1e5 gain
- Hyperpolarization using optical pumping with lasers

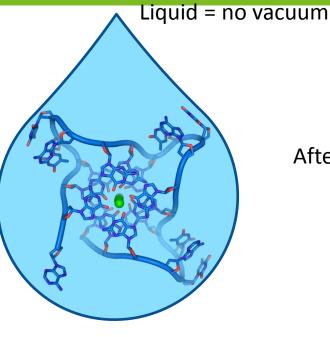

Anisotropic emission of beta particles from decay of polarized nuclei



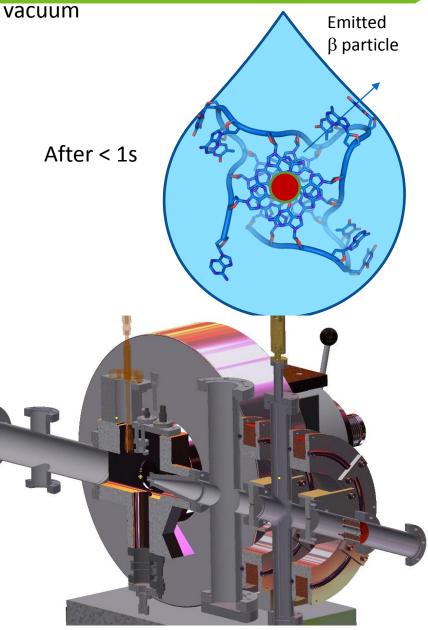

Beta-NMR measurement

- Same principles as conventional NMR
- Detection of resonance:
 - > Baseline: asymmetry in beta decay in space
 - In resonance with rf: decrease in asymmetry
- When combined with hyperpolarization
 => Beta-NMR can be up to 10¹⁰ more sensitive than conventional NMR




Experimental setup

M. Kowalska et al., Journal of Physics G, in print (2017)


Getting probe nuclei into liquid samples

Challenges and constraints:

- Vacuum/liquid interface with little loss in atom beam and polarization
 - at present, differential pumping system with strong pumps, under tests now (4 orders of magnitude pressure difference with 1 pinhole)
- Binding to biomolecule before decaying
 -> choose suitable systems to study

Probe nuclei: 26,27,28Na

Nucleus	Radioactive half-life	Nuclear spin I	Magnetic moment (μ _N)	Quadrupole moment (mb)	Observed β–asymmetry
26Na	1.1 s	3	2.86	-5	30 %
27Na	0.3 s	5/2	3.89	-7	30 %
28Na	30 ms	1	2.43	40	40 %

- Favourable atomic transition (Nal D2 line at 589 nm) => P₁ = 30-60%, pumping both ground state HFS levels => 30% higher P₁
- a_{β} factors close to 1

 \Rightarrow beta-NMR resonances easy to observe, even if small fraction of original P₁ maintained after implantation in liquid sample

- Very well produced from several targets
- Q < than Q(stable 23Na) = +100 mbarn</p>
- ⇒ weaker quadrupole interaction => longer relaxation time and smaller peak broadening
- Different t1/2
- ⇒ probing different timescales, e.g. t1/2(28Na) comparable with relaxation time observed Gquadruplex liquid 23Na NMR studies
- Compatible with present stage of setup: VIS, IR polarization of atoms

Feasibility and goal of studies

- G-quadruplex interaction with Na⁺ very suitable for beta-NMR studies:
 - Very strong binding with alkali metals [Ske10]
 - > Reaction extremely fast expected < $t_{1/2}$ of ²⁶Na, even ²⁸Na, [Ske10]
 - Long enough NMR relaxation times: tens ms reported [Won05, Ida08]
 - NMR chemical shifts of 23Na-NMR in 20 ppm range => can be resolved with our B field homogeneity
- Goal: determine how and at what time scale Na⁺ binds to model G-quadruplexes
 - observations at different Na+ and G-quadruplex concentrations => determine dissociation constant of reactions
 - measure relaxation times of observed signals => identify different positions occupied by Na+
- Planned liquid hosts:
 - Ionic liquid verifications at good vacuum, chemical shift calibration
 - Water and NaCl solution chemical shift references
 - (crown ethers)
 - > DNA model G-quadruplex solutions at different concentrations and temperatures
 - ✓ E.g. d[TAG3CG3AG3AG3A2] synthesized and well studied by Ljubljana coauthors

g

✓ Chemical shifts (signal at -18 ppm expected, [Won05]) and relaxation times

[Ske10] P. Sket and J. Plavec, J. Am. Chem. Soc. 132, 12724 (2010) [Ida08] R. Ida and G. Wu, J. Am. Chem. Soc. 130, 3590 (2008)

Beamtime request

Uc, Ta or Ti target, surface ionization, GPS or HRS

beam	Yield from UCx	Yield from Ta	Yield from Ti
26Na	3.0e7 [Kei00]	4e6	1.5e6
27Na	8.5e6	1.2e4	1.7e5
28Na	9.6e5	7e3 (interpolated)	n.a.

15 shifts, (split into 1-2 runs over 1 year):

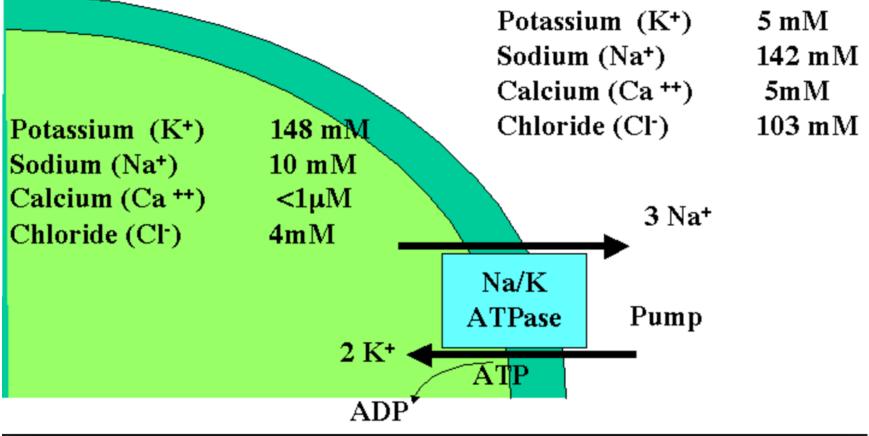
- 3 shifts (24 h) to perform preparatory NMR measurements with ionic liquids, with one and two liquids, and at several pressures: 1 shift to see 1st NMR spectrum, 2 shifts to record some 20 spectra
- 3 shifts (24 h) to record NMR resonances in water and crown ethers, with min 1 spectrum per hour
- 9 shifts to investigate the G-quadruplex interaction with 26-28Na, again with min 1 spectrum/hour
- General assumptions
 - 1 shift: establish change-exchange cell and doppler tuning settings => 1st polarization signal and b-NMR resonance
 - 1 h: several NMR resonances in good vacuum, 1 resonance in bad vacuum
 - Ih between different hosts (and conditions)
 - Time for contingency

Thank you

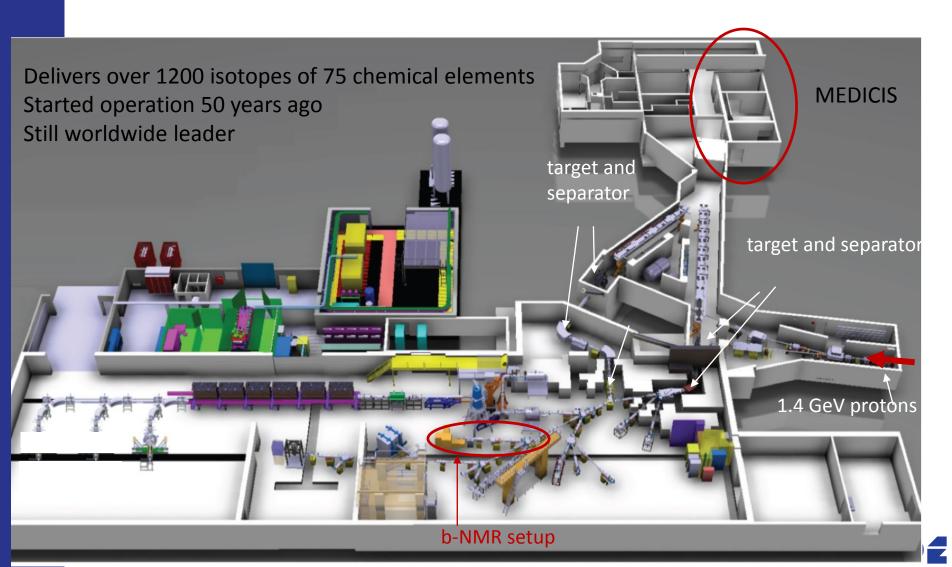
ENSAR2

Beamtime request

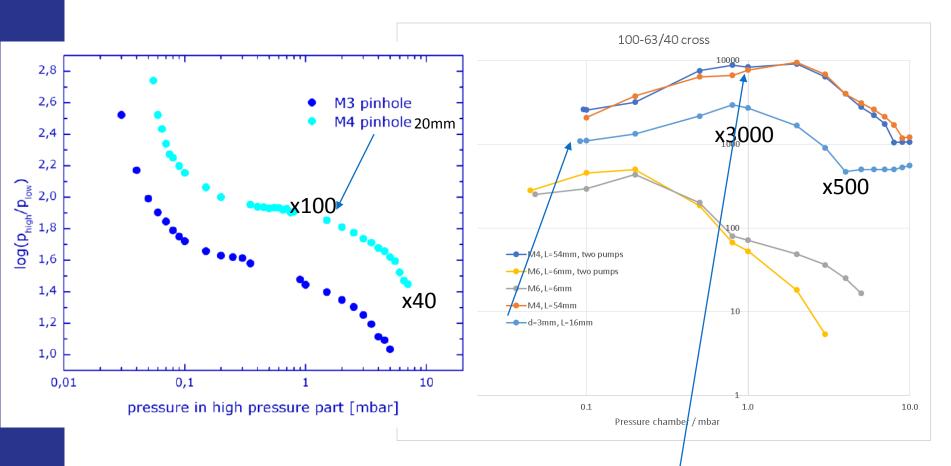
Beamtime request


The shift request takes into account the ²⁶⁻²⁸Na yields (Table 2) and is based on the times required previously to record good quality NMR spectra using the COLLAPS setup, which was 5-10 min for β asymmetries above 5% and some 20-30 min for asymmetries of below 5%, rather independent of the ISOLDE production yields.

Thus, we assume that we will need: 1 shift to establish the optimal settings of the charge exchange cell and post-acceleration electrode for the 1st polarization signal and subsequent scanning of a β -NMR resonance on the best-produced ²⁸Na (based on commissioning beamtime in 2016). We also know that in good vacuum 1 h should be enough to record several NMR resonances, whereas for worse vacuum required for aqueous samples 1 h might be needed for one scan (due to very low expected asymmetry). In addition, between measurements in different hosts, we assume that 1 h will be needed to remove the previous liquid, titrate the new one, as well as achieve the right pressure and temperature. We also need some time for contingency.

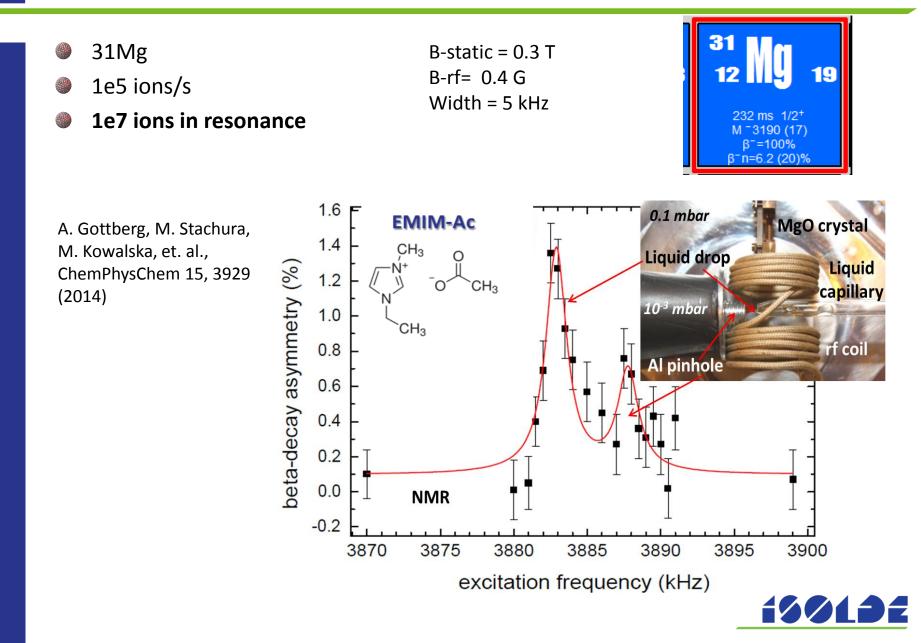

Na, K concentrations

- 2 mm drop = 4 mm3 volume = 4 uL
- Na+ inside cell: 10 mM in 4uL = 10e-3*4e-6 = 4e-9 moles = 40nmoles of Na+
- = 40e-9 *6*1e23 ions = 24e15 ions = 2.4e16 ions

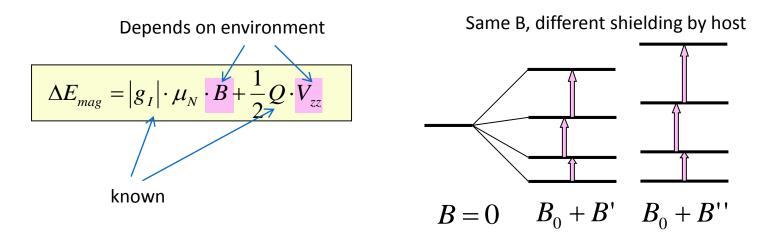


ISOLDE

CERN's facility for production and research with radioactive nuclei

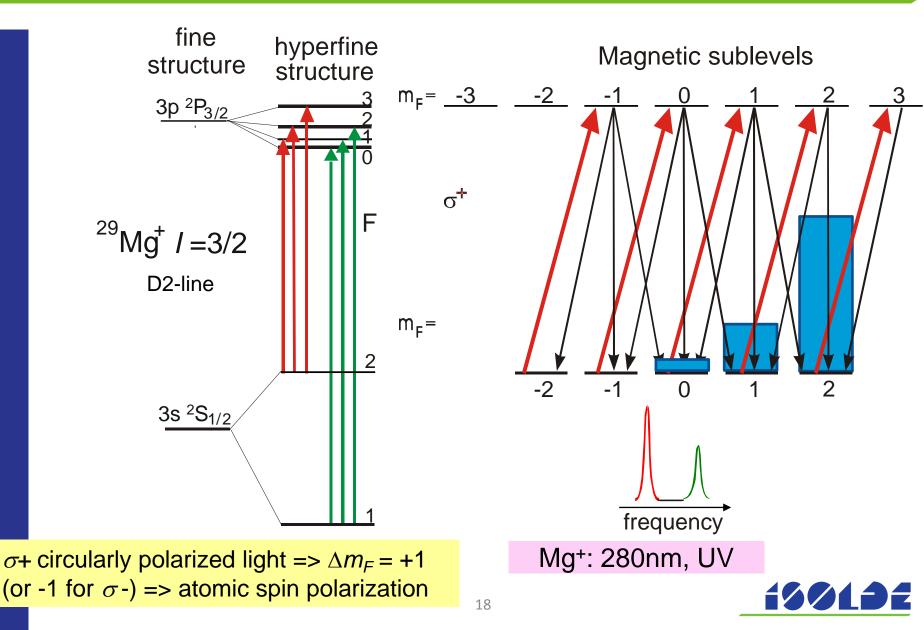

Differential pumping

- Before: up to 2 orders of magnitude in vacuum with 1 pinhole
- Now: up to 4 orders of magnitude
- => confident that studies with aqueous samples feasible

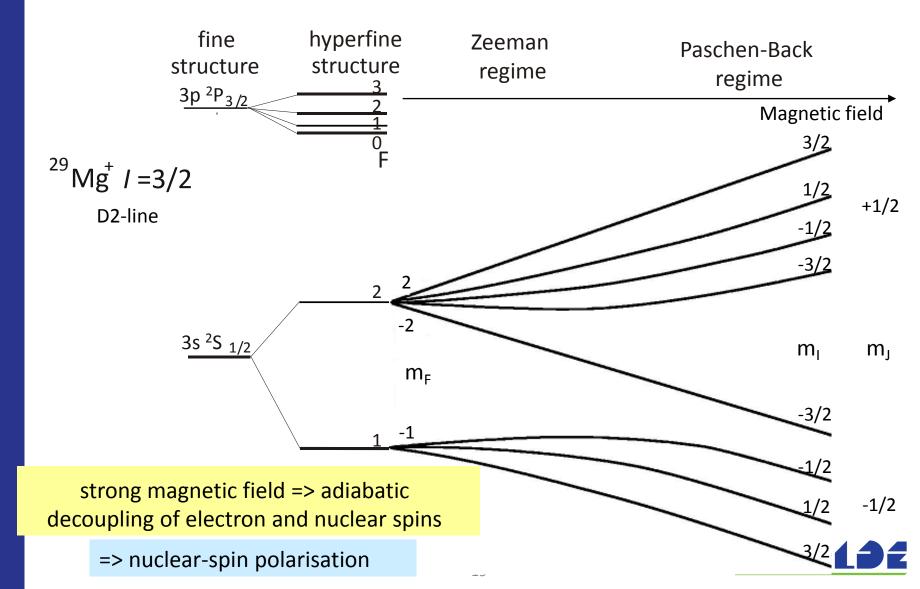

First liquid beta-NMR signal

NMR in (chemistry and) biology

Most versatile method to study structure and dynamics of molecules in solution


- Observables: chemical shift (Larmor frequency) and relaxation times in different hosts
- Determined properties
 - > local electronic environment (i.e. number and type of coordinating groups)

- Derived information: comparison to quantum-chemical models (e.g DFT)
 - kinetics and dynamics and ligand binding of the metal ions and biomolecules
 - 3D structure of proteins and protein-metal complexes



Optical pumping and atomic spin polarization

Nuclear spin polarization

Nuclear spin polarization via hyperfine interaction; spin decoupling in strong B field

