Diagrammatic Approach to the Two-Body Dynamics & PostNewtonian Corrections

Pierpaolo Mastrolia

Amplitudes 2018 SLAC National Lab, 18.6.2018

based on: Foffa, PM, Sturani, Sturm, PRD95 (2017) 10, 104009

in collaboration with: - Foffa, Sturani, Sturm, Cristofoli, Torres-Bobadilla

Outline

- Effective Field Theory General Relativity Feynman Rules
- Post-Newtonian expansion
- Amplitudes @ 4PN O(G^5)
- Feynman Integrals in Dimensional Regularisation
 - Integration-by-parts identities
 - Search Anter Antegrals
 - Dimensional Recurrence Relations
 - Differential Equations
- Results
- Toward the Potential @ 5PN O(G^6)
- Conclusions/Outlook

Motivations

Describing the Two-body dynamics at high precision

Providing an independent calculation of the 4PN-O(G^5) Lagrangian

Providing a new calculation of the 5PN-O(G^6) Lagrangian

Broadening the application range of Multi-loop Amplitudes/High-Energy Computational Tools

- >> A. Buonanno
- >> C. Cheung
- >> D. O'Connell
- >> S. Caron-Huot

Length scales in a Binary System

$$r_{\star} << r << \lambda_{GW}$$

Conservative system :: GW emission

$$G_N \frac{m}{r} \sim v^2 << 1$$
 expansion parameter

Effective Field Theory

Goldberger, Ross, Rothstein

$$\begin{aligned} & \textbf{Einstein-Hilbert} \\ & S_{tol}[x, h] = S_g f_{al}[\underline{x}, \underline{B}_{m}[\underline{S}_{a}\underline{h}]] + S_m[x, h]} e^{iS_{c,j}} e^{iS_{eff}[x]} = \int \mathcal{D}[h] e^{iS_{tot}[x, h]} \\ & S_{m_a} \simeq S_{pp}^a = -m_a \int \sqrt{-g_{\mu\nu}} dx_a^{\alpha} dx_a^{\nu} = -m_a \int dt \sqrt{-g_{\mu\nu}} x_a^{\alpha} \dot{x}_a^{\nu} & a = \mathbf{1}_{c^2} \\ & S_g = \frac{1}{32\pi G} \int d^{(d+1)} x \sqrt{-g} \left[R - g_{\mu\nu} g^{\alpha\beta} g^{\gamma\delta} \Gamma_{\alpha\beta}^{\mu} \Gamma_{\gamma\delta}^{\nu} \right] \\ & g_{auge} f_{bing} tem \\ & S_{m_a} \simeq S_{pp}^a = -m_a \int \sqrt{-g_{\mu\nu}} dx_a^{\mu} dx_a^{\nu} = -m_a \int dt \sqrt{-g_{\mu\nu}} \dot{x}_a^{\mu} \dot{x}_a^{\nu}} & a = \mathbf{1}_{c^2} \\ & g_{g} = \frac{e^{2\gamma}}{32\pi G} \int \frac{1}{4} d^{(de} \sigma_{x}^{\nu} (\dot{\phi}_{ifg} f_{ifg}^{-1} f_{ifg}^{-1} d\phi_{ifg}^{-1} g_{ifg}^{-1} g_{ifg}^{-1} g_{ifg}^{-1} g_{ifg}^{-1} f_{ifg}^{-1} g_{ifg}^{-1} g_{ifg}^$$

Feynman Rules Propagators

Feynman Rı

P

Interactions

Newton Potential

Post-Newtonian expansion

n-th order correction

$$S_{eff}[x_1, x_2] \supset -i \int_{t_1, t_2} \left(\frac{-im_1 V_{\phi}(t_1)}{m_p} \right) \left(\frac{-im_2 V_{\phi}(t_2)}{m_p} \right) \langle \phi(t_1, x_1) \phi(t_2, x_2) \rangle$$
$$= \frac{32\pi G m_1 m_2}{8} \int_{t_1, t_2, k} \frac{1}{k^2 - \partial_{t_1} \partial_{t_2}} V_{\phi}(t_1) V_{\phi}(t_2) \mathrm{e}^{ik.(x_1(t_1) - x_2(t_2))} \delta(t_1 - t_2) \delta(t_1 - t_2)$$

4-PN (595 diagrams)

4-PN (595 diagrams)

courtesy of Foffa & Sturani

			A	X		A		
=							A	
	A			4	A			
								A
/						A		
-						A		
		A			A		 	

Amplitudes @ 4PN - O(G^5)

Foffa, Sturani, Sturm, & P.M.

50 Amplitudes @ 4-loops

n

From Amplitudes to Lagrangian

EFT-GR Diagrams *vs* **2-point QFT Diagrams**

 $T_1 = \{1, 2, 3, 4, 5, 6\}, T_2 = \{7, 8, 10, 11, 14, 16, 17, 20, 21, 25\}, T_3 = \{9, 12, 13, 22\}, T_4 = \{15, 18, 19, 23, 24\}$

Dimensionally Regulated Integrals

Graph Topology & Integrals

$$N = \#$$
 scalar products (of types $q_i \cdot p_j$ and $q_i \cdot q_j$) $N = \ell(e-1) + \frac{\ell(\ell+1)}{2}$

n = # reducible scalar products (expressed in terms of denominators);

m = # irreducible scalar products $= N - n :: S_i \quad (i = 1, ..., m)$

Graph Topology & Integrals

$$e = \# \text{ legs } :: p_i, \quad (i = 1, \dots, e);$$

$$\ell = \# \text{ loops } :: q_i \quad (i = 1, \dots, \ell);$$

$$n = \# \text{ denominators } :: D_i \quad (i = 1, \dots, n);$$

 $N=\texttt{\texttt{\#}}$ scalar products (of types $q_i\cdot p_j$ and $q_i\cdot q_j$)

$$N = \ell(e - 1) + \frac{\ell(\ell + 1)}{2}$$

n = # reducible scalar products (expressed in terms of denominators);

m = # irreducible scalar products $= N - n :: S_i \quad (i = 1, ..., m)$

Graph Topology & Integrals

$$e = \# \text{ legs } :: p_i, \quad (i = 1, ..., e);$$

 $\ell = \# \text{ loops } :: q_i \quad (i = 1, ..., \ell);$
 $n = \# \text{ denominators } :: D_i \quad (i = 1, ..., n),$

$$N = \#$$
 scalar products (of types $q_i \cdot p_j$ and $q_i \cdot q_j$) $N = \ell(e-1) + \frac{\ell(\ell+1)}{2}$

n = # reducible scalar products (expressed in terms of denominators);

$$m = \#$$
 irreducible scalar products $= N - n :: S_i \quad (i = 1, ..., m)$

Associated Integrals ::

$$F_{n,m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_1 \dots q_\ell} f_{n,m}(\mathbf{x}, \mathbf{y}) , \qquad \int_{q_1 \dots q_\ell} \equiv \int \frac{\mathrm{d}^d q_1}{(2\pi)^d} \cdots \frac{\mathrm{d}^d q_\ell}{(2\pi)^d}$$
$$f_{n,m}(\mathbf{x}, \mathbf{y}) = \frac{S_1^{y_1} \cdots S_m^{y_m}}{D_1^{x_1} \cdots D_n^{x_n}} \longleftarrow$$

Integration-by-parts Identities (IBPs)

Tkachov; Chetyrkin, Tkachov; Laporta;

$$\int_{q_1\dots q_\ell} \frac{\partial}{\partial q_i^{\mu}} \Big(v^{\mu} f_{n,m}(\mathbf{x}, \mathbf{y}) \Big) = 0 , \qquad v = q_1, \dots, q_\ell, \ p_1, \dots, p_{\ell-1}.$$

 $\forall (n,m), N_{\text{IBP}} = \# \text{ of IBP relations} = \ell(\ell + e - 1)$

Relations between integrals associated to the same topology (or subtopologies)

$$c_0 F_{n,m}^{[d]}(\mathbf{x}, \mathbf{y}) + \sum_{i,j} c_{i,j} F_{n,m}^{[d]}(\mathbf{x}_i, \mathbf{y}_j) = 0$$
,
 $\mathbf{x}_i = \{x_1, \dots, x_i \pm 1, \dots, x_n\}$

$$\mathbf{y_j} = \{y_1, \dots, y_j \pm 1, \dots, y_n\}$$

public codes :: AIR; Reduze2; FIRE; LiteRed;
private codes :: ... many authors ... Sturm ...

Master Integrals (MIs)

Independent set of integrals $M_i^{[d]}$,

$$M_i^{[d]} \equiv \int_{q_1...q_\ell} m_i(\bar{\mathbf{x}}, \bar{\mathbf{y}}) ,$$

with a definite set of powers $\bar{\mathbf{x}}, \bar{\mathbf{y}}$ such that

$$F_{n,m}^{[d]}(\mathbf{x}, \mathbf{y}) \stackrel{\text{IBP}}{=} \sum_{k} c_k M_k^{[d]}, \quad \forall (n, m)$$

They form a *basis* for the integrals of the corresponding topology.

Two special cases

Two types of integrals generated from the master integrands

• Polynomial insertion:

$$\int_{q_1\dots q_\ell} P(q_i \cdot p_j, q_i \cdot q_j) \ m_i(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = \sum_{n,m} \alpha_{n,m} \ F_{n,m}^{[d]}(\mathbf{x}, \mathbf{y}) \stackrel{\text{IBP}}{=} \sum_i c_i \ M_i^{[d]}$$

• External-leg derivatives:

$$p_i^{\mu} \frac{\partial}{\partial p_j^{\mu}} M_k^{[d]} = \int_{q_1 \dots q_\ell} p_i^{\mu} \frac{\partial}{\partial p_j^{\mu}} \ m_k(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = \sum_{n,m} \beta_{n,m} \ F_{n,m}^{[d]}(\mathbf{x}, \mathbf{y}) \stackrel{\text{IBP}}{=} \sum_i c_i \ M_i^{[d]}(\mathbf{x}, \mathbf{y}) \stackrel{\text{IBP}}{$$

Bern, Dixon, Kosower Tarasov; Baikov; Lee; Gluza, Kajda, Kosower

Gram determinant

$$P(q_i \cdot p_j, q_i \cdot q_j) = \mathbf{G}(q_i, p_j) = \begin{vmatrix} q_1^2 & \dots & (q_1 \cdot p_{e-1}) \\ \vdots & \ddots & \vdots \\ (p_{e-1} \cdot q_1) & \dots & p_{e-1}^2 \end{vmatrix}$$

Dimension-shifted integrals

$$F_{n,m}^{[d]}(\mathbf{x},\mathbf{y}) \equiv \int_{q_1...q_\ell} f_{n,m}(\mathbf{x},\mathbf{y})$$

$$\begin{array}{l} \mathbf{Gram \ determinant} \qquad P(q_i \cdot p_j, q_i \cdot q_j) = \mathbf{G}(q_i, p_j) = \left| \begin{array}{ccc} q_1^2 & \dots & (q_1 \cdot p_{e-1}) \\ \vdots & \ddots & \vdots \\ (p_{e-1} \cdot q_1) & \dots & p_{e-1}^2 \end{array} \right| \\ \mathbf{Dimension-shifted \ integrals} \\ F_{n,m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_1 \dots q_\ell} f_{n,m}(\mathbf{x}, \mathbf{y}) \qquad \Rightarrow \int_{q_1 \dots q_\ell} \mathbf{G} \ f_{n,m}(\mathbf{x}, \mathbf{y}) = \Omega(d, p_i) \ F_{n,m}^{[d+2]}(\mathbf{x}, \mathbf{y}) \end{array}$$

Bern, Dixon, Kosower Tarasov; Baikov; Lee; Gluza, Kajda, Kosower

$$\begin{array}{l} \mathbf{Gram \ determinant} \qquad P(q_i \cdot p_j, q_i \cdot q_j) = \mathbf{G}(q_i, p_j) = \begin{vmatrix} q_1^2 & \dots & (q_1 \cdot p_{e-1}) \\ \vdots & \ddots & \vdots \\ (p_{e-1} \cdot q_1) & \dots & p_{e-1}^2 \end{vmatrix} \\ \\ \mathbf{Dimension-shifted \ integrals} \\ \hline F_{n,m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_1 \dots q_\ell} f_{n,m}(\mathbf{x}, \mathbf{y}) \qquad \Rightarrow \int_{q_1 \dots q_\ell} \mathbf{G} \ f_{n,m}(\mathbf{x}, \mathbf{y}) = \Omega(d, p_i) \underbrace{F_{n,m}^{[d+2]}(\mathbf{x}, \mathbf{y})}_{n,m} \end{aligned}$$

Bern, Dixon, Kosower Tarasov; Baikov; Lee; Gluza, Kajda, Kosower

G-insertion generates shifted dim. integrals: d --> d+2

Bern, Dixon, Kosower Tarasov; Baikov; Lee; Gluza, Kajda, Kosower

Gram determinant

$$P(q_i \cdot p_j, q_i \cdot q_j) = \mathbf{G}(q_i, p_j) = \begin{vmatrix} q_1^2 & \dots & (q_1 \cdot p_{e-1}) \\ \vdots & \ddots & \vdots \\ (p_{e-1} \cdot q_1) & \dots & p_{e-1}^2 \end{vmatrix}$$

Dimension-shifted integrals

$$F_{n,m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_1 \dots q_\ell} f_{n,m}(\mathbf{x}, \mathbf{y}) \qquad \Rightarrow \int_{q_1 \dots q_\ell} \mathbf{G} \ f_{n,m}(\mathbf{x}, \mathbf{y}) = \Omega(d, p_i) \ F_{n,m}^{[d+2]}(\mathbf{x}, \mathbf{y})$$

In the case of Master integrals

$$M_k^{[d+2]} = \Omega(d, p_i)^{-1} \int_{q_1 \dots q_\ell} \mathbf{G} \ m_k(\mathbf{\bar{x}}, \mathbf{\bar{y}}) \stackrel{\text{IBP}}{=} \sum_i c_{k,i} \ M_i^{[d]}$$

Bern, Dixon, Kosower Tarasov; Baikov; Lee; Gluza, Kajda, Kosower

Gram determinant

$$P(q_i \cdot p_j, q_i \cdot q_j) = \mathbf{G}(q_i, p_j) = \begin{vmatrix} q_1^2 & \dots & (q_1 \cdot p_{e-1}) \\ \vdots & \ddots & \vdots \\ (p_{e-1} \cdot q_1) & \dots & p_{e-1}^2 \end{vmatrix}$$

Dimension-shifted integrals

$$F_{n,m}^{[d]}(\mathbf{x}, \mathbf{y}) \equiv \int_{q_1 \dots q_\ell} f_{n,m}(\mathbf{x}, \mathbf{y}) \qquad \Rightarrow \int_{q_1 \dots q_\ell} \mathbf{G} \ f_{n,m}(\mathbf{x}, \mathbf{y}) = \Omega(d, p_i) \ F_{n,m}^{[d+2]}(\mathbf{x}, \mathbf{y})$$

In the case of Master integrals

$$M_{k}^{[d+2]} = \Omega(d, p_{i})^{-1} \int_{q_{1}...q_{\ell}} \mathbf{G} \ m_{k}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) \stackrel{\text{IBP}}{=} \sum_{i} c_{k,i} \ M_{i}^{[d]}$$
which can be seen as a **Dimensional recurrence relation**

In general, n MIs obey a system of Dimensional recurrence relations

$$\mathbf{M}^{[d]} \equiv \begin{pmatrix} M_1^{[d]} \\ \vdots \\ M_n^{[d]} \end{pmatrix} \qquad \qquad \mathbf{M}^{[d+2]} = \mathbb{C}(d) \ \mathbf{M}^{[d]}$$

Differential Equations for MIs

 $p^{2}\frac{\partial}{\partial p^{2}}\left\{p-p\right\} = \frac{1}{2}p_{\mu}\frac{\partial}{\partial p_{\mu}}\left\{p-p\right\}$

Bern, Dixon, Kosower Kotikov; Remiddi; Gehrmann, Remiddi Argeri, Bonciani, Ferroglia, Remiddi, **P.M**.

Henn; Henn, Smirnov; Lee; Papadopoulos; Argeri, diVita, Mirabella, Schlenk, Schubert, Tancredi, **P.M**. diVita, Schubert, Yundin, **P.M**. Zeng Primo, Tancredi

$$P^{2}\frac{\partial}{\partial P^{2}}\left\{ \begin{array}{c} p_{1}\\ p_{2} \end{array} \right\} = \left[A\left(p_{1,\mu}\frac{\partial}{\partial p_{1,\mu}} + p_{2,\mu}\frac{\partial}{\partial p_{2,\mu}} \right) + B\left(p_{1,\mu}\frac{\partial}{\partial p_{2,\mu}} + p_{2,\mu}\frac{\partial}{\partial p_{1,\mu}} \right) \right] \left\{ \begin{array}{c} p_{1}\\ p_{2} \end{array} \right\}$$

$$P = p_{1} + p_{2},$$

. . .

$$P^{2}\frac{\partial}{\partial P^{2}}\left\{ \begin{array}{c} p_{1} \\ p_{2} \end{array} \right\} = \left[C\left(p_{1,\mu}\frac{\partial}{\partial p_{1,\mu}} - p_{3,\mu}\frac{\partial}{\partial p_{3,\mu}} \right) + Dp_{2,\mu}\frac{\partial}{\partial p_{2,\mu}} + E(p_{1,\mu} + p_{3,\mu})\left(\frac{\partial}{\partial p_{3,\mu}} - \frac{\partial}{\partial p_{1,\mu}} + \frac{\partial}{\partial p_{2,\mu}} \right) \right] \left\{ \begin{array}{c} p_{1} \\ p_{2} \end{array} \right\}$$

In general, n MIs obey a system of 1st ODE

$$\partial_z \mathbf{M}^{[d]} = \mathbb{A}(d, z) \ \mathbf{M}^{[d]}$$

back to EFT-GR @ 4PN - O(G^5)

7 Master Integrals

IBP Reduction (i. *in-house* code + ii. Reduze2)

50 EFT Integrals ==> 29 Topologies ==> 7 MIs

7 Master Integrals

easy MIs

 $\overbrace{\mathcal{M}_{0,1}}^{\mathbf{M}} = (4\pi)^{-2d} s^{2d-5} \frac{\Gamma(5-2d)\Gamma(\frac{d}{2}-1)^5}{\Gamma(\frac{5}{2}d-5)} + \overbrace{\mathcal{M}_{1,1}}^{\mathbf{M}} = (4\pi)^{-2d} s^{2d-6} \frac{\Gamma(4-\frac{3}{2}d)\Gamma(2-\frac{d}{2})\Gamma(\frac{d}{2}-1)^6}{\Gamma(d-2)\Gamma(2d-4)}$

$$= -(4\pi)^{-2d}s^{2d-6}\frac{\Gamma(3-d)^2\Gamma(\frac{d}{2}-1)^6}{\Gamma(\frac{3}{2}d-3)^2} - \frac{\Gamma(3-d)^2\Gamma(\frac{d}{2}-1)^6}{b} - \frac{\Gamma(3-d)^2\Gamma(\frac{d}{2}-1)^6$$

$$\mathcal{M}_{1,3} = (4\pi)^{-2d} s^{2d-6} \frac{\Gamma(6-2d)\Gamma(3-d)\Gamma(2-\frac{d}{2})\Gamma(\frac{d}{2}-1)^6 \Gamma(2d-5)}{\Gamma(5-\frac{3}{2}d)\Gamma(d-2)\Gamma(\frac{3}{2}d-3)\Gamma(\frac{5}{2}d-6)}$$

$$\mathbf{\mathcal{M}}_{1,4} = (4\pi)^{-2d} s^{2d-6} \frac{\Gamma(6-2d)\Gamma(2-\frac{d}{2})^2 \Gamma(\frac{d}{2}-1)^6 \Gamma(\frac{3}{2}d-4)}{\Gamma(4-d)\Gamma(d-2)^2 \Gamma(\frac{5}{2}d-6)}$$

 $M_{2,2}$ drops out in the d --> 3 limit

 $M_{2,2}$ drops out in the d --> 3 limit

M3,6 non-trivial

Numerical Solution of Dim. Rec. Rel. SUMMERTIME Lee, Mingulov

 $\mathcal{M}_{3,6} = s^{2\varepsilon-2} \begin{bmatrix} 0.00002005074659118034216631402981859119949575742549538723187/\varepsilon^{2} \\ -0.00009840138812460833249783740685543350373855084153798514138/\varepsilon \\ +0.00008751790270929812451430800595930715306389454769730505664 \\ +0.00083640896480242565453996588706281367341758130837556548495\varepsilon \\ +\mathcal{O}(\varepsilon^{2}) \end{bmatrix}$

Experimental Mathematics for M3,6

Numerical Reconstruction

from SUMMERTIME

ln[1]:= nM36 = (

0.00002005074659118034216631402981859119949575742549538723187 / ϵ^2 -0.00009840138812460833249783740685543350373855084153798514138 / ϵ + 0.00008751790270929812451430800595930715306389454769730505664 + 0.00083640896480242565453996588706281367341758130837556548495 * e $+\epsilon^{2} + \text{Help}[\epsilon, 2]$); $\ln[2]:= pref = (4 * Pi)^{(-4 - 2 * \epsilon)} * Exp[2 * \epsilon * EulerGamma]$ Out[2]= $e^{2\gamma\epsilon} (4\pi)^{-2\epsilon-4}$ $\ln[3]:= npref = N[Series[pref, \{\epsilon, 0, 2\}], 50] // Chop$ Out[3]= 0.000040101493182360684332628059637182398991514850990774 - $0.00015670128306685598066304675407368460848558683208520 \epsilon +$ $0.00030616431167705224971803922217880567378514178260532\epsilon^{2} + O(\epsilon^{3})$ In[4]:= nBexp = nM36 / npref Out[4]= ϵ^2 ϵ $3.58876648328794339088189620833849370269526252470 + O(\epsilon^{1})$

50 digits

test = N[Coefficient[nBexp, ϵ , 0], 50]

-3 58876648328794339088189620833849370269526252470

Experimental Mathematics for M3,6

Numerical Reconstruction

from SUMMERTIME

ln[1]:= nM36 = (

-3 58876648328794339088189620833849370269526252470

Numerical Solution of Dim. Rec. Rel. SUMMERTIME Lee, Mingulov

 $\mathcal{M}_{3,6} = s^{2\varepsilon-2} \begin{bmatrix} 0.00002005074659118034216631402981859119949575742549538723187/\varepsilon^{2} \\ -0.00009840138812460833249783740685543350373855084153798514138/\varepsilon \\ +0.00008751790270929812451430800595930715306389454769730505664 \\ +0.00083640896480242565453996588706281367341758130837556548495\varepsilon \\ +\mathcal{O}(\varepsilon^{2}) \end{bmatrix}$

Analytic ansatz :: experimental mathematics ::

$$= s^{2\varepsilon-2}(4\pi)^{-4-2\varepsilon}e^{2\varepsilon\gamma_E}\frac{1}{2}\left[\frac{1}{\varepsilon^2} - \frac{1}{\varepsilon} - 8 + \frac{\pi^2}{12} - \varepsilon\left(18 - \pi^2\left(\frac{13}{4} - 2\log 2\right) - \frac{77}{3}\zeta_3\right) + \mathcal{O}\left(\varepsilon^2\right)\right] \checkmark$$

confirmed by Damour, Jaranowski (analytical)

SUMMERTIME Lee, Mingulov

 $\mathcal{M}_{3,6} = s^{2\varepsilon-2} \begin{bmatrix} 0.00002005074659118034216631402981859119949575742549538723187/\varepsilon^{2} \\ -0.00009840138812460833249783740685543350373855084153798514138/\varepsilon \\ +0.0008751790270929812451430800595930715306389454769730505664 \\ +0.00083640896480242565453996588706281367341758130837556548495\varepsilon \\ +\mathcal{O}(\varepsilon^{2}) \end{bmatrix}$

Sevent Analytic ansatz :: experimental mathematics ::

$$= s^{2\varepsilon-2}(4\pi)^{-4-2\varepsilon}e^{2\varepsilon\gamma_E}\frac{1}{2}\left[\frac{1}{\varepsilon^2} - \frac{1}{\varepsilon} - 8 + \frac{\pi^2}{12} - \varepsilon\left(18 - \pi^2\left(\frac{13}{4} - 2\log 2\right) - \frac{77}{3}\zeta_3\right) + \mathcal{O}\left(\varepsilon^2\right)\right] \bowtie$$
confirmed by
Damour, Jaranowski (analytical)

important impact

Section 1 Individual terms

Foffa, Sturani, Sturm, & P.M.

Damour, Jaranowski

$$0 = \mathcal{L}_9 = \mathcal{L}_{12} = \mathcal{L}_{13} = \mathcal{L}_{22} = \mathcal{L}_{26} = \mathcal{L}_{27} = \mathcal{L}_{31} = \mathcal{L}_{36} = \mathcal{L}_{46} = \mathcal{L}_{47},$$

$$\frac{1}{2}\frac{G_N^5 m_1^3 m_2^3}{r^5} = \mathcal{L}_1 = \mathcal{L}_3 = 4\mathcal{L}_5 = 3\mathcal{L}_{14} = \frac{\mathcal{L}_{19}}{8} = \frac{3\mathcal{L}_{20}}{2} = \frac{3\mathcal{L}_{21}}{4} = \frac{\mathcal{L}_{23}}{4} = \frac{\mathcal{L}_{24}}{4} = \frac{3\mathcal{L}_{25}}{2},$$
$$\frac{1}{2}\frac{G_N^5 m_1^4 m_2^2}{r^5} = \mathcal{L}_2 = 3\mathcal{L}_4 = \frac{3\mathcal{L}_8}{2} = \frac{3\mathcal{L}_{10}}{2} = \frac{3\mathcal{L}_{11}}{2} = \frac{\mathcal{L}_{15}}{4} = \frac{3\mathcal{L}_{16}}{4} = \frac{3\mathcal{L}_{17}}{4} = \frac{\mathcal{L}_{18}}{4},$$
$$\frac{1}{120}\frac{G_N^5 m_1^5 m_2}{r^5} = \mathcal{L}_6 = \frac{\mathcal{L}_7}{20} = \frac{3\mathcal{L}_{30}}{20} = -\frac{3\mathcal{L}_{35}}{56} = \frac{\mathcal{L}_{39}}{24} = \frac{\mathcal{L}_{45}}{12},$$

$$\mathcal{L}_{28} = \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[\frac{428}{75} + \frac{4}{15} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{29} = \frac{G_N^5 m_1^5 m_2^2}{r^5} \left[-\frac{91}{450} + \frac{1}{15} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{33} = \frac{G_N^5 m_1^5 m_2^2}{r^5} \left[\frac{13}{5} - \frac{2}{3} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{33} = \frac{G_N^5 m_1^5 m_2^2}{r^5} \left[\frac{147}{25} + \frac{8}{15} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{40} = \frac{G_N^5 m_1^5 m_2^2}{r^5} \left[\frac{49}{18} + \frac{1}{3} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{42} = -\frac{G_N^5 m_1^5 m_2^2}{r^5} \left[\frac{53}{150} + \frac{2}{15} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{44} = -\frac{G_N^5 m_1^5 m_2^2}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{57}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N^5 m_1^5 m_2^5}{r^5} \left[\frac{57}{75} + \frac{8}{5} \mathcal{P} \right], \qquad \qquad \mathcal{L}_{49} = \frac{G_N$$

$$\begin{aligned} \mathcal{L}_{29} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left[-\frac{409}{450} + \frac{1}{5} \mathcal{P} \right] ,\\ \mathcal{L}_{33} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left(16 - \pi^2 \right) ,\\ \mathcal{L}_{37} &= -\frac{G_N^5 m_1^4 m_2^2}{r^5} \left[17 + 2 \mathcal{P} \right] ,\\ \mathcal{L}_{40} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[-\frac{39}{25} + \frac{4}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{42} &= -\frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{97}{225} + \frac{1}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{44} &= -\frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{37}{75} + \frac{2}{5} \mathcal{P} \right] ,\\ \mathcal{L}_{49} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left(32 - 3\pi^2 \right) ,\end{aligned}$$

$$\mathcal{L}_{50} = \frac{G_N^5 m_1^3 m_2^3}{r^5} \left(4\pi^2 - \frac{124}{3} \right)$$

$$\mathcal{P} \equiv \frac{1}{\varepsilon} - 5\log\frac{r}{L_0}$$

 $L = \sqrt{4\pi \mathrm{e}^{\gamma_E}} L_0$

 $\Lambda^{-2} \equiv 32\pi G_N L^{d-3}$

Section 1 Individual terms

Foffa, Sturani, Sturm, & P.M.

Damour, Jaranowski

$$0 = \mathcal{L}_9 = \mathcal{L}_{12} = \mathcal{L}_{13} = \mathcal{L}_{22} = \mathcal{L}_{26} = \mathcal{L}_{27} = \mathcal{L}_{31} = \mathcal{L}_{36} = \mathcal{L}_{46} = \mathcal{L}_{47},$$

$$\frac{1}{2}\frac{G_N^5 m_1^3 m_2^3}{r^5} = \mathcal{L}_1 = \mathcal{L}_3 = 4\mathcal{L}_5 = 3\mathcal{L}_{14} = \frac{\mathcal{L}_{19}}{8} = \frac{3\mathcal{L}_{20}}{2} = \frac{3\mathcal{L}_{21}}{4} = \frac{\mathcal{L}_{23}}{4} = \frac{\mathcal{L}_{24}}{4} = \frac{3\mathcal{L}_{25}}{2},$$

$$\frac{1}{2}\frac{G_N^5 m_1^4 m_2^2}{r^5} = \mathcal{L}_2 = 3\mathcal{L}_4 = \frac{3\mathcal{L}_8}{2} = \frac{3\mathcal{L}_{10}}{2} = \frac{3\mathcal{L}_{11}}{2} = \frac{\mathcal{L}_{15}}{4} = \frac{3\mathcal{L}_{16}}{4} = \frac{3\mathcal{L}_{17}}{4} = \frac{\mathcal{L}_{18}}{4},$$

$$\frac{1}{120}\frac{G_N^5 m_1^5 m_2}{r^5} = \mathcal{L}_6 = \frac{\mathcal{L}_7}{20} = \frac{3\mathcal{L}_{30}}{20} = -\frac{3\mathcal{L}_{35}}{56} = \frac{\mathcal{L}_{39}}{24} = \frac{\mathcal{L}_{45}}{12},$$

$$\begin{aligned} \mathcal{L}_{28} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[\frac{428}{75} + \frac{4}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{32} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left[-\frac{91}{450} + \frac{1}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{34} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[\frac{13}{5} - \frac{2}{3} \mathcal{P} \right] ,\\ \mathcal{L}_{38} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[\frac{147}{25} + \frac{8}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{41} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{49}{18} + \frac{1}{3} \mathcal{P} \right] ,\\ \mathcal{L}_{43} &= -\frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{53}{150} + \frac{2}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{48} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right] ,\end{aligned}$$

$$\begin{aligned} \mathcal{L}_{29} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left[-\frac{409}{450} + \frac{1}{5} \mathcal{P} \right], \\ \mathcal{L}_{33} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left(16 - \pi^2 \right) , \\ \mathcal{L}_{37} &= -\frac{G_N^5 m_1^4 m_2^2}{r^5} \left[17 + 2\mathcal{P} \right] , \\ \mathcal{L}_{40} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[-\frac{39}{25} + \frac{4}{15} \mathcal{P} \right] , \\ \mathcal{L}_{42} &= -\frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{97}{225} + \frac{1}{15} \mathcal{P} \right] , \\ \mathcal{L}_{44} &= -\frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{37}{75} + \frac{2}{5} \mathcal{P} \right] , \\ \mathcal{L}_{49} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left(32 - 3\pi^2 \right) , \end{aligned}$$

diverge @ d=3

 $\mathcal{L}_{50} = \frac{G_N^5 m_1^3 m_2^3}{r^5} \left(4\pi^2 - \frac{124}{3} \right)$

$$\mathcal{P} \equiv \frac{1}{\varepsilon} - 5 \log \frac{r}{L_0}$$

 $L = \sqrt{4\pi e^{\gamma_E}} L_0$
 $^{\Lambda-2} \equiv 32\pi G_N L^{d-3}$

Section 1 Individual terms

Foffa, Sturani, Sturm, & P.M.

Damour, Jaranowski

$$\begin{split} 0 &= \mathcal{L}_9 = \mathcal{L}_{12} = \mathcal{L}_{13} = \mathcal{L}_{22} = \mathcal{L}_{26} = \mathcal{L}_{27} = \mathcal{L}_{31} = \mathcal{L}_{36} = \mathcal{L}_{46} = \mathcal{L}_{47} \,, \\ \frac{1}{2} \frac{G_N^5 m_1^3 m_2^3}{r^5} &= \mathcal{L}_1 = \mathcal{L}_3 = 4\mathcal{L}_5 = 3\mathcal{L}_{14} = \frac{\mathcal{L}_{19}}{8} = \frac{3\mathcal{L}_{20}}{2} = \frac{3\mathcal{L}_{21}}{4} = \frac{\mathcal{L}_{23}}{4} = \frac{\mathcal{L}_{24}}{4} = \frac{3\mathcal{L}_{25}}{2} \,, \\ \frac{1}{2} \frac{G_N^5 m_1^4 m_2^2}{r^5} = \mathcal{L}_2 = 3\mathcal{L}_4 = \frac{3\mathcal{L}_8}{2} = \frac{3\mathcal{L}_{10}}{2} = \frac{3\mathcal{L}_{11}}{2} = \frac{\mathcal{L}_{15}}{4} = \frac{3\mathcal{L}_{16}}{4} = \frac{3\mathcal{L}_{17}}{4} = \frac{\mathcal{L}_{18}}{4} \,, \\ \frac{1}{120} \frac{G_N^5 m_1^5 m_2}{r^5} = \mathcal{L}_6 = \frac{\mathcal{L}_7}{20} = \frac{3\mathcal{L}_{30}}{20} = -\frac{3\mathcal{L}_{35}}{56} = \frac{\mathcal{L}_{39}}{24} = \frac{\mathcal{L}_{45}}{12} \,, \end{split}$$

$$\begin{aligned} \mathcal{L}_{28} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[\frac{428}{75} + \frac{4}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{32} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left[-\frac{91}{450} + \frac{1}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{34} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[\frac{13}{5} - \frac{2}{3} \mathcal{P} \right] ,\\ \mathcal{L}_{38} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[\frac{147}{25} + \frac{8}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{41} &= \frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{49}{18} + \frac{1}{3} \mathcal{P} \right] ,\\ \mathcal{L}_{43} &= -\frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{53}{150} + \frac{2}{15} \mathcal{P} \right] ,\\ \mathcal{L}_{48} &= \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[\frac{578}{75} + \frac{8}{5} \mathcal{P} \right] ,\end{aligned}$$

$$\mathcal{L}_{29} = \frac{G_N^5 m_1^3 m_2^3}{r^5} \left[-\frac{409}{450} + \frac{1}{5} \mathcal{P} \right],$$

$$\mathcal{L}_{33} = \frac{G_N^5 m_1^3 m_2^3}{r^5} (16 - \pi^2) ,$$

$$\mathcal{L}_{37} = -\frac{G_N^5 m_1^4 m_2^2}{r^5} [17 + 2\mathcal{P}] ,$$

$$\mathcal{L}_{40} = \frac{G_N^5 m_1^4 m_2^2}{r^5} \left[-\frac{39}{25} + \frac{4}{15} \mathcal{P} \right] ,$$

$$\mathcal{L}_{42} = -\frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{97}{225} + \frac{1}{15} \mathcal{P} \right] ,$$

$$\mathcal{L}_{44} = -\frac{G_N^5 m_1^3 m_2^3}{r^5} \left[\frac{37}{75} + \frac{2}{5} \mathcal{P} \right] ,$$

$$\mathcal{L}_{49} = \frac{G_N^5 m_1^3 m_2^3}{r^5} (32 - 3\pi^2) ,$$
finite @ d=3

$$\mathcal{L}_{50} = \frac{G_N^5 m_1^3 m_2^3}{r^5} \left(4\pi^2 - \frac{124}{3} \right)$$

$$\mathcal{P} \equiv \frac{1}{\varepsilon} - 5\log\frac{r}{L_0}$$

$$L = \sqrt{4\pi \mathrm{e}^{\gamma_E}} L_0$$

Foffa, Sturani, Sturm, & P.M.

•

Damour, Jaranowski

Fotal contribution

$$\sum_{a=1}^{50} \mathcal{L}_a = \frac{3}{8} \frac{G_N^5 m_1^5 m_2}{r^5} + \frac{31}{3} \frac{G_N^5 m_1^4 m_2^2}{r^5} + \frac{141}{8} \frac{G_N^5 m_1^3 m_2^3}{r^5}$$

Towards 5PN-O(G^6)

Vacuum Diagrams for Newton Potential

Sewton Potential

Amplitudes

static sources <==> non propagating <==> pinching lines

PN correction :: explicit calculation

$$= \int d^d p \ e^{ip \cdot r} \int d^d k \ \frac{1}{(p-k)^2 \ k^2}$$

$$= \int d^d p \; \frac{e^{i(p-k)\cdot r}}{(p-k)^2} \int d^d k \; \frac{e^{ik\cdot r}}{k^2}$$

$$= \int d^d p \; \frac{e^{ip \cdot r}}{p^2} \int d^d k \; \frac{e^{ik \cdot r}}{k^2}$$

Foffa, Sturani, Sturm, Torres-Bobadilla & **P.M.** (coming soon)

Static 1PN = Newton²

PN correction :: diagrammatic

 $\int d^d p \ e^{ip \cdot r} \qquad = \int d^d p \ e^{ip \cdot r} \ - -$

=

Foffa, Sturani, Sturm, Torres-Bobadilla & **P.M.** (coming soon)

₽ 1PN correction

Foffa, Sturani, Sturm, Torres-Bobadilla & **P.M.** (coming soon)

static sources <==> non propagating <==> pinching lines

♀ (2j+1)PN correction

Foffa, Sturani, Sturm, Torres-Bobadilla & **P.M.** (coming soon)

♀(2j+1)PN correction

Foffa, Sturani, Sturm, Torres-Bobadilla & **P.M.** (coming soon)

static sources <==> non propagating <==> pinching lines

(2j+1)PN correction

Foffa, Sturani, Sturm, Torres-Bobadilla & **P.M.** (coming soon)

static (2j+1)-PN diagrams as product of (2j)-PN diagrams and the Newtonian term

Amplitudes @ 4PN - O(G^5)

Foffa, Sturani, Sturm, & P.M.

§50 Amplitudes @ 4 loop: 25 of them...

16

$\mathsf{PN} - \mathsf{O}(\mathsf{G}^{6})$

ve factorisable potential

Foffa, Sturani, Sturm, Torres-Bobadilla & **P.M.** (coming soon)

'^N O(G^5) diagram + 1 Phi > < insertion

$\mathsf{PN} - \mathsf{O}(\mathsf{G^{6}})$

ve factorisable potential

Foffa, Sturani, Sturm, Torres-Bobadilla & **P.M.** (coming soon)

~ O(G^5) diagram + 1 Phi > insertion

 $\sim 10^{-10}$ M $_{\odot}$ $\sim 10^{-10}$ M $_{\odot}$ $\sim 10^{-10}$ M $_{\odot}$ $\sim 10^{-10}$ M $_{\odot}$ $\sim 10^{-10}$ M $_{\odot}$

Summary ...

Multi-Loop Diagrammatic Techniques Powerful tools for General Relativity BPs + Difference & Differential Equations

Application 1 :: Coalescent Binaries Dynamics @ 4PN-O(G^5)
 Basic idea @ Amplitudes :: EFT-GR Diagrams ~ 2-point QFT Diagrams
 4-loop EFT-GR Diagrams mapped into 4-loop QFT Problem

Application 2 :: Coalescent Binaries Dynamics @ 5PN-O(G^6)
 Basic idea @ Potential :: EFT-GR Diagrams ~ Vacuum Diagrams + factorisation
 5-loop EFT-GR Diagrams mapped into 5-loop factorised Vacuum Diagrams

... and Outlook

- How about more-legs (diagrams with radiation)?
- GR & GW-physics EFT vs HEP & Amplitudes
- Unitarity-based methods, Multi-loop Integrals and Integrands decomposition, Amplitudes-inspired dualities, BCJ/Double-copy
- ₩ IBPs for Fourier Transform Integrals
- Post-Minkowskian approximation: v-expansion vs complete-v dependence

Status of PN Corrections Porto

no spin

spin

Damour, Jaranowski Foffa, Sturani, Sturm, & PM Bernard, Blanchet, Bohe, Faye, Marsat Damour, Jaranowski, Schaefer Jaranowski, Schaefer Le Tiec, Blanchet, Whiting Jaranowski, Schaefer Foffa, Sturani Blanchet, Damour '88

De Andrade, Esposito-Farese, Itho, Futamase **3PN** Blanchet, Faye

NNLO

Steinhoff Levi

NLO

Steinhoff, Hergt, Schaefer Damour, Jaranowski, Schaefer Buonanno, Faye, Blanchet Porto, Rothstein

Barker, O'Connel '75

OPN

4PN

Damour, Jaranowski, Schaefer

Damour, Schaefer '85 2PN Damour, Deruelle '81-'83

1PN **Finstein-Infeld-Hoffman 1938**

Newton 1687

Binary coalescence: a tale made of three stories

Inspiral phase post-Newtonian approximation: v/c

Merger: fully Ring-down: non-perturbative: Nu- Perturbed merical Relativity Kerr Black Hole

Spin can induce precession and change the amplitude (and phase) of the waveform due to $\cos(\theta_{LN})$ factors in $h_{+,\times}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Pedra Azul - Sept 29

18 / 44

Riccardo Sturani (IFT-UNESP/ICTP-SAIFR)

Was it necessary to build a detector? The Hulse-Taylor binary pulsar

GW Detection

GW's first observed in the NS-NS binary system PSR B1913+16 Observation of orbital parameters $(a_p \sin \iota, e, P, \dot{\theta}, \gamma, \dot{P})$

determination of m_p , m_c (1PN physics, GR)

Energy dissipation in GW's $\rightarrow \dot{P}^{(GR)}(m_p, m_c, P, e)$ vs. $\dot{P}^{(obs)}$

$$\frac{1}{2\pi}\phi = \int_0^T \frac{1}{P(t)} dt \simeq \frac{T}{P_0} - \frac{\dot{P_0}}{P_0^2} \frac{T^2}{2}$$

GW Detection

• Test of the 1PN conservative

$$E(v) = -\frac{1}{2}\nu M v^2 \left(1 + \#(\nu)v^2 + \#(\nu)v^4 + \ldots\right)$$

• leading order dissipative dynamics

$$F(v) \equiv -\frac{dE}{dt} = \frac{32}{5G_N} v^{10} \left(1 + \#(\nu)v^2 + \#(\nu)v^3 + \ldots\right)$$

Modeling the inspiral

Inspiral $h = A\cos(\phi(t))$ $\frac{\dot{A}}{A} \ll \dot{\phi}$ Virial relation:

$$v \equiv (G_N M \pi f_{GW})^{1/3}$$
 $\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$

E(v)(P(v)) known up to 3(3.5)PN

Pedra Azul

$$\frac{1}{2\pi}\phi(T) = \frac{1}{2\pi}\int^{T}\omega(t)dt = -\int^{\nu(T)}\frac{\omega(\nu)dE/d\nu}{P(\nu)}d\nu \\ \sim \int (1+\#(\nu)\nu^{2}+\ldots+\#(\nu)\nu^{6}+\ldots)\frac{d\nu}{\nu^{6}}$$

Post-Newtonian Coefficients

GW Detection

Weisberg and Taylor (2004)

iccardo Sturani (IFT-UNESP/ICTP-SAIFR)

10 pulsars in NS-NS, still \sim 100Myr for coalescence,

Riccardo Sturani (IFT-UNESP/ICTP-SAIFR)

t 29 41 / 44 Riccardo Sturani (IFT-UNESP/ICTP-SAIFR)

GW Detection

Pedra Azul - Sept 29 42 / 4

3

500