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Positive geometry — emergent locality and unitarity

Essentially one is asking:

What is the question for which these amplitudes are the answer to?



This is not a first, in many case positivity IS unitarity

o Positivity in the OPE:
(#(1)8(2)$(3)¢ Zp,KA 4(2,2), pi>0
o Optical theorem:

Dis[My(s,0)] = E2,0 > 0



This is not a first. For a long time positivity IS unitarity

o Positivity in the OPE:
(3(1)5(2)$(3)H(4)) Zp,KA ¢(2,2), p; >0

via crossing

Aq

e Optical theorem:
Dis[M,(s,0)] = E2,0 >0

via the eyes of higher-dimension operators a(9¢)*

hd a




We should expect more: these are special functions, constrained by factorization and
symmetries

e : CFTs:
(#(1)9(2)8 ZP/QA,,I (z,2), pi>0

Symmetries constrain

(Z2(1 — 2)92 — 2292)gn,c = A(A — 1)gae

e QFTs:
Dis[My(s, )] = > _ piGy: (cos6)
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We now ask:

What is the question for which the space of consistent QFT/CFT are the answer to?

UV CFT

EFT L+ Z ¢,0;rrelevant
i

IR CFT
<@(x) P(x) P(x) P(x)>

What is the geometric property from which unitarity, locality and symmetries emerge as
a union.



The space of QFT from M,

At low energies, we only have photons and gravitons. Consider general QFT whose UV
completion is weakly coupled (in M),

H -> }%i j:]j > Zl:mji (surpressed)

s

M®(s,t) = {poles} + Z gk_l.’l,sk—iti
& K
7

Analytic +
Massless poles

Different QF Ts (standard model) leads to different {g; ;}

Why might the space be non-trivial?
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The space of QFT from M,
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Poles  Branch cuts

M®(s,t) = {poles} + ng_i’iskfiti
K



The space of QFT from M,

Why is the space non-trivial (set D = 4 G — P,)?
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so we have
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The space of QFT from M,

Why is the space non-trivial?

1
ng—qqukiqtq = Z (Z Pamz“ﬁzg) sk =at9

2
k.q kg \ a Ma
Organizing the higher dimension operators as
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The space of QFT from M,

Why is the space non-trivial?

’
K—q+q _ q K
D Ok qqs U= <Z Pa okt “k1/a> s 9t
k,q a
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Organizing the higher dimension operators as

m S w
© g0 G0 93,0
! 90,1 921
£ G1,2
& 90,3

Take k = 2 (dimension 8 operators)

—

g2 = € pilee Py >0
a

The coefficients must live in the convex hull of the vectors Ugye, i.e. the inside of a
polytope.



The space of QFT from M,

Flat out unitarity tells us Adams, Arkani-Hamed, Dubovsky, Nicolis and Rattazzi

&l
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. m e W w
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tt %1 91,1 G2
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90,3

{90,0,92,0,94,0,---} >0
Now we know that

Gk €O pilke 9y >0
a
and the above is simply due to
Py(1)>0—uf,>0

“the tip of an iceberg”



The space of CFT from (¢(1)¢(2)é(3)p(4))

Consider the a 1D four-point function:
((1)0(2)6(3)8(4)) = F(2)

F(z) = ZpACA(z), Ca(z) = Z22F1(A, A, 24, 2)
A

Expand the four-point function, around z = %

1 oo

F (f +y) => foy?
2
q=0

We consider the space

Crossing symmetry

2722 F(z) = (1 — 2) 2ReF(1—2) = F(2) = (1 fz)2A¢ F(1-2)

implies the four-point function lies in a subplane X



The space of CFT from (¢(1)¢(2)é(3)p(4))

The 1-D blocks also yield an infinite set of vectors
1 > q
Ca > +y)= ZCA,qy
q=0
Unitarity then requires that

fo a0

F= : € pa . pa >0
. A .



The space of CFT from (¢(1)¢(2)é(3)p(4))

fo a0
fy Ca 1
F= : € pa . pa >0
: A :
fL_+ CA,L—1

For a given CFT spectrum have the polytope P(A;) = >_;pa,Ca, and a crossing plane
X(Ag), and they must intersect. For example:

ca,

Bg=0, A=2, B0=0, B2,
2,225, Ay=3.1 £=25, Ay=3.1
A4=0.2 D4=0.5
ca,

E
Ca,
ca,
80=0, A=2,

8,225, Ay=3.1
£g=0.34




If Gk, for EFT and Ca, for GFT are just random vectors, our geometric problem
becomes hopeless rapidly:

Let’s say given n vectors i, to compute the region of the polytope we need to

o Determine which one of these s are vertices
o Amongst the vertices, determine all the set that constitute boundary facets

The complexity is ~ nd/2



But uk,, and Ca, are not random vectors!
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EFT

The Uy o, arrises from Taylor expand

]
P, (1
Zpa ea( + g) (S_ngr

Define
Po(1+Xx) = Vg qx?
q

The vector Vp = (Ve,0, Ve 1, Ve,2,- - - ) take the form

111111 1 1
01361015 21 28

003184 1% 105 189
000 5 35 70 210 525
35 315 1575 5775
0000 & & o mn
0000 0 0 % b
16 16

000 o0 &

000

Note that all v is positive! But there is more,

1
u—mg

det[\751 ng'”] >0, forly >4lo > -

All ordered minors are positive!

)



EFT

det[Vp, Vg, ---1 >0, forly > lp > ---

All ordered minors are positive!

Tells us that the convex hull of {V,} is a cyclic polytope

o All V, are vertices

¢ The co-dimension 1 boundaries are known. For v, = (v, - - -

geeven (i,i+1), (,i+1,/,j+1), (i,i+1,---

qEOdd (17’7’+1)7 (1’I7I+1/7/+1)7 (Ivl+17n)7

s Ve,q)

1)



EFT

But ¥, is not Ty ¢,

2t 1 1
M(s,t) = Pe, | 1+— ——t+ ——
(5:0= S »s ea< +m§) (S_m§+ u_mg)

U ¢ recieves are contributions from propagators, message from locality



EFThedron

Let’s consider s-channel pole only (large-N YM),

M(s,t) = —=> pa

locality

We find that locality and unitarity leads to two separate positive geometry!

1+S+<S>2+ (v +Vp 1tV of?
T\ 02,0 Vea 1t+Ve, 2

) unitarity



EFThedron

Let’s consider s-channel pole only (large-N YM),

M(s,t) = —Zpap (H )

s—m3

> i1+S+<S>2+ (v +Vgattve, 2t
8 Pamg m2 me 02,0 Veg,1 02,2

locality

We find that locality and unitarity leads to two separate positive geometry!

m e w w
© g0 G0 %o Gso
tt 90,1 91,1 921
2 9.2 91,2
I 90,3

90,2 a

. 92,0 .
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) unitarity



EFThedron

Let’s consider s-channel pole only (large-N YM),

Pga (1+%)
Ms. ) = Y pa———al

a locality

We find that locality and unitarity leads to two separate positive geometry!

m e w
g0 G0 %0 a0
tt 90,1 91,1 921
£ 9.2 91,2
I 90,3

. 92,0 Lo
G=| g1 | = Det[gz, Vi, Ve11] >0
90,2

1 s s \? »
= ZP&W 1+W+ W + - <V(avo+Vga'1t+Vgaygf
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) unitarity



EFThedron

Let’s consider s-channel pole only (large-N YM),

M(s,t) = —Zpap (Hﬂ)

s—m3

locality

We find that locality and unitarity leads to two separate notion of locality!

m e w s
g0 G0 G0 a0
t 90,1 91,1 921
2 G2 91,2
& 90,3

1
90,1 "173
g1 | € a| py >0
92,1 a 1
m§

The vector is in the convex hull of points on the half-moment curve!

(2, 8... 18, teR*

S pat 1+i+<i>2+ (Va0 Ve 1t+Ve 22
8 pam§ me me 02,01 Veg 1 04,2

> unitarity



EFThedron

(t,2,8... 1%, teR*t
Organizing the couplings for fixed t power into the Hankel matrix (g; = gk, i)

1 ogi- gpa

9 g g

K(g’) - 11 :2 : ZP
9p1 9p " Gapo

The constraint is the statement that

1 g - g g g g

2 3
Qi 93 nt g’n+1 . gé g‘r} e gi-f-:s

iceven: Det| = 2 >0, i €odd: Det ) :
9o 9ipy o G g Gis o 4



EFThedron

Indeed consider

M[=s]r[~1] B w2 ™o
Fli—sq o0~ T g TGS+ ges +
7r2
Det< T @ ) =0.33541 >0
I
s (17 w >| e T s (TR
r—s—1{] 1+s) 5707 6 8 90

71_2
Det< T 1te >—4.71364<0
T+¢G 5 —



EFThedron

Consider the EFT of a scalar coupled to gravitons Congkao Wen, Wei-Ming Chen, Y-t
7 ~
bﬁ o ( o1 s )
Q\w % =0 Mgl 50400 17297280 m?
_ (234114 (23 Jrazios__TRI=1 s,-1>
J

M (4+)ri2+ 3]

Let’s suppose we don’t know the constant piece. The positivity of the Hankel matrix
yields O(s%) > 0.0000190301

COE
s e

0000017

0.000016
0.000015

0.000014

0.000013

. 1 _
while g5lo; = 0.0000198413



EFThedron

We see that the constraint from unitarity, locality and Lorentz invariance forces the EFT
to live in a union of two positivie geometries

M(s ) = —Zpap (1+ )

s—m3

Y 1+i+<i 4 (Vewot Ve 1 t+ve, 28+ )
B 2 Pamg m§ m§ ta,07 Va1 ta2 unitarity

locality

(Conv[moment curvel) oz, (Conv(cyclic polytopel) pjtari,



The EFTHedron

There is a much cleaner way to state the positive geometry. Lets start with

Ika = Zpa m 2(15.4_1)2%5&,@ Ezck,eGE,q,
£

. . E{a.:ﬂa:Z} 2(J:+1) o .
where Cy , is given as Ma . In other words it is an k x oo matrix, whose
column vectors are points on a degree kK moment curve.

EFThedron gy q € Ck1Geq + Amplituhedron Y. =C, ;2!

This space can be conveniently defined through its boundaries (or walls). For fixed k,

q
consider an infinite set of walls Wr.

Wi = {0’01 11 :O}

k=2: W= (xii+l), k=3: Wr={xl,i,i+1), (xi,i+1,n)

They satisfy

k

D WiGe, >0,
q=0



The EFTHedron

We then find that the space is simply

Apr = ng,qwf = Z Chy (Z Gl,qu)
q £ q
is a point inside the convex hull of half moment curves

Aog,r Arr Ayr Asr
Apr>0, A >0, det| 204 ) 50 det| W 421 ) 5
0 = LI (AI,I Asp Aoy Az
Aor A Ag g Ayr Ao Asg
det ALI Azy] A3}[ 2 D, det AZ,I Ag,[ A411 2 0, - eet.e.
Asr Az Asr Asg Agr Ass



The EFTHedron
Thus the space of allowed EFT, is given by the EFThedron

MIK[A]] = 0

For Wr=10,0.1,---,0} ‘4e constraint says

1
q = Z‘Tk,q,a 2(k+1)’ Trga >0
a Ma

E=2: W= {xii+1), k=3: Wr=(xl,4,i+1), (%,i+1,n)

For
individual A

Z Uta,q
Gkq = Tha .1y 2(k+l)’
while for the whole Hankel matrix

Ve, q
Gk = Zpa 2D

Tkq > 0.

Py >0

the positivity of



The EFTHedron in the real world

Including the u-channel contribution:

2t 1
M(s, t) = — P, (1+—
(s,1) ;Pa ea< m§) (s_ms +

)
u—m3

1

2t 1
= M(z,t) = paPy, (1+—2) < -
a Mg 2

2
—z—-m3

Upon Taylor expansion we have

1 k_q q
Pa |~y Yhaskg | 2 1T
Z Z “[ 2(+1) q]

k—q€even,q a

where the new vectors are given by

k—q+1 -
wpg = 3 (7)&( qal Jagp g
at+b=q )

t 2
—f+z—mj

)



The EFTHedron in the real world

k—g+1 _
g = 3 (7)&( qa' Jagp “uy
a+b=g :

The new vectors are a k-dependent projection of ¥, to half-dimension subspace, one
might expect all structures are lost.

The geometry is richer

L A
9o G0 G0 a0
t 90,1 91,1 921
2 Jo2 G2
& 90,3

o For fixed mass-dimension, there is a critical spin above which it becomes cylic (all
ordered minors are positive)

e The boundaries are determined from the cylicity

(X,ii+1)>0for, i>5(X,4,3)>0, (X,3,5>0



The EFTHedron in the real world

k—g+1 _
Ugpg= 3 (*)“(qai,)"?b “ugp
at+b=q :

The new vectors are a k-dependent projection of ¥, to half-dimension subspace, one
might expect all structures are lost.

The geometry is richer

m e w s
g0 G0 G0 Gso
t 90,1 91,1 921
£ Jo2 G2
B 90,3

e The boundaries of the Minkowski sum is always given by that of the highest k

91,0 92,0 93,0 93,0
o ’ ' ' =0 '
[( Jo,1 )@( g1 >@( 92,1 )} ( 92,1 )

e The moment curve constraint is generalized to rescaled moment curve



The EFTHedron in the real world

Spinning polytopes:

The same structure is found for when the external states are massless with spins:
photons, gauge bosons, and gravitons.

e Lorentz-symmetry: In the form of fixing the residue basis to be Wigner
b,y 1y (0) = (€, 1y — hole=0 |, hy — hy). For (—h, h, h,—h) we simply
have
d* op.2n(0) = T (£ + 4h,0,—4h, cos 0)

o Unitarity: In the form of residue having positive coefficients

o Locality: In the form of
1
_ or/ds’ !
S—my s—¢g




The EFTHedron in the real world

Consider the configuration ( -2, +2, +2, -2) where we have
(123" | 3 gega't? (8)
i
The exchanged spin begins with spin-4

« (2%,t%): The space is one-dimensional, and the bound is simply

o (2%, 2212 t1): The critical spin is s, = 6, spin-4 is inside the hull, i.e. not a vertex. The boundaries
are:
(X,ii+1) > 0for, i>7,(X,65 >0, (X,57>0 (9)

Out[175]=
03




The CFTHedron

Is there a similar structure?

Indeed there is!

Ca(21) Cay(z1) -+ Can(#)
Cai(22) Cay(22) -+ Can(22)

Det : : : : >
Cay(z0) Caglzn) - Ca(20)

forzy <z < ---<zpand Ay < Ao < -+ < Ap

The convex hull of the block vectors is again a cyclic polytope!



The CFTHedron

This gives us the control over the relevant boundaries

fo a0
fi a1
F=| . [€Xr . pa >0
. A :
fr_1 Ca,L—1

For example with (f, f>) the relevant boundaries are

Wy = (1A,4,),
W, = (0014,),
Wi = (00A1Ay),
Wy = (1A,4,),
Ws = (0cAsAy) .

The resulting carved out space is




The CFTHedron

The boundaries of this plot is understandable in terms of walls

Az

0.5 10 1.5 2.0 25
C’1 Wl 7W4v
Cy: Wy=—Wy,
Cy: Wy =-—Ws
W= (a,b),

where (WF) =aFy +bF, =W - (Fy, F).

Each boundary correspond to a set of wall pointing in opposite directions



The CFTHedron

This can be simply understood as
(1 FA,'A,‘+1) > 0, <F1 A,OO> >0

Consider the result from projecting through 1,

x
* Crossing plane

where Ay — (F,1,A) =0



The CFTHedron

Going to higher dimensions gives further constraint! (f, £, 4) Exp, given A, = 0.3, in
the space of possible lowest first two operators (A4, Az) are given by:

12F

10

The allows us to “carve” out the space of consistent CFTs geometrically



Conclusions

The constraint of unitarity, locality and symmetries manifest itself as positive geometry
on the space of consistent QFTs. The “external” data ARE positive.

This is just preliminary!
* We need to understand the generalized moment curve for s—u EFThedron.
o Explore the space for mixed graviton photon scattering
o Proof of various conjectures (Weak gravity) for the land scape.
e Solving the 1D CFT geometry at higher dimensions (in external data)
o Extensions to CFT with D > 1



