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Positive geometry→ emergent locality and unitarity see Tomasz, Nima and Song’s talk

Essentially one is asking:

What is the question for which these amplitudes are the answer to?



This is not a first, in many case positivity IS unitarity

• Positivity in the OPE:

〈φ(1)φ(2)φ(3)φ(4)〉 =
∑

i

pi K∆i ,`i (z, z̄), pi > 0

• Optical theorem:

Dis[M4(s, 0)] = E2
cmσ > 0



This is not a first. For a long time positivity IS unitarity

• Positivity in the OPE:

〈φ(1)φ(2)φ(3)φ(4)〉 =
∑

i

pi K∆i ,`i (z, z̄), pi > 0

via crossing
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• Optical theorem:
Dis[M4(s, 0)] = E2

cmσ > 0

via the eyes of higher-dimension operators a(∂φ)4

a



We should expect more: these are special functions, constrained by factorization and
symmetries

• : CFTs:
〈φ(1)φ(2)φ(3)φ(4)〉 =

∑
i

pi g∆i ,`i (z, z̄), pi > 0

Symmetries constrain

(z2(1− z)∂2
z − z2∂z )g∆,` = ∆(∆− 1)g∆,`

• QFTs:
Dis[M4(s, t)] =

∑
i

pi Gα`i
(cos θ)
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12 · · · p
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12 Pµ1···µ`ν1···ν`pµ1

34 · · · p
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34 = Gα`
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2t
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)
Loops:
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We now ask:

What is the question for which the space of consistent QFT/CFT are the answer to?

UV CFT

IR CFT

EFT

i
i i Irrelevant

What is the geometric property from which unitarity, locality and symmetries emerge as
a union.



The space of QFT from M4

At low energies, we only have photons and gravitons. Consider general QFT whose UV
completion is weakly coupled (in Mpl ),

(surpressed)

Massless poles

Analytic +

M IR(s, t) = {poles}+
∑
k,i

gk−i,i sk−i t i

Different QFTs (standard model) leads to different {gi,j}

Why might the space be non-trivial?



The space of QFT from M4

Massless poles

Analytic +
Poles Branch cuts

M IR(s, t) = {poles}+
∑
k,i

gk−i,i sk−i t i



The space of QFT from M4

Why is the space non-trivial (set D = 4 Gα` → P`)?

Massless poles

Analytic +
Poles Branch cuts

M(s, t) = −
∑

a
paP`a

(
1+

2t
m2

a

)(
1

s−m2
a

+
1

u−m2
a

)

=
∑
k,q

∑
a

pa
1

m2k+2
a

vq
k,`a

sk−q tq

so we have ∑
k,q

gk−q,qsk−q tq =
∑
k,q

(∑
a

pa
1

m2k+2
a

uq
k,`a

)
sk−q tq



The space of QFT from M4

Why is the space non-trivial?

∑
k,q

gk−q,qsk−q tq =
∑
k,q

(∑
a

pa
1

m2k+2
a

uq
k,`a

)
sk−q tq

Organizing the higher dimension operators as

m0 1
m2

1
m4

1
m6 · · ·

t0 g0,0 g1,0 g2,0 g3,0 · · ·
t1 g0,1 g1,1 g2,1 · · ·
t2 g0,2 g1,2 · · ·
t3 g0,3 · · ·



The space of QFT from M4

Why is the space non-trivial?

∑
k,q

gk−q,qsk−q tq =
∑
k,q

(∑
a

pa
1

m2k+2
a

uq
k,`a

)
sk−q tq

Organizing the higher dimension operators as

m0 1
m2

1
m4

1
m6 · · ·

t0 g0,0 g1,0 g2,0 g3,0 · · ·
t1 g0,1 g1,1 g2,1 · · ·
t2 g0,2 g1,2 · · ·
t3 g0,3 · · ·

Take k = 2 (dimension 8 operators)

~g2 =

 g2,0
g1,1
g0,2

 ∈∑
a

p′`~u2,` p′` > 0

The coefficients must live in the convex hull of the vectors ~u2,`, i.e. the inside of a
polytope.



The space of QFT from M4
Flat out unitarity tells us Adams, Arkani-Hamed, Dubovsky, Nicolis and Rattazzi,

m0 1
m2

1
m4

1
m6 · · ·

t0 g0,0 g1,0 g2,0 g3,0 · · ·
t1 g0,1 g1,1 g2,1 · · ·
t2 g0,2 g1,2 · · ·
t3 g0,3 · · ·
{g0,0, g2,0, g4,0, · · · } > 0

Now we know that
~gk ∈

∑
a

p′`~uk,` p′` > 0

and the above is simply due to

P`(1) > 0→ u0
k,` > 0

“the tip of an iceberg”



The space of CFT from 〈φ(1)φ(2)φ(3)φ(4)〉

Consider the a 1D four-point function:

〈φ(1)φ(2)φ(3)φ(4)〉 ≡ F (z)

F(z) =
∑

∆

p∆C∆(z), C∆(z) = z∆
2F1(∆,∆, 2∆, z)

Expand the four-point function, around z = 1
2

F
(

1
2

+ y
)

=
∞∑

q=0

fqyq

We consider the space {fq}

Crossing symmetry

z−2∆φF (z) = (1− z)−2∆φF (1−z)→ F (z) =

(
z

1− z

)2∆φ

F (1−z)

implies the four-point function lies in a subplane X



The space of CFT from 〈φ(1)φ(2)φ(3)φ(4)〉

The 1-D blocks also yield an infinite set of vectors

C∆

(
1
2

+ y
)

=
∞∑

q=0

c∆,qyq

Unitarity then requires that

F =


f0
f1
...

fL−1

 ∈∑
∆

p∆


c∆,0
c∆,1

...
c∆,L−1

 p∆ > 0



The space of CFT from 〈φ(1)φ(2)φ(3)φ(4)〉

F =


f0
f1
...

fL−1

 ∈∑
∆

p∆


c∆,0
c∆,1

...
c∆,L−1

 p∆ > 0

For a given CFT spectrum have the polytope P(∆i ) =
∑

i p∆i
~c∆i and a crossing plane

X(∆φ), and they must intersect. For example:



If ~uk,` for EFT and ~c∆i for CFT are just random vectors, our geometric problem
becomes hopeless rapidly:
Let’s say given n vectors ~u, to compute the region of the polytope we need to

• Determine which one of these ~us are vertices
• Amongst the vertices, determine all the set that constitute boundary facets

The complexity is ∼ nd/2



But ~uk,` and ~c∆i are not random vectors!



EFT
The ~uk,`, arrises from Taylor expand

M(s, t) =
∑

a
paP`a

(
1+

2t
m2

a

)(
1

s−m2
a

+
1

u−m2
a

)
Define

P`(1 + x) =
∑

q
v`,qxq

The vector ~v` = (v`,0, v`,1, v`,2, · · · ) take the form

Note that all v is positive! But there is more,

det[~v`1
~v`2 · · · ] > 0, for`1 > `2 > · · ·

All ordered minors are positive!



EFT

det[~v`1
~v`2 · · · ] > 0, for`1 > `2 > · · ·

All ordered minors are positive!

Tells us that the convex hull of {~v`} is a cyclic polytope

• All ~v` are vertices
• The co-dimension 1 boundaries are known. For ~v` = (v`,0, · · · , v`,q)

q ∈ even (i, i+1), (i, i+1, j, j+1), (i, i+1, · · · , j, j+1)

q ∈ odd (1, i, i+1), (1, i, i+1 · · · j, j+1), (i, i+1, n), (i, i+1 · · · j, j+1, n)



EFT

But ~v` is not ~uk,`,

M(s, t) =
∑

a
paP`a

(
1+

2t
m2

a

)(
1

s−m2
a

+
1

u−m2
a

)
~uk,` recieves are contributions from propagators, message from locality



EFThedron

Let’s consider s-channel pole only (large-N YM),

M(s, t) = −
∑

a
pa

P`a

(
1+ 2t

m2
a

)
s−m2

a

=
∑

a
pa

1
m2

a

(
1+

s
m2

a
+

(
s

m2
a

)2
+ · · ·

)
locality

(
v`a,0+v`a,1t+v`a,2t2 · · ·

)
unitarity

We find that locality and unitarity leads to two separate positive geometry!

m0 1
m2

1
m4

1
m6 · · ·

t0 g0,0 g1,0 g2,0 g3,0 · · ·
t1 g0,1 g1,1 g2,1 · · ·
t2 g0,2 g1,2 · · ·
t3 g0,3 · · ·

~g2 =

 g2,0
g1,1
g0,2

 ∈∑
a

p′`~v` p′` > 0



EFThedron

Let’s consider s-channel pole only (large-N YM),

M(s, t) = −
∑

a
pa

P`a

(
1+ 2t

m2
a

)
s−m2

a

=
∑

a
pa

1
m2

a

(
1+

s
m2

a
+

(
s

m2
a

)2
+ · · ·

)
locality

(
v`a,0+v`a,1t+v`a,2t2 · · ·

)
unitarity

We find that locality and unitarity leads to two separate positive geometry!

m0 1
m2

1
m4

1
m6 · · ·

t0 g0,0 g1,0 g2,0 g3,0 · · ·
t1 g0,1 g1,1 g2,1 · · ·
t2 g0,2 g1,2 · · ·
t3 g0,3 · · ·

~g2 =

 g2,0
g1,1
g0,2

 ∈∑
a

p′`~v` p′` > 0



EFThedron

Let’s consider s-channel pole only (large-N YM),

M(s, t) = −
∑

a
pa

P`a

(
1+ 2t

m2
a

)
s−m2

a

=
∑

a
pa

1
m2

a

(
1+

s
m2

a
+

(
s

m2
a

)2
+ · · ·

)
locality

(
v`a,0+v`a,1t+v`a,2t2 · · ·

)
unitarity

We find that locality and unitarity leads to two separate positive geometry!

m0 1
m2

1
m4

1
m6 · · ·

t0 g0,0 g1,0 g2,0 g3,0 · · ·
t1 g0,1 g1,1 g2,1 · · ·
t2 g0,2 g1,2 · · ·
t3 g0,3 · · ·

~g2 =

 g2,0
g1,1
g0,2

→ Det[~g2, ~v`, ~v`+1] > 0



EFThedron
Let’s consider s-channel pole only (large-N YM),

M(s, t) = −
∑

a
pa

P`a

(
1+ 2t

m2
a

)
s−m2

a

=
∑

a
pa

1
m2

a

(
1 +

s
m2

a
+

(
s

m2
a

)2
+ · · ·

)
locality

(
v`a,0+v`a,1t+v`a,2t2 · · ·

)
unitarity

We find that locality and unitarity leads to two separate notion of locality!

m0 1
m2

1
m4

1
m6 · · ·

t0 g0,0 g1,0 g2,0 g3,0 · · ·
t1 g0,1 g1,1 g2,1 · · ·
t2 g0,2 g1,2 · · ·
t3 g0,3 · · ·

 g0,1
g1,1
g2,1

 ∈∑
a

p′a


1

m2
a

1
m4

a
1

m6
a

 p′a > 0

The vector is in the convex hull of points on the half-moment curve!

(t , t2, t3 · · · , ta), t ∈ R+



EFThedron

(t , t2, t3 · · · , ta), t ∈ R+

Organizing the couplings for fixed t power into the Hankel matrix (g′k ≡ gk,i )

The constraint is the statement that



EFThedron

Indeed consider

Γ[−s]Γ[−t]
Γ[1−s−t]

|s→0 = · · ·+
π2

6
+ ζ3s +

π4

90
s2 + · · ·

Det

(
π2

6 ζ3

ζ3
π4

90

)
= 0.33541 > 0

Γ[−s]Γ[−t]
Γ[1−s−t]

(
1−

tu
1 + s

)
|s→0 = · · ·+

π2

6
+ (1 + ζ3)s + (

π4

90
− 1)s2 + · · ·

Det

(
π2

6 1 + ζ3

1 + ζ3
π4

90 − 1

)
= −4.71364 < 0



EFThedron
Consider the EFT of a scalar coupled to gravitons Congkao Wen, Wei-Ming Chen, Y-t

|t=0 =
〈23〉4[14]4

M4
pl

(
1

50400
+

1
17297280

s
m2

+ · · ·
)

=
〈23〉4[14]4

M4
pl

∑
j

3
√
π4−2j−3 Γ[2j − 1]

(4 + j)Γ[2j + 7
2 ]

sj−1


Let’s suppose we don’t know the constant piece. The positivity of the Hankel matrix
yields O(s0) ≥ 0.0000190301

20 40 60 80

0.000013

0.000014

0.000015

0.000016

0.000017

0.000018

0.000019

while 1
50400 = 0.0000198413



EFThedron

We see that the constraint from unitarity, locality and Lorentz invariance forces the EFT
to live in a union of two positivie geometries

M(s, t) = −
∑

a
pa

P`a

(
1+ 2t

m2
a

)
s−m2

a

=
∑

a
pa

1
m2

a

(
1+

s
m2

a
+

(
s

m2
a

)2
+ · · ·

)
locality

(
v`a,0+v`a,1t+v`a,2t2 · · ·

)
unitarity

(Conv [moment curve])locality (Conv [cyclic polytope])unitarity



The EFTHedron
There is a much cleaner way to state the positive geometry. Lets start with

where Ck,` is given as . In other words it is an k ×∞ matrix, whose
column vectors are points on a degree k moment curve.

EFThedron gk,q ∈ Ck,`G`,q ↔ Amplituhedron Y I
α = C+,α,i Z I

i

This space can be conveniently defined through its boundaries (or walls). For fixed k ,

consider an infinite set of walls

They satisfy



The EFTHedron

We then find that the space is simply

is a point inside the convex hull of half moment curves



The EFTHedron
Thus the space of allowed EFT, is given by the EFThedron

For , the constraint says

For the positivity of
individual A

while for the whole Hankel matrix



The EFTHedron in the real world

Including the u-channel contribution:

M(s, t) = −
∑

a
paP`a

(
1+

2t
m2

a

)(
1

s−m2
a

+
1

u−m2
a

)

→ M(z, t) =
∑

a
paP`a

(
1+

2t
m2

a

)(
1

− t
2 − z−m2

a
+

1
− t

2 + z−m2
a

)

Upon Taylor expansion we have

where the new vectors are given by



The EFTHedron in the real world

The new vectors are a k -dependent projection of ~v` to half-dimension subspace, one
might expect all structures are lost.

The geometry is richer

m0 1
m2

1
m4

1
m6 · · ·

t0 g0,0 g1,0 g2,0 g3,0 · · ·
t1 g0,1 g1,1 g2,1 · · ·
t2 g0,2 g1,2 · · ·
t3 g0,3 · · ·

• For fixed mass-dimension, there is a critical spin above which it becomes cylic (all
ordered minors are positive)

• The boundaries are determined from the cylicity



The EFTHedron in the real world

The new vectors are a k -dependent projection of ~v` to half-dimension subspace, one
might expect all structures are lost.

The geometry is richer

m0 1
m2

1
m4

1
m6 · · ·

t0 g0,0 g1,0 g2,0 g3,0 · · ·
t1 g0,1 g1,1 g2,1 · · ·
t2 g0,2 g1,2 · · ·
t3 g0,3 · · ·

• The boundaries of the Minkowski sum is always given by that of the highest k

∂

[(
g1,0
g0,1

)
⊕
(

g2,0
g1,1

)
⊕
(

g3,0
g2,1

)]
= ∂

(
g3,0
g2,1

)
• The moment curve constraint is generalized to rescaled moment curve



The EFTHedron in the real world

Spinning polytopes:

The same structure is found for when the external states are massless with spins:
photons, gauge bosons, and gravitons.

• Lorentz-symmetry: In the form of fixing the residue basis to be Wigner
d`h1−h2, h3−h4

(θ) = 〈`, h1 − h2|e−iθJy |`, h3 − h4〉. For (−h, h, h,−h) we simply
have

d`−2h,2h(θ) = J (`+ 4h, 0,−4h, cos θ)

• Unitarity: In the form of residue having positive coefficients
• Locality: In the form of

1
s −ma

, or
∫

ds′
1

s − s′



The EFTHedron in the real world



The CFTHedron

Is there a similar structure?

Indeed there is!

Det


C∆1 (z1) C∆2 (z1) · · · C∆n (z1)
C∆1 (z2) C∆2 (z2) · · · C∆n (z2)

...
...

...
...

C∆1 (zn) C∆2 (zn) · · · C∆n (zn)

 >

for z1 < z2 < · · · < zn and ∆1 < ∆2 < · · · < ∆n

The convex hull of the block vectors is again a cyclic polytope!



The CFTHedron
This gives us the control over the relevant boundaries

F =


f0
f1
...

fL−1

 ∈∑
∆

p∆


c∆,0
c∆,1

...
c∆,L−1

 p∆ > 0

For example with (f0, f2) the relevant boundaries are

The resulting carved out space is



The CFTHedron

The boundaries of this plot is understandable in terms of walls

Each boundary correspond to a set of wall pointing in opposite directions



The CFTHedron

This can be simply understood as

〈1F∆i ∆i+1〉 > 0, 〈F1∆i∞〉 > 0

Consider the result from projecting through 1,

Crossing plane

inf

0

−

+

where ∆± → 〈F , 1,∆〉 = 0



The CFTHedron

Going to higher dimensions gives further constraint! (f0, f2, f4) Exp, given ∆φ = 0.3, in
the space of possible lowest first two operators (∆1,∆2) are given by:

The allows us to “carve” out the space of consistent CFTs geometrically



Conclusions

The constraint of unitarity, locality and symmetries manifest itself as positive geometry
on the space of consistent QFTs. The “external” data ARE positive.
This is just preliminary!

• We need to understand the generalized moment curve for s−u EFThedron.
• Explore the space for mixed graviton photon scattering
• Proof of various conjectures (Weak gravity) for the land scape.
• Solving the 1D CFT geometry at higher dimensions (in external data)
• Extensions to CFT with D > 1


