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Section a: State of the art and Objectives

Precision QCD at colliders:

Run 2 at the Large Hadron Collider (LHC) has already given particle physicists their first look at 13 TeV hadron
collisions and produced some amazing new results. However, the data collected so far only represents a few
percent of the total planned during the lifespan of the LHC so there is a huge potential for future discoveries
of new fundamental physics. New ideas for experimental analyses have led to dramatic improvements in sys-
tematic uncertainties. As a result a wide class of observables will be measured at the percent level precision
in the near future.

Keeping theoretical uncertainties in line with experiments is an essential task if we hope to get the maximum
amount of information out of the LHC. This task requires enormous effort and deep insight into the mathe-
matical structure of quantum field theory in order to overcome the technical challenge of computing precise
perturbative quantum corrections. Finding solutions to the problems that these challenges raise bridges the gap
between mathematics and physics and new ideas often come from unlikely places. The road between math-
ematical concepts and phenomenological predictions is extremely long and notoriously difficult and success
relies on a broad knowledge of perturbative gauge theories.

High energy hadron-hadron collisions present an extremely complex environment. First and foremost these
collisions are controlled by the strong force which binds quarks and gluons inside the proton. Our model of
the strong force, Quantum Chromodynamics (QCD), follows the principle of asymptotic freedom. Without this
modern collider physics would not be possible since it allows us to separate long distance interactions from
short distance effects, the latter of whichwe canmodel through perturbativemethods to probe the highest energy
interactions. The effect of asymptotic freedom on the strong coupling ↵s is to decrease its value as the energy
of the hard scattering increases. The value at the average collision energy seen at the LHC is around 0.1 and so
a naive counting of the perturbative convergence implies that both next-to-leading order (NLO) corrections of
order ↵s and next-to-next-to-leading order (NNLO) corrections of order ↵2

s are needed to obtain percent level
predictions. To have any hope of reaching a percent level precision at least NNLO accuracy will be required.

Quantum corrections to strong interactions give rise to the appearance of additional radiation in the final state.
This radiation is seen as deposits of hadronic energy in the detector which can be clustered to form jets. Un-
derstanding the dynamics of these jets is an important step in finding precise descriptions of the highest energy
scattering which the LHC requires. This task requires the ability to model high multiplicity scattering of jets
in association with Standard Model particles such as Higgs and vector bosons. These high multiplicity jet ob-
servables are the key to pinning down the transverse momentum (pT ) distributions of Standard Model (SM)
particles. Current technology is only able to model 2 ! 3 scattering processes at NLO. This project addresses
the need for precise descriptions of 2 ! 3 scattering and will new develop technology for NNLO predictions.

The project targets key observables which are of high priority at the LHC [1] and aims to provide a general
framework for NNLO predictions beyond 2 ! 2 scattering at hadron colliders. Obtaining precise descriptions
of these observables will open up new ways to probe the high energy properties of the SM. In particular we
target processes that are sensitive to the fundamental parameter ↵s in the high energy regime, Higgs and vector
boson pT spectra and the Higgs boson coupling with the electroweak sector of the SM. These proton-proton
scattering processes can be denoted pp ! ABC where each final state ABC can probe different properties of
the fundamental forces:

process precision observables
pp ! 3j jet multiplicity ratios, ↵s at high energies, 3-jet mass
pp ! �� + j background to Higgs pT , signal/background interference effects
pp ! H + 2j Higgs pT , Higgs coupling through vector boson fusion (VBF)
pp ! V + 2j Vector boson pT ,W+/W� ratios and multiplicity scaling
pp ! V V + j backgrounds to pT spectra for new physics decaying via vector boson
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�
NNLO

2!2
⇡ + + +

2 ! 2 2 ! 3
N = 4 QCD N = 4 QCD

one loop integrand basis 1 65 5 175
master integrals 1 2 1 2

two loops integrand basis 2 15360 15 55580
master integrals 1 7 3 61

2 ! 2 2 ! 3
evaluation accuracy evaluation accuracy

NJet 100µ s 0.001% 100ms 0.5%
NJet2 10µ s 0.001% 1ms 0.01%

planar gluon scattering

complexity for 2→3 processes

these types of amplitudes 
might not be so impressive 

these days in SUSY theories…

very important in the development of on-shell 
methods such as unitarity, leading singularities, etc.

Bern, Rozowsky, Yan, Czakon, Dixon, Kosower, 
Cachazo, Spradlin, Volovich… 



rational function 
of kinematics

special basis of 
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summary of state-of-the-art
first results for planar 2→3 

parton scattering amplitudes 

[Abreu, Febres-Cordero, Ita, 
Page, Zeng arXiv:1712.03946]

[SB, Brønnum-Hansen, Hartanto, 
Peraro arXiv:1712.02229]

[Boels, Jin, Luo arXiv:1802.06761]

Efficient integrand reduction for 
particles with spinPlanar two-loop five-gluon 

amplitudes from numerical unitarity

a first look at two-loop five-gluon 
amplitudes in QCD

2→3 master integrals
[Papadopoulos, Tommasini, Wever arXiv:1511.09404]
[Gehrmann, Henn, Lo Presti arXiv:1511.05409]
[Chicherin, Henn, Mitev arXiv:1712.09610]

[Chawdhry, Lim, Mitov arXiv:1805.09182]

Two-loop five-point massless QCD 
amplitudes within the IBP approach



an on-shell toolbox for
multi-loop integrands

momentum twistors six-dimensional 
spinor-helicity

(generalised) unitarity cuts integrand reduction

[Hodges (2009)]

colour/kinematics relations
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[Cheung, O’Connell (2009)]

[Bern, Rozowsky, Yan, Dixon, 
Kosower, de Freitas, 
Wong…(1997-)]

[Ossola, Papadopoulos, Pittau, 
Mastrolia, SB, Frellesvig, Zhang, 
Peraro, Mirabella, …(2005-)]

[Bern, Carrasco, Johansson (2008)]

finite field reconstruction
[von Manteuffel, Schabinger (2014)]

[Peraro (2016)]



previously…all-plus test cases
[SB, Frellesvig, Zhang (2013)]

analytic d-dimensional integrands using 
six-dimensional spinor-helicity and 

generalised unitarity cuts
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amplitudes and integrands
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how can we parameterise the irreducible numerator?



constructing the integrand basis

2

FIG. 1. The 18 distinct topologies extractable from (1-loop)2

cuts.

are built from 425 irreducible numerators with 57 dis-
tinct topologies. 18 of these 57 can be extracted from
the (1-loop)2 cut configurations as shown in Fig. 1. This
means that all topologies with an additional propagator
including k1 + k2 are computed simultaneously with the
(1-loop)2 cuts. This is more e�cient since the parametri-
sations of the cut loop momentum solutions are much
simpler. The remaining 39 can be extracted from a fur-
ther 31 configurations shown in Fig. 2. The 8 topologies
shown in Fig. 3 have divergent maximal cuts and are ex-
tracted simultaneously with sub-topologies within the set
of 31 2-loop cuts.

The construction of an integrand basis has been dis-
cussed before using the language of computational al-
gebraic geometry through polynomial division over a
Gröbner basis [10, 14]. In this work we took a simpler
approach which did not rely on the computation of a
Gröbner basis, instead relying on the inversion of a lin-
ear system which can be performed e�ciently with finite
field reconstruction methods. We begin by expanding the
loop momenta around a basis of external momenta and
transverse directions (similarly to the methods of Van
Neerven and Vermaseren [34]),

k
µ
i = k

µ
k,i + k

µ
?,i, (3)

FIG. 2. 31 distinct topologies extractable from 2-loop cuts.

where kk lives in the physical space spanned by the exter-
nal momenta of the topology and k? lives in the trans-
verse space. We further decompose the transverse space
into four dimensional and (�2✏) dimensional spaces,

k?,i = k
[4]

?,i + k
[�2✏]
?,i . The size of the 4-d transverse

space (which we will call the spurious space) has di-
mension d?,[4] = 4 � dk where dk is equal to the num-
ber of independent momenta entering the vertices of the
topology, up to a maximum value of four. We choose a
spanning basis v for the physical space of each topology

k
µ
k,i =

Pdk
j=1

aijv
µ
j and a basis w for the spurious space

k
µ,[4]
?,i =

Pd?,[4]

j=1
bijw

µ
j , with vi.wj = 0.

The coe�cients in the physical space kk are functions
of the aij(ki) ⌘ aij({D}, {k.q}) where D are the inverse
propagators and ki.qj are the physical space irreducible
scalar products (ISPs) for a given topology, where qj are
suitable linear combinations of external momenta. The
coe�cients in the spurious and (�2✏)-d spaces are func-

tions of additional ISPs ki.wj and µij = �k
[�2✏]
?,i .k

[�2✏]
?,j .

Having completed this decomposition we find relations
between monomials in the ISPs by expanding Eq. (3),

µij = ki.kj � kk,i.kk,j � k
[4]

?,i.k
[4]

?,j . (4)

From this equation it is easy to obtain a valid basis of
monomials for each irreducible numerator of a dimen-
sionally regulated amplitude by using Eq. (4) to remove
dependence on the extra dimensional ISPs. This basis is
just the most general polynomial in the ISPs ki.qj and
ki.wj where the power counting is restricted by the renor-
malizability constraints [35].
This basis is trivial to obtain without polynomial divi-

sion but results in high rank tensor integrals with a com-
plicated infrared (IR) pole structure. Instead we prefer
to map to a new basis which prefers to keep monomials
in µij in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in ki.qj , ki.wj and µij obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µij). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
Solve the linear system for the independent monomials in
the new basis. The result of this procedure is a process

FIG. 3. The 8 distinct topologies with divergent cuts that
must be computed simultaneously with subtopologies
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dependence on the extra dimensional ISPs. This basis is
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This basis is trivial to obtain without polynomial divi-
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Gröbner basis, instead relying on the inversion of a lin-
ear system which can be performed e�ciently with finite
field reconstruction methods. We begin by expanding the
loop momenta around a basis of external momenta and
transverse directions (similarly to the methods of Van
Neerven and Vermaseren [34]),

k
µ
i = k

µ
k,i + k

µ
?,i, (3)

FIG. 2. 31 distinct topologies extractable from 2-loop cuts.

where kk lives in the physical space spanned by the exter-
nal momenta of the topology and k? lives in the trans-
verse space. We further decompose the transverse space
into four dimensional and (�2✏) dimensional spaces,

k?,i = k
[4]

?,i + k
[�2✏]
?,i . The size of the 4-d transverse

space (which we will call the spurious space) has di-
mension d?,[4] = 4 � dk where dk is equal to the num-
ber of independent momenta entering the vertices of the
topology, up to a maximum value of four. We choose a
spanning basis v for the physical space of each topology

k
µ
k,i =

Pdk
j=1

aijv
µ
j and a basis w for the spurious space

k
µ,[4]
?,i =

Pd?,[4]

j=1
bijw

µ
j , with vi.wj = 0.

The coe�cients in the physical space kk are functions
of the aij(ki) ⌘ aij({D}, {k.q}) where D are the inverse
propagators and ki.qj are the physical space irreducible
scalar products (ISPs) for a given topology, where qj are
suitable linear combinations of external momenta. The
coe�cients in the spurious and (�2✏)-d spaces are func-

tions of additional ISPs ki.wj and µij = �k
[�2✏]
?,i .k

[�2✏]
?,j .

Having completed this decomposition we find relations
between monomials in the ISPs by expanding Eq. (3),

µij = ki.kj � kk,i.kk,j � k
[4]

?,i.k
[4]

?,j . (4)

From this equation it is easy to obtain a valid basis of
monomials for each irreducible numerator of a dimen-
sionally regulated amplitude by using Eq. (4) to remove
dependence on the extra dimensional ISPs. This basis is
just the most general polynomial in the ISPs ki.qj and
ki.wj where the power counting is restricted by the renor-
malizability constraints [35].
This basis is trivial to obtain without polynomial divi-

sion but results in high rank tensor integrals with a com-
plicated infrared (IR) pole structure. Instead we prefer
to map to a new basis which prefers to keep monomials
in µij in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in ki.qj , ki.wj and µij obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µij). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
Solve the linear system for the independent monomials in
the new basis. The result of this procedure is a process

FIG. 3. The 8 distinct topologies with divergent cuts that
must be computed simultaneously with subtopologies

spurious ISPs k.w

ki · pj ki · wj, and

[c.f. van Neerven, Vermaseren (1983)]



constructing the integrand basis

• integrand contains spurious terms

• integrand basis depends on the 
ordering of the possible ISP monomials

• beyond one-loop the integrals can be further 
reduced using integration-by-parts identities

�(ki · pj , ki · wj , µij) =
X

(coe�cients)(monomial)

Z

k
ki · wj = 0

Z

k

@

@kµ

vµ(k, p)

(propagators)
= 0

• updated algorithm no longer requires polynomial division

[see talks by Febres-
Cordero, Larsen, Zeng]

many new ideas for efficient solutions of IBP systems:
Kosower, Kajda, Gluza, Schabinger, von Manteuffel, Ita, Larsen, Zhang,
Böhm, Georgoudis, Schönemann, Abreu, Page, Febres-Cordero, Zeng



2

FIG. 1. The 18 distinct topologies extractable from (1-loop)2

cuts.

are built from 425 irreducible numerators with 57 dis-
tinct topologies. 18 of these 57 can be extracted from
the (1-loop)2 cut configurations as shown in Fig. 1. This
means that all topologies with an additional propagator
including k1 + k2 are computed simultaneously with the
(1-loop)2 cuts. This is more e�cient since the parametri-
sations of the cut loop momentum solutions are much
simpler. The remaining 39 can be extracted from a fur-
ther 31 configurations shown in Fig. 2. The 8 topologies
shown in Fig. 3 have divergent maximal cuts and are ex-
tracted simultaneously with sub-topologies within the set
of 31 2-loop cuts.

The construction of an integrand basis has been dis-
cussed before using the language of computational al-
gebraic geometry through polynomial division over a
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From this equation it is easy to obtain a valid basis of
monomials for each irreducible numerator of a dimen-
sionally regulated amplitude by using Eq. (4) to remove
dependence on the extra dimensional ISPs. This basis is
just the most general polynomial in the ISPs ki.qj and
ki.wj where the power counting is restricted by the renor-
malizability constraints [35].
This basis is trivial to obtain without polynomial divi-

sion but results in high rank tensor integrals with a com-
plicated infrared (IR) pole structure. Instead we prefer
to map to a new basis which prefers to keep monomials
in µij in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in ki.qj , ki.wj and µij obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µij). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
Solve the linear system for the independent monomials in
the new basis. The result of this procedure is a process
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sion but results in high rank tensor integrals with a com-
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in µij in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in ki.qj , ki.wj and µij obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µij). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
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independent basis of monomials whose coe�cients can
be fixed from unitarity cuts in six dimensions. We take
a top-down, OPP-like, approach to solving the complete
system using information from previously computed cuts
to remove known poles from the factorised product of tree
amplitudes using the six-dimensional spinor-helicity for-
malism [36]. The product of tree amplitudes is e�ciently
evaluated by sewing together Berends-Giele currents [37]
as described in Ref. [31].

After completing the integrand level reconstruction,
the remaining transverse integration must be performed
to obtain a form compatible with traditional integration-
by-parts (IBP) relations. Following a recent ap-
proach [38], we have two options in order to achieve this:
1) to integrate the full transverse space to remove ki.wj

and µij introducing dependence in ✏ into the integral co-
e�cients or, 2) integrate only over the spurious space
retaining µij dependence which can subsequently be re-
moved through dimension shifting identities. In this work
we have taken the second approach since it turned out to
have better numerical stability to use dimension shifted
integrals instead of high rank tensor integrals.

In either case the tensor structure in the trans-
verse space can only involve the metric tensor g

µ⌫
? (or

g
µ⌫
?,[4], g

µ⌫
?,[�2✏] depending on the particular transverse

space being integrated out). This makes the tensor de-
composition for non-vanishing integrals in the spurious
space rather simple. Further examples of this technique
can be found in Ref. [38].

We build integration identities and certain symmetry
relations (for example k1 $ k2 in the 3-propagator sun-
rise topology) into the integrand basis by using them to
create spurious numerators. For example, rather than
fitting the coe�cient of (k1.w2)2 we replace it with the
function

(k1.w2)
2 �! (k1.w2)

2 � w2
2

d?,[4]
k
[4]

?,1.k
[4]

?,1, (5)

which will integrate to zero. In Tab. I we summarise
the result of our fit to unitarity cuts listing the number
of non-zero coe�cients at the integrand level before and
after performing the integration over the spurious space.
Cuts with scalar loops are required for the reduction from
6 to 4�2✏ dimensions. We perform the fit taking into ac-
count the individual contribution of these scalar loops in
order to reconstruct the dependence of the numerator on
the spin dimension ds. Setting ds = 2 gives a supersym-
metric limit in which the highest rank tensor integrals
do not appear in the amplitudes. We use a polynomial
expansion of the integrand in (ds � 2) to separate the
coe�cients into terms of increasing complexity. The fit
can be performed e�ciently using rational numerics for
each phase space point and in most cases it was pos-
sible to obtain completely analytic expressions for the
integrands of the helicity amplitudes using modest com-
puting resources.

NUMERICAL EVALUATION

The unitarity based method outlined above has been
complemented by an approach based on numerical evalu-
ation of Feynman diagrams to determine the coe�cients
of independent monomial bases. Both of these methods
use a momentum twistor [32] parametrisation of the ex-
ternal kinematics to obtain a rational numerical phase-
space point. This is extremely important since in order
to make use of the finite field reconstruction methods our
numerical algorithm must be free of all square roots [39–
42]. The parametrisation in this case was chosen (some-
what arbitrarily) to be,

Z =

0

BBB@

1 0 1

x1

1+x2
x1x2

1+x3(1+x2)

x1x2x3

0 1 1 1 1

0 0 0 x4
x2

1

0 0 1 1 x4�x5
x4

1

CCCA
, (6)

where the columns give the 4-component momentum
twistors of the 5 external particles (see, for example, Ap-
pendix A of Ref. [15] for more details). These methods
have been implemented using a combination of tools in-
cluding Qgraf [43], Form [44, 45], Mathematica and
a private implementation of the finite field reconstruction
method [31].
We have validated our setup on a number of known

cases. Firstly, we have reproduced integrand level ex-
pressions for the ‘all-plus’ helicity sector [15] and against
the known integrands in N = 4 Super-Yang-Mills the-
ory [46]. The latter check was obtained by computing
all fermion and (complex)-scalar loop contributions and
subsequently setting nf = N and ns = N � 1. We also

helicity flavour non-zero
coe�cients

non-spurious
coe�cients

contributions
@ O(✏0)

+++++

(ds � 2)0 50 50 0

(ds � 2)1 175 165 50

(ds � 2)2 320 90 60

�++++

(ds � 2)0 1153 761 405

(ds � 2)1 8745 4020 3436

(ds � 2)2 1037 100 68

��+++

(ds � 2)0 2234 1267 976

(ds � 2)1 11844 5342 4659

(ds � 2)2 1641 71 48

�+�++

(ds � 2)0 3137 1732 1335

(ds � 2)1 15282 6654 5734

(ds � 2)2 3639 47 32

TABLE I. The number of non-zero coe�cients found at
the integrand level both before (‘non-zero’) and after (‘non-
spurious’) removing monomials which integrate to zero. Last
column (‘contributions @ O(✏0)’) gives the number of coe�-
cients contributing to the finite part. Each helicity amplitude
is split into the components of ds � 2.
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We compute the leading colour contributions to five-gluon scattering at two loops in massless
QCD. The integrands of all independent helicity amplitudes are evaluated using d-dimensional gen-
eralised unitarity cuts and finite field reconstruction techniques. Numerical evaluation of the integral
basis is performed with sector decomposition methods to obtain the first benchmark results for all
helicity configurations of a 2 to 3 scattering process in QCD.

INTRODUCTION

As data continues to pour in from the LHC experi-
ments, the precision of many theoretical predictions for
high energy scattering processes are being challenged by
experimental measurements. While there has been re-
markable progress in Standard Model (SM) predictions
for multi-particle final states at next-to-leading-order
(NLO) and 2 ! 2 scattering processes at next-to-next-
to-leading order (NNLO), the computational complex-
ity of 2 ! 3 scattering processes at NNLO results in
many important measurements being currently (or in the
near future) limited by theoretical uncertainties. Pure
gluon scattering at two loops in QCD is a key bottle-
neck in making such predictions which have been known
for gg ! gg for more than 15 years [1, 2]. The one-loop
five-gluon amplitudes have been known since 1993 [3] and
were among the first results from the on-shell methods
that led to the modern unitarity method [4, 5].

In this letter we demonstrate how new evaluation tech-
niques based on generalised unitarity [6, 7] and integrand
reduction [8–14] can o↵er a solution to the traditional
bottlenecks in these computations and present the first
results for a complete set of planar five-gluon helicity
amplitudes in QCD. The results extend previous results
obtained for ‘all-plus’ helicity amplitudes [15–22]. These
on-shell techniques have also been explored in the context
of maximal unitarity [23, 24] and numerical unitarity [25–
27] approaches to QCD amplitudes. Work in this area has
received considerable interest due to the phenomenolog-
ical importance of precision predictions for 2 ! 3 scat-
tering. E↵orts to complete the unknown two-loop am-
plitudes for processes such as pp ! 3 jets, pp ! H + 2
jets or pp ! ��+jet have been further motivated by the
recent analytic computations of the planar master inte-
grals (MIs) [18, 28] using new di↵erential equation tech-
niques [29, 30].

Our approach exploits a parametrisation of the multi-
particle kinematics with rational functions combined
with numerical evaluation over finite fields [31] to avoid

the large intermediate algebraic expressions that tradi-
tionally appear. The rational parametrisation of the ex-
ternal kinematics is provided by momentum twistor co-
ordinates [32].

INTEGRAND PARAMETRISATION AND

RECONSTRUCTION

We define the unrenormalised leading-colour (planar)
five-gluon amplitudes using the simple trace basis:

A(L)(1, 2, 3, 4, 5) = n
L
g
3

s

X

�2S5/Z5

tr (T a�(1) · · ·T a�(5))

⇥A
(L) (�(1),�(2),�(3),�(4),�(5)) , (1)

where T a are the fundamental generators of SU(Nc) and
S5/Z5 are all noncyclic permutations of the external par-
ticles. The overall normalisation is n = m✏Nc↵s/(4⇡)
where ↵s = g

2
s/(4⇡) is the strong coupling constant

and m✏ = i(4⇡)✏e�✏�E (�E is the Euler–Mascheroni con-
stant). The L-loop partial amplitude A

(L) can be con-
structed from colour ordered Feynman diagrams. In
this article we will compute the pure gluonic contribu-
tions to these amplitudes at two loops including the
dependence on the spin dimension, ds. Results in the
’t Hooft-Veltman (tHV) and four-dimensional-helicity
(FDH) schemes can be obtained by setting ds = 4 � 2✏
and ds = 4 respectively [33].
The integrand of the ordered partial amplitudes can

be parametrised in terms of irreducible numerators, �,

A
(2) (1, 2, 3, 4, 5) =

Z
[dk1][dk2]

X

T

�T ({k}, {p})Q
↵2T D↵

, (2)

where {k} = {k1, k2} are the (d = 4 � 2✏)-dimensional
loop momenta, T are the set of independent topologies
and {p} = {1, 2, 3, 4, 5} are the ordered external mo-
menta. The measure is [dki] = �i⇡

�d/2
e
✏�Ed

4�2✏
ki and

the index ↵ runs over the set of propagators associated
with the topology T . Our planar five-gluon amplitudes
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where {k} = {k1, k2} are the (d = 4 � 2✏)-dimensional
loop momenta, T are the set of independent topologies
and {p} = {1, 2, 3, 4, 5} are the ordered external mo-
menta. The measure is [dki] = �i⇡

�d/2
e
✏�Ed

4�2✏
ki and

the index ↵ runs over the set of propagators associated
with the topology T . Our planar five-gluon amplitudes
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[Catani] [Becher,Neubert]
[Gnendiger, Signer, Stockinger] 

universal poles
P (2) = I(2)A(0) + I(1)A(1)

numerical evaluation in the Euclidean region

s12



evaluation in the physical region
reduction to MI of Gehrmann, 

Henn, Lo Presti (or alternatively 
Papadopoulos, Tommasini, Wever)

ds=2 fully analytic
full ds dep. partially numerical
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fermion channels
qgggq̄
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checks against 
poles in CDR

preliminary!



fermion channels
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the analytic integrands are very large…

proceed numerically?

• need to understand analytic structure better : 
what is a ‘good’ basis?

this was a good option at NLO
(BLACKHAT, NJET, GOSAM, 

OPENLOOPS,…)

see talk from Febres-Cordero
also works at two loops

• large cancellations between topologies

• universal lR and UV poles not manifest

• high rank tensor integrals lead to extremely 
difficult IBP systems (IBPs are d-dim.)

can we use this for phenomenology?

related questions:
(quasi) finite integrals

local integrals, pure functions…

[von Mantueffel, Schabinger, Panzer]

[Arkani-Hamed, Bourjaily, Cachazo, Trnka]

Z
d�3

X

colour,helicity

2Re(A(2)A(0))



back to one-loop

1 A one-loop integrand basis with manifest UV
and IR behaviour

The d-dimensional integrand basis at one-loop is usually written down in

terms of scalar box, triangle and bubble integrals with extra-dimensional

numerators µ1,1 = k[1 � 2✏] · k[�2✏]
1 where k1 is the loop momentum.

For the purpose of this discussion we will use the one-loop five point

amplitude as an example though it should be clear how it can be generalised.

This can be written as

A(1)
5 =

5X
{1, µ11, µ

2
11}+

5X
{1, µ11}+

5X
{1, µ11}+

5X
{1, µ11}+ spurious (1)

which can then be expanded to O(✏) to give a rational term, R, plus scalar

integrals:

A(1)
5 =

5X
{1}+

5X
{1}+

5X
{1}+

5X
{1}+R+ spurious +O(✏) (2)

This basis has a few features which are not ideal. The universal IR and

UV pole structure is not manifest and there are many cancellations between

coe�cients of the higher dimensional
0µ0

integrals when expanding in ✏.

1.1 A finite box integrand parametrisation

We can construct a finite basis of the one-mass box using the local numer-

ators,

= (k � k⇤1) (3)

= (k � k⇤2) (4)

where ki⇤ are the two solutions to the quadruple cut in four dimensions.

These numerators regulate the IR divergences in the scalar box. The origin

of the rational terms is from cancellations of ✏/✏ for UV poles only. In this

one-loop example this is clearly seen since the µ11 numerator regulates all

IR singularities. In order to make the cancellations between the sources of

1
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d-dimensional basis
(EGKM, OPP etc.)

expansion around d=4
rational terms come from 

UV poles

IR

UV



back to one-loop

1.3 Parametrising the bubble integrands

For the bubble coe�cients neither the UV behaviour or the 4d (cut-constructible)

and higher dimensional terms are manifest. Unlike the triangle box we will

not use sub-topologies to remove the singularities but instead shift them

‘sideways’ into a single double cut.

In this example we will use the s12 channel to contain the remaining

singular behaviour of the amplitude. For the other four channels in the

five-point case we use:

� = O(✏0) (10)

µ11 �
s12
si i+1

µ11 = O(✏) (11)

So that integrands are now finite,

�

✓ ◆
{1�

(k)2(k � pi,i+1)
2

(k + p1,i�1)
2(k + p1,i�1 � p1,2)2

}+ spurious +O(✏).

(12)

In a change to the usual top down OPP approach, these integrands now

become subtraction terms for the s12 cut which is parametrised in the usual

way,

�

✓ ◆
{1, µ11}+ spurious +O(✏). (13)

For which the scalar integral coe�cient will be proportional to tree and the

rational term, R, will be the coe�cient of the µ11 integral.

A(1)
5 � I(1)A(0)

5 =�

✓ ◆
{(k � k⇤1), (k � k⇤2)}+

�

✓ ◆
{1�

(k)2(k � pi,i+1)
2

(k + p1,i�1)
2(k + p1,i�1 � p1,2)2

}+

�

✓ ◆
{µ11}+ spurious +O(✏)

3

universal IR poles 

local numerators regulate IR
[Arkani-Hamed, Bourjaily, Cachazo, Trnka (2012)] 

UV counter-terms to
push all rational terms into 

bubble numerator 

[still not quite as good as BDK ’93…additional spurious pole 
cancellations between rational term and bubble coefficients]



an attempt at 2-loops
the pentagon-box sector of our planar integrand has the most complicated integrals 

{k1.p1, k2.p2, k2.p3, µ11, µ12, µ22} {k1.n1, k1.n
⇤
1, k1.n2, k2.n

⇤
2, µ11, µ12, µ22}

(over complete set)

4+

3�

2+1�

5+

(k2.p2)
4µ11

worst case:

(rank 4, 1 dot)

standard gauge theory power counting: 76 integrand coefficients

old version new version

54 non-zero integrand coeffs. 55 non-zero integrand coeffs.
4 non-zero coeffs. at

worst case:

(rank 2)

local numerators

28 non-zero coeffs. at 

k2.n2 = h5k21]

k1.n1 ⇠ (k1 � n1)
2 / tr+(p2k1(k1 � p23)p4)

O(✏) O(✏)

k2.n2k1.n1



summary
• two-loop amplitudes from on-shell building blocks:

• generalised unitarity cuts and integrand reduction in d-dimensions

• reconstruction of rational functions over finite fields

• first results for realistic processes. Lots more to do for NNLO

a local integrand basis?
[‘prescriptive unitarity’ Bourjaily, Herrmann, Trnka (2017)]

non-planar?
[Arkani-Hamed Bourjaily, Cachazo, Postnikov, Trnka (2015)]

[Bern, Herrmann, Litsey, Stankowicz, Trnka (2016)]
[Bern, Enciso, Ita, Zeng (2017)]
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numerator construction
FDH scheme at two-loops

Tree-amplitudes using 
six-dimensional helicity method

use momentum twistors to deal with the 
complicated kinematics at 2→3

[Cheung, O’Connell (2009)]

[Bern, De Freitas, Dixon, Wong (2002)]

[Bern, Carrasco, Dennen, Huang, Ita (2011)]

need to capture µ11, µ22, µ12
[Davies (2012)]

c.f. Feynman rules + Feynman 
gauge and ghosts (scalars)

gµµ = ds

[Hodges (2009)]



momentum twistors

kinematic variables with manifest momentum conservation
or

a rational phase space generator

2.3 Momentum twistors: SO(1, 3) $ SU(2)⇥ SU(2) $ SO(4, 2)

Hodges [1] introduced momentum twistors as a natural extension of Penrose’s twistor
formalism for reciprocal space. In comparison with the spinor-helicity formalism where
�(p) and �̃(p) are used to describe the kinematics, the momentum twistor Z is a four
component object that can do an equivalent job,

ZiA = (�↵(i), µ
↵̇(i)), (50)

where the new two component object µ↵̇(i) is used instead of the �̃↵̇(i) spinor the define
the kinematics for the n-particle system i = 1, n. The �̃(i)↵̇ spinor is defined through
the dual twistor,

W
A
i = (µ̃↵(i), �̃

↵̇(i)) =
"
ABCD

Z(i�1)BZiCZ(i+1)D

hi� 1iihii+ 1i
(51)

from which we can find the definition of the anti-holomorphic spinor,

�̃(i)↵̇ =
hi� 1iiµ↵̇(i+ 1) + hi+ 1i� 1iµ↵̇(i) + hii+ 1iµ↵̇(i� 1)

hi� 1iihii+ 1i
. (52)

Written in terms of the spinors the twistor co-ordinates are,

µ
↵̇(i) = �↵(i)

 
x
↵↵̇
0 +

iX

k=1

�
↵(k)�̃↵̇(k)

!
(53)

where x0 is an arbitary reference direction (i.e. point in position space). This makes the
link to the motivation for the construction to make dual conformal invariance manifest
since the dual co-ordinates are,

p
µ
i = x

µ
i � x

µ
i�1 (54)

such that
Pn

i=1 pi = 0 , xn = x0. The inversion of this system requires us to choose
one dual point which in this case is x0,

x
µ
i = x

µ
0 +

iX

k=1

p
µ
k = x

µ
0 + p

µ
1,i (55)

Exercise

Show for any �̃i defined through equation (52) momentum conservation is automati-
cally satisfied,

nX

i=1

pi.�↵↵̇ =
nX

i=1

�↵(i)�̃↵̇(i) = 0↵↵̇, (56)

using the Schouten identity in eq. (26).

The 4⇥ n matrix ZiA has additional symmetries,
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manifest UV and IR poles at the 
integrand level

rational terms in the d-dimensional amplitude manifest we will construct

rational counter-terms by analysing the UV behaviour of the
0µ0

integrals.

For example, by adding some extra-dimensional bubble integrals to the

one-mass box the µ2
11 integral can be shifted to an intergal that vanishes at

O(✏),

µ2
11 +

1

u

✓
µ11 + µ11 � µ11

◆
= O(✏)

µ2
11 �

1

s

✓
µ11

◆
= O(✏) (5)

One simple way to obtain these results is to perform an integration over the

transverse space and then discard any box and triangle integrals that have

only IR poles. The equivalence of these two representations is up to higher

order terms in ✏.
A completely finite box integrand parametrisation can now be written

as,

�

✓ ◆
{(k � k⇤1), (k � k⇤2)}+ spurious +O(✏) (6)

where there are now 3 terms at the integrand level that do not contribute

the amplitude O(✏). As a result of using finite integrals in the top sector

the poles in the triangle will be constrained to take the unversal form.

1.2 A triangle integrand parametrisation

A similar UV analysis of the triangle integrand gives rational counter terms

for the integrand,

µ11 +
1

3s12
µ11 = O(✏) (7)

µ11 +
1

3(s23 � s45)

 
µ11 � µ11

!
= O(✏) (8)

(One could simplify the last expression to just one counter-term using similar

algebra to the one-mass box in (5)). The new integrand only has one term

contributing to the amplitude at O(✏),

�

 !
{1}+ spurious +O(✏). (9)

By virtue of the finite box basis we will find that all two-mass scalar triangle

coe�cients are zero and all one-mass scalar triangles are proportional to the

tree-level amplitude in accordance with the universal pole structure.

2

local numerators manage IR divergences
[Arkani-Hamed, Bourjaily, Cachazo, Trnka (2012)] 

remove d-dimensional
integrals with UV counter-

terms

1 A one-loop integrand basis with manifest UV
and IR behaviour

The d-dimensional integrand basis at one-loop is usually written down in

terms of scalar box, triangle and bubble integrals with extra-dimensional

numerators µ1,1 = k[1 � 2✏] · k[�2✏]
1 where k1 is the loop momentum.

For the purpose of this discussion we will use the one-loop five point

amplitude as an example though it should be clear how it can be generalised.

This can be written as

A(1)
5 =

5X
{1, µ11, µ

2
11}+

5X
{1, µ11}+

5X
{1, µ11}+

5X
{1, µ11}+ spurious (1)

which can then be expanded to O(✏) to give a rational term, R, plus scalar

integrals:

A(1)
5 =

5X
{1}+

5X
{1}+

5X
{1}+

5X
{1}+R+ spurious +O(✏) (2)

This basis has a few features which are not ideal. The universal IR and

UV pole structure is not manifest and there are many cancellations between

coe�cients of the higher dimensional
0µ0

integrals when expanding in ✏.
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1
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coe�cients are zero and all one-mass scalar triangles are proportional to the

tree-level amplitude in accordance with the universal pole structure.
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integrand level

rational terms in the d-dimensional amplitude manifest we will construct

rational counter-terms by analysing the UV behaviour of the
0µ0

integrals.

For example, by adding some extra-dimensional bubble integrals to the

one-mass box the µ2
11 integral can be shifted to an intergal that vanishes at

O(✏),
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One simple way to obtain these results is to perform an integration over the

transverse space and then discard any box and triangle integrals that have

only IR poles. The equivalence of these two representations is up to higher

order terms in ✏.
A completely finite box integrand parametrisation can now be written

as,

�

✓ ◆
{(k � k⇤1), (k � k⇤2)}+ spurious +O(✏) (6)

where there are now 3 terms at the integrand level that do not contribute

the amplitude O(✏). As a result of using finite integrals in the top sector

the poles in the triangle will be constrained to take the unversal form.
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manifest UV and IR poles at the 
integrand level

1.3 Parametrising the bubble integrands

For the bubble coe�cients neither the UV behaviour or the 4d (cut-constructible)

and higher dimensional terms are manifest. Unlike the triangle box we will

not use sub-topologies to remove the singularities but instead shift them

‘sideways’ into a single double cut.

In this example we will use the s12 channel to contain the remaining

singular behaviour of the amplitude. For the other four channels in the

five-point case we use:

� = O(✏0) (10)

µ11 �
s12
si i+1

µ11 = O(✏) (11)

So that integrands are now finite,

�

✓ ◆
{1�

(k)2(k � pi,i+1)
2

(k + p1,i�1)
2(k + p1,i�1 � p1,2)2

}+ spurious +O(✏).

(12)

In a change to the usual top down OPP approach, these integrands now

become subtraction terms for the s12 cut which is parametrised in the usual

way,

�

✓ ◆
{1, µ11}+ spurious +O(✏). (13)

For which the scalar integral coe�cient will be proportional to tree and the

rational term, R, will be the coe�cient of the µ11 integral.
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• UV counter-terms for both 4d 
and 6d bubbles

• Use p12 bubble - pii+1 cuts 
become subtractions for the 
p12 cut


