integrands and amplitudes for two-loop five-point scattering in QCD

Simon Badger (IPPP, Durham) in collaboration with Christian Brønnum-Hansen, Bayu Hartanto and Tiziano Peraro

> Amplitudes SLAC, 19th June 2018

European Research Council Instabilised by the European Commission

process	precision observables
$pp \rightarrow 3j$	jet multiplicity ratios, α_s at high energies, 3-jet mass
$pp \rightarrow \gamma \gamma + j$	background to Higgs p_T , signal/background interference effects
$pp \rightarrow H + 2j$	Higgs p_T , Higgs coupling through vector boson fusion (VBF)
$pp \rightarrow V + 2j$	Vector boson p_T , W^+/W^- ratios and multiplicity scaling
$pp \rightarrow VV + j$	backgrounds to p_T spectra for new physics decaying via vector boson

key example: 3j/2j ratio at the LHC can probe of the running of α_s in a new energy regime

e.g. CMS @ 7 TeV $\alpha_s(m_Z^2) = 0.1148 \pm 0.0014(\text{exp.}) \pm 0.0018(\text{PDF}) \pm 0.0050(\text{theory})$

new precision frontier: $2 \rightarrow 3$ scattering

NLO

LO

complexity for $2 \rightarrow 3$ processes

these types of amplitudes might not be so impressive these days in SUSY theories... very important in the development of on-shell methods such as unitarity, leading singularities, etc.

Bern, Rozowsky, Yan, Czakon, Dixon, Kosower, Cachazo, Spradlin, Volovich...

summary of state-of-the-art

first results for planar $2 \rightarrow 3$ parton scattering amplitudes

2→3 master integrals [Papadopoulos,Tommasini,Wever arXiv:1511.09404] [Gehrmann, Henn, Lo Presti arXiv:1511.05409] [Chicherin, Henn, Mitev arXiv:1712.09610]

a first look at two-loop five-gluon amplitudes in QCD

[SB, Brønnum-Hansen, Hartanto, Peraro arXiv:1712.02229]

Efficient integrand reduction for particles with spin

[Boels, Jin, Luo arXiv:1802.06761]

Two-loop five-point massless QCD amplitudes within the IBP approach

[Chawdhry, Lim, Mitov arXiv:1805.09182]

Planar two-loop five-gluon amplitudes from numerical unitarity

[Abreu, Febres-Cordero, Ita, Page, Zeng arXiv:1712.03946]

amplitudes and integrands

$$A = \int_{k} \sum_{i} \frac{\Delta_{i}(k, p)}{(\text{propagators})_{i}}$$

how can we parameterise the irreducible numerator?

constructing the integrand basis

 $\Delta(k_i \cdot p_j, k_i \cdot w_j, \mu_{ij}) = \sum (\text{coefficients}) (\text{monomial})$

- updated algorithm no longer requires polynomial division
- integrand contains spurious terms
- integrand basis depends on the ordering of the possible ISP monomials
- beyond one-loop the integrals can be further reduced using integration-by-parts identities

many new ideas for efficient solutions of IBP systems: Kosower, Kajda, Gluza, Schabinger, von Manteuffel, Ita, Larsen, Zhang, Böhm, Georgoudis, Schönemann, Abreu, Page, Febres-Cordero, Zeng

$$\int_k k_i \cdot w_j = 0$$

 $\int_{k} \frac{\partial}{\partial k_{\mu}} \frac{v_{\mu}(k,p)}{(\text{propagators})} = 0$

[see talks by Febres-Cordero, Larsen, Zeng]

two-loop five-gluon scattering in QCD

a first look at two-loop five-gluon scattering in QCD

SB, Brønnum-Hansen, Hartanto Peraro Phys.Rev.Lett. 120 (2018) no.9, 092001

* Gehrmann, Henn, Lo Presti (2015), Papadopoulos, Tommasini, Wever (2015)

two-loop five-gluon scattering in QCD

helicity	flavour	non-zero	non-spurious	contributions
		$\operatorname{coefficients}$	coefficients	$@ \; \mathcal{O}(\epsilon^0) \\$
	$(d_s - 2)^0$	50	50	0
+++++	$(d_s - 2)^1$	175	165	50
	$(d_s - 2)^2$	320	90	60
-++++	$(d_s - 2)^0$	1153	761	405
	$(d_s - 2)^1$	8745	4020	3436
	$(d_s - 2)^2$	1037	100	68
	$(d_s - 2)^0$	2234	1267	976
+++	$(d_s - 2)^1$	11844	5342	4659
	$(d_s - 2)^2$	1641	71	48
-+-++	$(d_s - 2)^0$	3137	1732	1335
	$(d_s - 2)^1$	15282	6654	5734
	$(d_s - 2)^2$	3639	47	32

TABLE I. The number of non-zero coefficients found at the integrand level both before ('non-zero') and after ('nonspurious') removing monomials which integrate to zero. Last column ('contributions @ $\mathcal{O}(\epsilon^0)$ ') gives the number of coefficients contributing to the finite part. Each helicity amplitude is split into the components of $d_s - 2$. SB, Brønnum-Hansen, Hartanto Peraro Phys.Rev.Lett. 120 (2018) no.9, 092001

$$\mathcal{A}^{(L)}(1,2,3,4,5) = n^L g_s^3 \sum_{\sigma \in S_5/Z_5} \operatorname{tr} \left(T^{a_{\sigma(1)}} \cdots T^{a_{\sigma(5)}} \right) \times A^{(L)} \left(\sigma(1), \sigma(2), \sigma(3), \sigma(4), \sigma(5) \right),$$
(1)

$$A^{(2)}(1,2,3,4,5) = \int [dk_1] [dk_2] \sum_T \frac{\Delta_T(\{k\},\{p\})}{\prod_{\alpha \in T} D_\alpha}$$

numerical evaluation in the Euclidean region

	37	, ,	023381		83	1936'
= -1,	$s_{23} = -\frac{51}{78}$	$s_{34} = -\frac{2}{3}$	194997	$, s_{45}$	$s = -\frac{69}{102},$	$s_{15} = -\frac{1000}{60664}$
	ϵ^{-4}	ϵ^{-3}	ϵ	-2	ϵ^{-1}	ϵ^0
$\widehat{A}^{(2),[0]}_{++}$	-+ 12.5	27.7526	-23.7	7728	-168.116	62 -175.2103
$P^{(2),[0]}_{++}$	+ 12.5	27.7526	-23.7	7728	-168.116	53 —
$\widehat{A}^{(2),[0]}_{-+-+}$	+ 12.5	27.7526	2.5	028	-35.8084	4 69.6695
$P^{(2),[0]}_{-+-+}$	+ 12.5	27.7526	2.5	028	-35.808	6 —
	ϵ^{-4}	ϵ^{-3}	ϵ^{-}	-2	ϵ^{-1}	ϵ^0
$\widehat{A}^{(2),[1]}_{++++}$	-+ 0	0	-2	.5	-6.4324	-5.3107
$P^{(2),[1]}_{++++}$	-+ 0	0	-2	.5	-6.4324	
$\widehat{A}^{(2),[1]}_{-+++}$	-+ 0	0	-2	.5	-12.749	2 -22.0981
$P^{(2),[1]}_{-+++}$	+ 0	0	-2	.5	-12.749	2 —
$\widehat{A}^{(2),[1]}_{++}$	-+ 0	-0.625	-1.8	175	-0.4869	3.1270
$P_{++}^{(2),[1]}$	+ 0	-0.625	-1.8	175	-0.4869)
$\widehat{A}^{(2),[1]}_{-+-+}$	-+ 0	-0.625	-2.7	759	-5.0018	3 0.1807
$P^{(2),[1]}_{-+-+}$	+ 0	-0.625	-2.7	759	-5.0018	;
	•		·			
	$\widehat{A}^{(2),[2]}_{+++++}$	$\widehat{A}^{(2),[2]}_{-++}$	2]	$\widehat{A}^{(2)}$	2),[2]	$\widehat{A}^{(2),[2]}_{-+-++}$
ϵ^0	3.6255	-0.06	64	0	2056	0 0269

universal poles

 $P^{(2)} = I^{(2)}A^{(0)} + I^{(1)}A^{(1)}$

[Catani] [Becher,Neubert] [Gnendiger,Signer, Stockinger]

evaluation in the physical region

reduction to MI of Gehrmann, Henn, Lo Presti (or alternatively Papadopoulos, Tommasini, Wever)

00

d_s=2 fully analytic full d_s dep. partially numerical

		$x_1 = \frac{113}{7}, x_2 = -\frac{2}{9} - \frac{2}{9}$	$\frac{i}{19}$, $x_3 = -\frac{1}{7} - \frac{i}{5}$, $x_4 =$	$=\frac{1351150}{13847751}, x_5 = -\frac{919}{566}$	$\frac{071}{867}$.
	s_{12}	$=\frac{113}{7}, s_{23}=-\frac{1526799}{969342}$	$\frac{950}{57}$, $s_{34} = \frac{1023105842}{138882415}$,	$s_{45} = \frac{10392723}{3968069}, s_{15} =$	$-\frac{8362}{32585}.$
	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}_{+++}^{(2),[0]}$	12.5	-9.17716 + 47.12389 i	-107.40046 - 25.96698 i	17.24014 - 221.41370 i	388.44694 - 167.45494 i
$D^{(2),[0]}_{+++}$	12.5	$\textbf{-9.17716} + \textbf{47.12389}\ i$	-107.40046 - 25.96698 i	17.24013 - 221.41373 i	—
$\hat{A}^{(2),[0]}_{-+-++}$	12.5	$\textbf{-9.17716} + \textbf{47.12389}\ i$	-111.02853 - 12.85282 i	-39.80016 - 216.36601 i	342.75366 - 309.25531 <i>i</i>
(2),[0]	12.5	$\textbf{-9.17716} + \textbf{47.12389}\ i$	-111.02853 - 12.85282 i	-39.80018 - 216.36604 i	—
				- -	
	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\tilde{l}^{(2),[1]}_{+++++}$	0	0	-2.5	0.60532 - 12.48936 i	$35.03354 + 9.27449 \ i$
(2),[1]+++++	0	0	-2.5	0.60532 - $12.48936 i$	—
$\tilde{I}^{(2),[1]}_{-++++}$	0	0	-2.5	-7.59409 - 2.99885 i	-0.44360 - 20.85875 i
(2),[1]	0	0	-2.5	-7.59408 - 2.99885 i	—
$\tilde{l}^{(2),[1]}_{+++}$	0	-0.625	-0.65676 - 0.42849 i	$-1.02853 + 0.30760 \ i$	-0.55509 - 6.22641 i
(2),[1]	0	-0.625	-0.65676 - 0.42849 i	$-1.02853 + 0.30760 \ i$	
$\tilde{l}^{(2),[1]}_{-+-++}$	0	-0.625	-0.45984 - 0.97559 i	$1.44962 + 0.53917 \; i$	$-0.62978 + 2.07080 \ i$
(2),[1]	0	-0.625	-0.45984 - 0.97559 i	$1.44962 + 0.53917 \; i$	_

	$\widehat{A}_{+++++}^{(2),[2]}$	$\widehat{A}^{(2),[2]}_{-++++}$	$\widehat{A}^{(2),[2]}_{+++}$	$\widehat{A}^{(2),[2]}_{-+-++}$
ϵ^0	0.60217 - $0.01985 i$	-0.10910 - 0.01807 i	-0.06306 - 0.01305 i	-0.03481 - 0.00699 i

fermion channels preliminary!

$$x_1 = -1, \quad x_2 = \frac{79}{90}, \quad x_3 = \frac{16}{61}, \quad x_4 = \frac{37}{78}, \quad x_5 = \frac{83}{102}.$$

$$s_{12} = -1, \quad s_{23} = -\frac{37}{78}, \quad s_{34} = -\frac{2023381}{3194997}, \quad s_{45} = -\frac{83}{102}, \quad s_{15} = -\frac{193672}{606645}.$$

Leading-colour amplitude:

9

$$\mathcal{A}^{(L)}(1_q, 2_g, 3_g, 4_g, 5_{\bar{q}}) = n^L g_s^3 \sum_{\sigma \in S_3} \left(T^{a_{\sigma(2)}} T^{a_{\sigma(3)}} T^{a_{\sigma(4)}} \right)_{i_1}^{\bar{i}_5} A^{(L)}(1_q, \sigma(2), \sigma(3), \sigma(4), 5_{\bar{q}})$$

$$n = m_{\epsilon} N_c \alpha_s / (4\pi), \quad \alpha_s = g_s^2 / (4\pi), \quad m_{\epsilon} = i (4\pi)^{\epsilon} e^{-\epsilon \gamma_E}$$

checks against poles in CDR

$$\widehat{A}^{(2)}_{\lambda_1\lambda_2\lambda_3\lambda_4\lambda_5} = \frac{A^{(2)}(1_q^{\lambda_1}, 2^{\lambda_2}, 3^{\lambda_3}, 4^{\lambda_4}, 5_{\bar{q}}^{\lambda_5})}{A^{(0)}(1_q^{\lambda_1}, 2^{\lambda_2}, 3^{\lambda_3}, 4^{\lambda_4}, 5_{\bar{q}}^{\lambda_5})}$$

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}_{++++-}^{(2)}$	0	0	-4	-13.5322768031	6.048656403
$P^{(2)}_{++++-}$	0	0	-4	-13.5322768028	_
$\widehat{A}_{+++}^{(2)}$	8	7.9682909085	-52.3927085027	-140.1563714534	47.5687220127
$P^{(2)}_{+++}$	8	7.9682909085	-52.3927085034	-140.1563714829	_
$\widehat{A}_{++-+-}^{(2)}$	8	7.9682909085	-32.2213536407	-47.9234973502	145.9720111187
$P^{(2)}_{++-+-}$	8	7.9682909085	-32.2213536403	-47.9234973889	_
$\widehat{A}_{+-++-}^{(2)}$	8	7.9682909084	-40.8851109385	-87.0299398048	101.2329971544
$P^{(2)}_{+-++-}$	8	7.9682909085	-40.8851109386	-87.0299398374	

fermion channels preliminary!

$$x_1 = -1, \quad x_2 = \frac{79}{90}, \quad x_3 = \frac{16}{61}, \quad x_4 = \frac{37}{78}, \quad x_5 = \frac{83}{102}.$$
$$s_{12} = -1, \quad s_{23} = -\frac{37}{78}, \quad s_{34} = -\frac{2023381}{3194997}, \quad s_{45} = -\frac{83}{102}, \quad s_{15} = -\frac{193672}{606645}.$$

Leading-colour amplitude:

$$\mathcal{A}^{(L)}(1_q, 2_{\bar{q}}, 3_g, 4_Q, 5_{\bar{Q}}) = n^L g_s^3 \left[(T^{a_3})_{i_4}^{\ \bar{i}_2} \delta_{i_1}^{\ \bar{i}_5} A^{(L)}(1_q, 2_{\bar{q}}, 3_g, 4_Q, 5_{\bar{Q}}) + (1 \leftrightarrow 4, 2 \leftrightarrow 5) \right]$$

$$n = m_{\epsilon} N_c \alpha_s / (4\pi), \quad \alpha_s = g_s^2 / (4\pi), \quad m_{\epsilon} = i (4\pi)^{\epsilon} e^{-\epsilon \gamma_E}$$

checks against poles in CDR

$\widehat{A}^{(2)}$	$-\frac{A^{(2)}(1_q^{\lambda_1}, 2_{\bar{q}}^{\lambda_2}, 3_g^{\lambda_3}, 1_{\bar{q}}^{\lambda_2}, 3_g^{\lambda_3}, 1_{\bar{q}}^{\lambda_3}, $	$4_Q^{\lambda_4}, 5_{\bar{Q}}^{\lambda_5})$
$^{\Lambda}\lambda_1\lambda_2\lambda_3\lambda_4\lambda_5$	$\overline{A^{(0)}(1_q^{\lambda_1}, 2_{\bar{q}}^{\lambda_2}, 3_g^{\lambda_3}, $	$\overline{4_Q^{\lambda_4}, 5_{\bar{Q}}^{\lambda_5})}$

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}_{+-++-}^{(2)}$	4.5	2.2831548748	-32.0984879203	-41.3935016796	149.3305056672
$P^{(2)}_{+-++-}$	4.5	2.2831548747	-32.0984879200	-41.3935017002	
$\widehat{A}_{++-}^{(2)}$	4.5	2.2831548747	-4.6165799244	-6.3236903564	-32.0327897453
$P^{(2)}_{++-}$	4.5	2.2831548747	-4.6165799294	-6.3236903481	
$\widehat{A}_{+-+-+}^{(2)}$	4.5	2.2831548747	-38.294786128	-43.5232972386	-56.7196838792
$P^{(2)}_{+-+-+}$	4.5	2.2831548747	-38.294786128	-43.5232972694	
$\widehat{A}_{++}^{(2)}$	4.5	2.2831548747	-26.7131604905	-69.7580529817	22.2365337061
$P^{(2)}_{++}$	4.5	2.2831548747	-26.7131604895	-69.758052969	

can we use this for phenomenology? $\int d\Phi_3 \sum$

 $2\text{Re}(A^{(2)}A^{(0)})$ colour.helicity

the analytic integrands are <u>very</u> large...

proceed numerically?

this was a good option at NLO (BLACKHAT, NJET, GOSAM, OPENLOOPS,...)

also works at two loops see talk from Febres-Cordero

related questions: (quasi) finite integrals local integrals, pure functions...

- universal IR and UV poles not manifest
- large cancellations between topologies
- high rank tensor integrals lead to extremely difficult IBP systems (IBPs are d-dim.)
- need to understand analytic structure better: what is a 'good' basis?

[von Mantueffel, Schabinger, Panzer] [Arkani-Hamed, Bourjaily, Cachazo, Trnka]

back to one-loop

d-dimensional basis (EGKM, OPP etc.)

 $\{1\}+$

 $A_5^{(1)} = \sum^5 \left\{ 1 \right\} + \sum^$

 $\sum^{5} \times \in \{1\} + R + \text{spurious} + \mathcal{O}(\epsilon)$

expansion around
$$d=4$$

rational terms come from \rightarrow
 $\rightarrow \forall \forall V$ poles

[still not quite as good as BDK '93...additional spurious pole cancellations between rational term and bubble coefficients]

an attempt at 2-loops

the pentagon-box sector of our planar integrand has the most complicated integrals

standard gauge theory power counting: 76 integrand coefficients

old version

 $\{k_1.p_1, k_2.p_2, k_2.p_3, \mu_{11}, \mu_{12}, \mu_{22}\}\$

54 non-zero integrand coeffs. 28 non-zero coeffs. at $\mathcal{O}(\epsilon)$

worst case: $(k_2.p_2)^4 \mu_{11}$ (rank 4, | dot)

 $k_2 \cdot n_2 = \langle 5k_2 1]$ $k_1 \cdot n_1 \sim (k_1 - n_1)^2 \propto \operatorname{tr}_+(p_2 k_1 (k_1 - p_{23}) p_4)$

NEW VERSION local numerators $\{k_1.n_1, k_1.n_1^*, k_1.n_2, k_2.n_2^*, \mu_{11}, \mu_{12}, \mu_{22}\}$ (over complete set)

> 55 non-zero integrand coeffs. 4 non-zero coeffs. at $\mathcal{O}(\epsilon)$

> > worst case:

 $k_2.n_2k_1.n_1$ (rank 2)

summary

- two-loop amplitudes from on-shell building blocks:
 - generalised unitarity cuts and integrand reduction in d-dimensions
 - reconstruction of rational functions over finite fields
 - first results for realistic processes. Lots more to do for NNLO

a local integrand **basis**? ['prescriptive unitarity' Bourjaily, Herrmann, Trnka (2017)]

non-planar? [Arkani-Hamed Bourjaily, Cachazo, Postnikov, Trnka (2015)] [Bern, Herrmann, Litsey, Stankowicz, Trnka (2016)] [Bern, Enciso, Ita, Zeng (2017)]

backup

one-loop box example

continue reduction with subtractions $\Delta_{3;123}(k(\tau_1,\tau_2)) = N(k(\tau_1,\tau_2), p_1, p_2, p_3, p_4) - \frac{\Delta_4(k(\tau_1,\tau_2))}{(k(\tau_1,\tau_2) + p_4)^2}$

numerator construction

FDH scheme at two-loops

[Bern, De Freitas, Dixon, Wong (2002)]

$$g^{\mu}{}_{\mu} = d_s$$

c.f. Feynman rules + Feynman gauge and ghosts (scalars)

Tree-amplitudes using **six-dimensional** helicity method

[Cheung, O'Connell (2009)] [Bern, Carrasco, Dennen, Huang, Ita (2011)] [Davies (2012)]

need to capture $\mu_{11}, \mu_{22}, \mu_{12}$

use momentum twistors to deal with the complicated kinematics at $2\rightarrow 3$

[Hodges (2009)]

momentum twistors

[Hodges (2009)]

recall: spinor-helicity SU(2)×SU(2) ~ $p_i^{\mu} \leftrightarrow (\lambda_{\alpha i}, \tilde{\lambda}_i^{\dot{\alpha}})$

$$Z_{iA} = (\lambda_{\alpha}(i), \mu^{\dot{\alpha}}(i))$$

kinematic variables with manifest momentum conservation

or a rational phase space generator

$$W_{i}^{A} = (\tilde{\mu}_{\alpha}(i), \tilde{\lambda}^{\dot{\alpha}}(i)) = \frac{\varepsilon^{ABCD} Z_{(i-1)B} Z_{iC} Z_{(i+1)D}}{\langle i - 1i \rangle \langle ii + 1 \rangle} \Rightarrow \tilde{\lambda}_{(i)^{\dot{\alpha}}} = \frac{\langle i - 1i \rangle \mu^{\dot{\alpha}}(i+1) + \langle i + 1i - 1 \rangle \mu^{\dot{\alpha}}(i) + \langle ii + 1 \rangle \mu^{\dot{\alpha}}(i-1)}{\langle i - 1i \rangle \langle ii + 1 \rangle}$$

$$\implies \sum_{i=1}^{n} \sum_{\alpha \in \mathcal{A}_{\alpha}(i)} \tilde{\lambda}_{\dot{\alpha}}(i) = 0_{\alpha \dot{\alpha}}$$

i=1

manifest UV and IR poles at the integrand level

 $>\!\!\!>\!\!\!\sim$

 $f = (k - k^{*,(1)})^{2}$ $f = (k - k^{*,(2)})^{2}$ $f = (k - k^{*,(2)})^{2}$

remove d-dimensional integrals with UV counterterms

$$\mu_{11}^2 + \frac{1}{u} \left(\begin{array}{c} \star & \mu_{11} + \star & \mu_{11} - \star & \mu_{11} \end{array} \right) = \mathcal{O}(\epsilon)$$

$$\mu_{11}^2 - \frac{1}{s} \left(\begin{array}{c} \star & \mu_{11} \\ \star & \mu_{11} \end{array} \right) = \mathcal{O}(\epsilon)$$

$$\Delta \left(\bigcup \left\{ (k - k^{*,(1)})^2, (k - k^{*,(2)})^2 \right\} + \text{spurious} + \mathcal{O}(\epsilon)$$

$$\Delta \left(\underbrace{} \left\{ 1 \right\} + \text{spurious} + \mathcal{O}(\epsilon). \right)$$

$$\Delta \begin{pmatrix} i+1 \\ i \end{pmatrix} \begin{pmatrix} i \\ -i \end{pmatrix} \{1 - \frac{(k)^2(k - p_{i,i+1})^2}{(k + p_{1,i-1})^2(k + p_{1,i-1} - p_{1,2})^2}\} + \text{spurious} + \mathcal{O}(\epsilon).$$

$$\Delta \begin{pmatrix} 2 \\ -i \end{pmatrix} \{1, \mu_{11}\} + \text{spurious} + \mathcal{O}(\epsilon).$$

