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Multi-scale two-loop amplitudes in QCD

I Precise measurements with few percent uncertainties at
the LHC are to become common place

I Mature set of tools for computing NLO QCD and EW
corrections will need to be upgraded to handle NNLO
QCD corrections for a wide variety of multi-scale processes

I We develop the multi-loop numerical unitarity method to
compute needed multi-parton two-loop amplitudes

I First results for 5-gluon two-loop amplitudes show
potential to tackle many processes in the SM and beyond
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Key building blocks for NNLO QCD corrections

I Strategy to handle and cancel IR divergences

I Two-loop matrix elements

I Many recent advances and complete calculations (e.g. tt̄, 2j,
V V ′, V j, HH, etc)

I Several well-developed approaches
I Antenna subtraction
I ColorfulNNLO
I Nested soft-collinear subtractions
I N-Jettiness slicing
I Projection to born
I qT slicing
I SecToR Improved Phase sPacE for real Radiation
I · · ·

I Different degrees of automation, we might have public tools in
the near future
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Key building blocks for NNLO QCD corrections

I Strategy to handle and cancel IR divergences

I Two-loop matrix elements

I Great steps towards understanding mechanisms to compute
multi-scale master Feynman integrals, including insights into
functional forms over the last few years

I Integrand reduction techniques have shown power to tackle
5-point amplitudes [Badger, Brønnum-Hansen, Hartanto, Peraro ’17];
also see recent progress with the IBP reduction approach
[Boels, Jin, Luo ’18], [Chawdhry, Lim, Mitov ’18]. Here we focus on the
numerical unitarity method
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The standard approach to general two-loop amplitudes

Feynman diagrams

Tensor reduction
[Passarino, Veltman ’79]

IBPs
[Tkachov, Chetyrkin ’81]

Sum of master integrals

A =
∑
Γ∈∆

∑
i∈MΓ

cΓ,iIΓ,i

Differential equations
[Kotikov ’91; Remiddi ’97; Gehrmann, Remiddi ’01; Henn ’13]

Integrated form

General procedure, but:

I Large intermediate
expressions

I Generating IBP relations is
practically difficult

Two-loop numerical unitarity
tries to avoid these issues by:

I Performing reduction and
evaluation simultaneously

I Working numerically
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Diagrammatic decomposition

pb

pt

p̃1

p̃2

p̃3

p̃Ñ−1pN−1

p2

p2

p1

l1

l1 − q1

l1 − q2

l1 − qN−1

l2

l2 − q̃1

l2 − q̃2

l2 − q̃
Ñ−1

l1 + l2 + pb
We write all diagrams Γ as members
of the set ∆

I (Feynman) Diagrams are stripped of particle content and only
edges that carry loop momenta are kept

I Each diagram Γ defines a propagator structure PΓ

I We label inverse propagator sets {ρk} with k ∈ PΓ

I We introduce a partial ordering Γ1 > Γ2 for ancestors and
descendants according to the propagator structures

I Sets of trees labelled TΓ, according to the vertices of Γ
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Example: partial ordering in planar 4-point 2-loop ∆
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The master decomposition at two loops

We start with the decomposition:

A2−loops =
∑
Γ∈∆

∑
i∈MΓ

cΓ,i IΓ,i

which for a numerical unitarity approach is convenient to extend to:

A(`l) =
∑
Γ∈∆

1∏
k∈PΓ

ρk

∑
i∈MΓ∪SΓ

cΓ,imΓ,i(`l)

with master and surface integrands:∫
dD`1d

D`2
(2π)2D

mΓ,i(`l)∏
k∈PΓ

ρk
=

{
IΓ,i for i ∈MΓ ,
0 for i ∈ SΓ .

Implicit dependence on D and Ds for the coefficient functions cΓ,i.

Key ingredients for a unitarity-based numerical calculation:

1. Control propagator powers in integral reductions by using
IBP-vectors [Gluza,Kajda,Kosower 10]

2. parametrize 2-loop integrands (on- and off-shell) through
master/surface decompositions [Ita 15] also [Badger, Larsen, Mastrolia, Zhang]
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Amplitudes through generalized unitarity

Consider the decomposed integrand:

∑
i

ci
mmaster
i (`)

ρ1 · · · ρni

+
∑
j

cj
msurface
j (`)

ρ1 · · · ρnj

=
∑
i

Ni(`)
ρ1 · · · ρni

Factorization on the on-shell surfaces {ρ1, · · · , ρnl} = 0:

∑
i

Ni(`)
ρ1 · · · ρni

−→

And so we get access to the set of (maximal) cut equations, like:

N(Γ, `Γ) ≡
∑
k

ckmΓ,k (`Γ) = ≡ R(Γ, `Γ)
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On-shell phase space and factorization

Each diagram Γ ∈ ∆ also defines an on-shell phase space according to:

`Γl : `l with ρk = 0 for all k ∈ PΓ

One-loop numerical unitarity builds on the fact that on each on-shell
phase space, A(`l) factorizes as a product of trees

Starting at two-loops subleading poles limit this 1-to-1 correspondence

ρ ρ

(a)

ρ

(b)

The subset ∆′ ⊂ ∆ is employed to label the diagrams Γ which lead to a
well defined product of trees! −→ Γ(b) /∈ ∆′
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Leading poles in multi-loop amplitudes

When approaching an on-shell phase space, for each Γ ∈ ∆′

lim
`l→`Γl

A(`l) =
1∏

k∈PΓ
ρk

(
R(Γ, `Γl ) +O(ρk∈PΓ

)
)

and in this limit R(Γ, `Γl ) is given as a product of trees

R(Γ, `Γl ) =
∑

states

∏
k∈TΓ

Atree
k (`Γl )

Notice that the integrand ansatz also diverges in the on-shell
limit, and this allows a triangular approach to find all {cΓ,i}

When a Γ∗ /∈ ∆′ a non-factorizing contribution appears...

12 / 26



Subleading poles: and example, the bubble-box

For a maximal:

N
(

, `cl

)
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(
, `cl

)
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N
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, `fl

)
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)
− 1
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N
(
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)
− 1
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N
(

, `fl

)

(a) (b) (c) (d)

(e) (f) (g)

(h)
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Master/surface decompositions [Ita ’15; Abreu, FFC, Ita, Page, Zeng ’17]

Consider the IBP relation on Γ

0 =

∫ ∏
i

dD`i
∂

∂`νj

[
uνj∏

k∈PΓ
ρk

]
while controlling the propagator structure [Gluza, Kadja, Kosower ’11]

uνj
∂

∂`νj
ρk = fkρk

Write ansatz for uνj expanded in external and loop momenta, and
find solution to the polynomial equations using Singular

Build a full set of surface terms and fill the rest of the space with
master integrands

Related [Georgoudis, Larsen, Zhang ’16]
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A simple example for surface terms: Part 1

Consider the 1-loop 1-mass triangle with

ρ1 = (`+ p1)2, ρ2 = `2, ρ3 = (`− p2)2

and we construct uν∂/∂`v by parametrizing

uν = uext
1 pν1 + uext

2 pν2 + uloop`ν p1

p2

l

l − p2

l + p1

By constraining the propagator structure, we get the polynomial equation:

(
uext

1 pν1 + uext
2 pν2 + uloop`ν

) ∂

∂`ν

ρ1

ρ2

ρ3

−
f1ρ1

f2ρ2

f3ρ3

 =

0
0
0


We can then show that we have an IBP-generating vector, with
constrained propagator structure:

uν
∂

∂`ν
=
[
(ρ3 − ρ2)pν1 + (ρ1 + ρ2)pν2 + (−s+ 2ρ3 − 2ρ2)`ν

] ∂
∂`ν
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A simple example for surface terms: Part 2

Now we have the surface term:

0 =

∫
dD`

∂

∂lν
uν

ρ1ρ2ρ3
=

∫
dDl

1

ρ1ρ2ρ3

[
−(D−4)−2(D−3)ρ2+2(D−3)ρ3

]
The scalar 1-loop triangle integrand on-shell could be replaced by a
surface term, though commonly it is kept as a master integral.

The IBP relation between the triangle and the s = (p1 + p2)2

bubble is:
−(D − 4)Itri − 2(D − 3)Is-bub = 0

Similar manipulations can be carried out at two loops. More
complicated polynomial relations (syzygy equations) need to be
solved → Singular. Surface terms appear as relatively compact
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On-shell phase spaces and finite fields

I On-shell parametrization
requires solving quadratic
equations over the number
field

I Avoid in Fp with good basis
choice

`21 = (`1 − qi)2 = · · · = 0

`22 = (`2 − qj)2, = · · · = 0

(`1 + `2)
2 = (`1 + `2 − qk)2 = · · · = 0

I Aim: Algebraic momenta in
controlled fashion

I Use adapted coordinates

I Take µk as basis vectors -
coefficients non-algebraic

I Affects scalar product and
state sums

`µl → (ρi, αj , µij)

(µl)
2 = ρl0 −

3∑
v=0

`νl `l ν

`
(D−4)
l = wl,1µ1 + wl,2µ2

`r · `s = `4r · `4s −
2∑

i,j=1

wriw
s
jµij

Related work: [Peraro ’16]
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Other challenges in multi-loop numerical unitarity

I Efficient algorithm to color decompose the amplitude’s
integrand [Ochirov, Page ’16]

I On-the-fly reconstruction of functional dependence on
regulators [Giele, Kunszt, Melnikov ’08], [Peraro ’16]

I Fast implementation of multi-dimensional cuts (through
Berends-Giele off-shell recursions)

I Ensure numerical stability of calculation (through
high-precision arithmetics and exploiting exact kinematics [von

Manteuffel, Schabinger ’14], [Peraro ’16])

I Availability of master integrals (analytic expressions, for 5-pt
examples see [Papadopoulos, Tommasini, Wever ’15], [Gehrmann, Henn,

lo Presti ’15], or employing numerical tools, e.g. SecDec, Fiesta)
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Modular library

We are constructing a C++ framework for D-dimensional
multi-loop numerical unitarity, with a highly modular structure

I Hierarchical relations between propagator structures

I Decompositions of numerator functions into master/surface terms

I Color handling with interaction to algebraic libraries

I Automated construction of cut equations handling subleading poles,
enable with powerful linear system solvers

I Engine to solve off-shell recursions to compute trees and multi-loop
cuts

I Toolkit to handle kinematic structures using high-precision and
exact arithmetics

I D-dimensional on-shell phase spaces generator

I Machinery for univariate functional reconstruction

I Integral library

Dependencies like GiNaC, Givaro, GMP, Lapack, MPACK, QD
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The planar two-loop four-point hierarchy

In total there are 14 master integral coefficients
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Two-loop four-gluon helicity amplitudes

I Originally computed by
[Glover, Oleari,

Tejeda-Yeomans ’01] and

[Bern, de Freitas, Dixon ’02]

I We reproduce results
from analytics

I Floating point 4-pt
calculation shows large
cancellations

I Univariate
reconstruction exploited
to extract (known)
analytic results
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The planar two-loop five-point hierarchy

In total there are 155 master integral coefficients
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Two-loop five-gluon helicity amplitudes

I Full set of IBP-generating vectors produced to parametrize planar
five-point massless integrands. Computing most complicated vector
takes under a second

I Master integral coefficients in finite field, then promoted to Q
I 5-point integrals from [Papadopoulos, Tommasini, Wever ’15] ancillary.

Analytic lower point integrals [Gehrmann, Remiddi ’00]

I We reproduce the expected IR structure of the amplitudes

I Reproduce all-plus [Badger et al ’13], [Gehrmann et al ’15], [Dunbar et al ’16]

I Validated concurrent calculation of [Badger, Brønnum-Hansen, Hartanto,

Peraro ’17]

I Single-threaded calculation in a final field in about 2.5 minutes

sij = {−1,−8,−10,−7,−3}
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Scaling properties of gluon amplitudes

4 6 8 10 12 14 16 18 20
Number of gluons

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
0

10
0

10
1

10
1

T
im

e 
[ 

s 
]

10
2
 Tree amplitude ( ~ n

4
 )

degree 4 polynomial

One loop amplitude ( ~ n
8
 )

degree 6 polynomial

10
-2

 Two loop amplitude (FF) ( ~ n
13

 )

BH2

×10−2

×100

×102

I Polynomial
complexity to
compute
color-ordered
amplitudes

I Asymptotic
regime only for
very large n at 1
and 2 loops

I Good initial
benchmarking
for two-loop
five-point
amplitudes
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Outlook

I Multi-loop numerical unitarity appears as a robust and flexible
method to tackle two-loop calculations relevant for
phenomenology

I We presented results for 4- and 5-gluon helicity amplitudes

I As numerical unitarity methods are less sensitive to the
presence of multiple scales, we expect to study more generic
5-point amplitudes and beyond

I Having exact numerical results can allow the study of analytic
properties of the amplitudes

Thanks!
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