Multi-Loop Numerical Unitarity

Applications to two-loop QCD amplitudes

Fernando Febres Cordero Department of Physics, University of Freiburg

Amplitudes Conference, SLAC, June 2018

In collaboration with Samuel Abreu, Harald Ita, Matthieu Jaquier, Ben Page and Mao Zeng arXiv:1703.05255, arXiv:1703.05273 & arXiv:1712.03946

INTRODUCTION

TWO-LOOP NUMERICAL UNITARITY

RESULTS AND OUTLOOK

Multi-scale two-loop amplitudes in QCD

- Precise measurements with few percent uncertainties at the LHC are to become common place
- Mature set of tools for computing NLO QCD and EW corrections will need to be upgraded to handle NNLO QCD corrections for a wide variety of multi-scale processes
- We develop the multi-loop numerical unitarity method to compute needed multi-parton two-loop amplitudes
- First results for 5-gluon two-loop amplitudes show potential to tackle many processes in the SM and beyond

Key building blocks for NNLO QCD corrections

- Strategy to handle and cancel IR divergences
- Two-loop matrix elements
- ► Many recent advances and complete calculations (e.g. tt̄, 2j, VV', Vj, HH, etc)
- Several well-developed approaches
 - Antenna subtraction
 - ColorfulNNLO
 - Nested soft-collinear subtractions
 - N-Jettiness slicing
 - Projection to born
 - q_T slicing
 - ► SecToR Improved Phase sPacE for real Radiation
 - • •
- Different degrees of automation, we might have public tools in the near future

Key building blocks for NNLO QCD corrections

- Strategy to handle and cancel IR divergences
- Two-loop matrix elements
- Great steps towards understanding mechanisms to compute multi-scale master Feynman integrals, including insights into functional forms over the last few years
- Integrand reduction techniques have shown power to tackle 5-point amplitudes [Badger, Brønnum-Hansen, Hartanto, Peraro '17]; also see recent progress with the IBP reduction approach [Boels, Jin, Luo '18], [Chawdhry, Lim, Mitov '18]. Here we focus on the numerical unitarity method

The standard approach to general two-loop amplitudes

$$A = \sum_{\Gamma \in \Delta} \sum_{i \in M_{\Gamma}} c_{\Gamma,i} I_{\Gamma,i}$$

Differential equations [Kotikov '91; Remiddi '97; Gehrmann, Remiddi '01; Henn '13]

> ↓ Integrated form

General procedure, but:

- Large intermediate expressions
- Generating IBP relations is practically difficult

Two-loop numerical unitarity

tries to avoid these issues by:

- Performing reduction and evaluation simultaneously
- ► Working numerically

INTRODUCTION

TWO-LOOP NUMERICAL UNITARITY

RESULTS AND OUTLOOK

Diagrammatic decomposition

We write all diagrams Γ as members of the set Δ

- (Feynman) Diagrams are stripped of particle content and only edges that carry loop momenta are kept
- Each diagram Γ defines a propagator structure P_{Γ}
- We label inverse propagator sets $\{\rho_k\}$ with $k \in P_{\Gamma}$
- We introduce a partial ordering Γ₁ > Γ₂ for ancestors and descendants according to the propagator structures
- Sets of trees labelled T_{Γ} , according to the vertices of Γ

Example: partial ordering in planar 4-point 2-loop Δ

The master decomposition at two loops

We start with the decomposition:

$$\mathcal{A}^{2-\text{loops}} = \sum_{\Gamma \in \Delta} \sum_{i \in M_{\Gamma}} c_{\Gamma,i} I_{\Gamma,i}$$

which for a numerical unitarity approach is convenient to extend to:

$$\mathcal{A}(\ell_l) = \sum_{\Gamma \in \Delta} \frac{1}{\prod_{k \in P_{\Gamma}} \rho_k} \sum_{i \in M_{\Gamma} \cup S_{\Gamma}} c_{\Gamma,i} m_{\Gamma,i}(\ell_l)$$

with *master* and *surface* integrands:

$$\int \frac{d^D \ell_1 d^D \ell_2}{(2\pi)^{2D}} \, \frac{m_{\Gamma,i}(\ell_l)}{\prod_{k \in P_\Gamma} \rho_k} = \left\{ \begin{array}{ll} I_{\Gamma,i} & \text{for} & i \in M_\Gamma \,, \\ 0 & \text{for} & i \in S_\Gamma \,. \end{array} \right.$$

Implicit dependence on D and D_s for the coefficient functions $c_{\Gamma,i}$.

Key ingredients for a unitarity-based numerical calculation:

- Control propagator powers in integral reductions by using IBP-vectors [Gluza,Kajda,Kosower 10]
- parametrize 2-loop integrands (on- and off-shell) through master/surface decompositions [Ita 15] also [Badger, Larsen, Mastrolia, Zhang]

Amplitudes through generalized unitarity

Consider the decomposed integrand:

$$\sum_{i} c_{i} \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} + \sum_{j} c_{j} \frac{m_{j}^{\text{surface}}(\ell)}{\rho_{1} \cdots \rho_{n_{j}}} = \sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}}$$

Amplitudes through generalized unitarity

Consider the decomposed integrand:

$$\sum_{i} c_{i} \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} + \sum_{j} c_{j} \frac{m_{j}^{\text{surface}}(\ell)}{\rho_{1} \cdots \rho_{n_{j}}} = \sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}}$$

Factorization on the on-shell surfaces $\{\rho_1, \cdots, \rho_{n_l}\} = 0$:

Amplitudes through generalized unitarity

Consider the decomposed integrand:

$$\sum_{i} c_{i} \frac{m_{i}^{\text{master}}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}} + \sum_{j} c_{j} \frac{m_{j}^{\text{surface}}(\ell)}{\rho_{1} \cdots \rho_{n_{j}}} = \sum_{i} \frac{\mathcal{N}_{i}(\ell)}{\rho_{1} \cdots \rho_{n_{i}}}$$

Factorization on the on-shell surfaces $\{\rho_1, \cdots, \rho_{n_l}\} = 0$:

And so we get access to the set of (maximal) cut equations, like:

$$N(\Gamma, \ell_{\Gamma}) \equiv \sum_{k} c_{k} m_{\Gamma,k} \left(\ell_{\Gamma} \right) = \boxed{\frac{1}{1 + 1}} \equiv R(\Gamma, \ell_{\Gamma})$$

On-shell phase space and factorization

Each diagram $\Gamma \in \Delta$ also defines an *on-shell* phase space according to:

$$\ell_l^{\Gamma}: \quad \ell_l \quad \text{with} \quad \rho_k = 0 \quad \text{for all} \quad k \in P_{\Gamma}$$

One-loop numerical unitarity builds on the fact that on each on-shell phase space, $\mathcal{A}(\ell_l)$ factorizes as a product of trees

Starting at two-loops subleading poles limit this 1-to-1 correspondence

The subset $\Delta' \subset \Delta$ is employed to label the diagrams Γ which lead to a well defined product of trees! $\longrightarrow \Gamma^{(b)} \notin \Delta'$

Leading poles in multi-loop amplitudes

When approaching an on-shell phase space, for each $\Gamma \in \Delta'$

$$\lim_{\ell_l \to \ell_l^{\Gamma}} \mathcal{A}(\ell_l) = \frac{1}{\prod_{k \in P_{\Gamma}} \rho_k} \left(R(\Gamma, \ell_l^{\Gamma}) + \mathcal{O}(\rho_{k \in P_{\Gamma}}) \right)$$

and in this limit $R(\Gamma, \ell_l^{\Gamma})$ is given as a product of trees

$$R(\Gamma, \ell_l^{\Gamma}) = \sum_{\text{states}} \prod_{k \in T_{\Gamma}} \mathcal{A}_k^{\text{tree}}(\ell_l^{\Gamma})$$

Notice that the integrand *ansatz* also diverges in the on-shell limit, and this allows a triangular approach to find all $\{c_{\Gamma,i}\}$

When a $\Gamma^* \notin \Delta'$ a non-factorizing contribution appears...

For a maximal:

$$N\left(\mathbf{H}, \ell_l^{\rm c}\right) = R\left(\mathbf{H}, \ell_l^{\rm c}\right)$$

For a maximal:

$$N\left(\widecheck{H},\ell_l^{\mathrm{c}}
ight) = R\left(\widecheck{H},\ell_l^{\mathrm{c}}
ight)$$

For a next-to-maximal:

$$\begin{split} & N\left({\sum}, \ell_l^{\rm f}\right) = R\left({\sum}, \ell_l^{\rm f}\right) \\ & -\frac{1}{\rho_{\rm fb}} N\left({\sum}, \ell_1^{\rm f}\right) - \frac{1}{\rho_{\rm fc}} N\left({\sum}, \ell_l^{\rm f}\right) \end{split}$$

For a maximal:

$$N\left(\widecheck{H},\ell_l^{\mathrm{c}}
ight) = R\left(\widecheck{H},\ell_l^{\mathrm{c}}
ight)$$

For a next-to-maximal:

$$\begin{split} & N\left({\sum}, \ell_l^{\rm f}\right) = R\left({\sum}, \ell_l^{\rm f}\right) \\ & -\frac{1}{\rho_{\rm fb}} N\left({\sum}, \ell_1^{\rm f}\right) - \frac{1}{\rho_{\rm fc}} N\left({\sum}, \ell_l^{\rm f}\right) \end{split}$$

And for the combined single-pole diagram an bubble-box:

$$\begin{split} N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) &+ \frac{1}{\rho_{\mathrm{he}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) = R\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) \\ &- \frac{1}{\rho_{\mathrm{hf}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) - \frac{1}{\rho_{\mathrm{hg}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) - \frac{1}{(\rho_{\mathrm{he}})^{2}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) \\ &- \frac{1}{\rho_{\mathrm{hf}}\rho_{\mathrm{fb}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) - \frac{1}{\rho_{\mathrm{hf}}\rho_{\mathrm{fc}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) - \frac{1}{\rho_{\mathrm{hg}}\rho_{\mathrm{gd}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) \end{split}$$

Master/surface decompositions

Consider the IBP relation on Γ

$$0 = \int \prod_{i} d^{D} \ell_{i} \frac{\partial}{\partial \ell_{j}^{\nu}} \left[\frac{u_{j}^{\nu}}{\prod_{k \in P_{\Gamma}} \rho_{k}} \right]$$

while controlling the propagator structure [Gluza, Kadja, Kosower '11]

$$u_j^{\nu} \frac{\partial}{\partial \ell_j^{\nu}} \rho_k = f_k \rho_k$$

Write ansatz for u_j^{ν} expanded in external and loop momenta, and find solution to the polynomial equations using SINGULAR

Build a full set of surface terms and fill the rest of the space with master integrands

Related [Georgoudis, Larsen, Zhang '16]

A simple example for surface terms: Part 1

Consider the 1-loop 1-mass triangle with

$$\rho_1 = (\ell + p_1)^2, \quad \rho_2 = \ell^2, \quad \rho_3 = (\ell - p_2)^2$$

and we construct $u^{\nu}\partial/\partial\ell^{v}$ by parametrizing

$$u^{\nu} = u_1^{\text{ext}} p_1^{\nu} + u_2^{\text{ext}} p_2^{\nu} + u^{\text{loop}} \ell^{\nu}$$

By constraining the propagator structure, we get the polynomial equation:

$$\left(u_1^{\text{ext}} p_1^{\nu} + u_2^{\text{ext}} p_2^{\nu} + u^{\text{loop}} \ell^{\nu}\right) \frac{\partial}{\partial \ell^{\nu}} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{pmatrix} - \begin{pmatrix} f_1 \rho_1 \\ f_2 \rho_2 \\ f_3 \rho_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

We can then show that we have an IBP-generating vector, with constrained propagator structure:

$$u^{\nu}\frac{\partial}{\partial\ell^{\nu}} = \left[(\rho_{3} - \rho_{2})p_{1}^{\nu} + (\rho_{1} + \rho_{2})p_{2}^{\nu} + (-s + 2\rho_{3} - 2\rho_{2})\ell^{\nu} \right] \frac{\partial}{\partial\ell^{\nu}}$$

A simple example for surface terms: Part 2

Now we have the surface term:

$$0 = \int d^D \ell \frac{\partial}{\partial l^{\nu}} \frac{u^{\nu}}{\rho_1 \rho_2 \rho_3} = \int d^D l \frac{1}{\rho_1 \rho_2 \rho_3} \left[-(D-4) - 2(D-3)\rho_2 + 2(D-3)\rho_3 \right]$$

The scalar 1-loop triangle integrand on-shell could be replaced by a surface term, though commonly it is kept as a master integral.

The IBP relation between the triangle and the $s = (p_1 + p_2)^2$ bubble is:

$$-(D-4)I_{\rm tri} - 2(D-3)I_{\rm s-bub} = 0$$

Similar manipulations can be carried out at two loops. More complicated polynomial relations (*syzygy* equations) need to be solved \rightarrow SINGULAR. Surface terms appear as relatively compact

On-shell phase spaces and finite fields

- On-shell parametrization requires solving quadratic equations over the number field
- ► Avoid in F_p with good basis choice
- Aim: Algebraic momenta in controlled fashion
- Use adapted coordinates
- ► Take µ_k as basis vectors coefficients non-algebraic
- Affects scalar product and state sums

$$\ell_1^2 = (\ell_1 - q_i)^2 = \dots = 0$$

$$\ell_2^2 = (\ell_2 - q_j)^2, = \dots = 0$$

$$(\ell_1 + \ell_2)^2 = (\ell_1 + \ell_2 - q_k)^2 = \dots = 0$$

$$\ell_l^{\mu} \to (\rho_i, \alpha_j, \mu_{ij})$$
$$(\mu_l)^2 = \rho_{l0} - \sum_{\nu=0}^3 \ell_l^{\nu} \ell_{l\nu}$$
$$\ell_l^{(D-4)} = w_{l,1} \mu_1 + w_{l,2} \mu_2$$

$$\ell_r \cdot \ell_s = \ell_r^4 \cdot \ell_s^4 - \sum_{i,j=1}^2 w_i^r w_j^s \mu_{ij}$$

Related work: [Peraro '16]

Other challenges in multi-loop numerical unitarity

- Efficient algorithm to color decompose the amplitude's integrand [Ochirov, Page '16]
- On-the-fly reconstruction of functional dependence on regulators [Giele, Kunszt, Melnikov '08], [Peraro '16]
- ► Fast implementation of multi-dimensional cuts (through Berends-Giele off-shell recursions)
- Ensure numerical stability of calculation (through high-precision arithmetics and exploiting exact kinematics [von Manteuffel, Schabinger '14], [Peraro '16])
- Availability of master integrals (analytic expressions, for 5-pt examples see [Papadopoulos, Tommasini, Wever '15], [Gehrmann, Henn, lo Presti '15], or employing numerical tools, e.g. SecDec, Fiesta)

Modular library

We are constructing a C++ framework for D-dimensional multi-loop numerical unitarity, with a highly modular structure

- Hierarchical relations between propagator structures
- Decompositions of numerator functions into master/surface terms
- Color handling with interaction to algebraic libraries
- Automated construction of cut equations handling subleading poles, enable with powerful linear system solvers
- Engine to solve off-shell recursions to compute trees and multi-loop cuts
- Toolkit to handle kinematic structures using high-precision and exact arithmetics
- D-dimensional on-shell phase spaces generator
- Machinery for univariate functional reconstruction
- Integral library

Dependencies like GiNaC, Givaro, GMP, Lapack, MPACK, QD

INTRODUCTION

TWO-LOOP NUMERICAL UNITARITY

RESULTS AND OUTLOOK

20 / 26

The planar two-loop four-point hierarchy

Two-loop four-gluon helicity amplitudes

- Originally computed by [Glover, Oleari, Tejeda-Yeomans '01] and [Bern, de Freitas, Dixon '02]
- We reproduce results from analytics
- Floating point 4-pt calculation shows large cancellations
- Univariate reconstruction exploited to extract (known) analytic results

$\left[\mathcal{A}/(\mathcal{A}_0 N_c^2)(4\pi)^4\right]$	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$(1_g^-, 2_g^+, 3_g^-, 4_g^+)$	8.00000	55.6527	176.009	332.296	486.502
$(1_g^-, 2_g^-, 3_g^+, 4_g^+)$	8.00000	55.6527	164.642	222.327	-8.39044

The planar two-loop five-point hierarchy

In total there are 155 master integral coefficients

Two-loop five-gluon helicity amplitudes

- Full set of IBP-generating vectors produced to parametrize planar five-point massless integrands. Computing most complicated vector takes under a second
- \blacktriangleright Master integral coefficients in finite field, then promoted to $\mathbb Q$
- 5-point integrals from [Papadopoulos, Tommasini, Wever '15] ancillary. Analytic lower point integrals [Gehrmann, Remiddi '00]
- ► We reproduce the expected IR structure of the amplitudes
- ► Reproduce all-plus [Badger et al '13], [Gehrmann et al '15], [Dunbar et al '16]
- Validated concurrent calculation of [Badger, Brønnum-Hansen, Hartanto, Peraro '17]
- Single-threaded calculation in a final field in about 2.5 minutes

$\mathcal{A}^{(2)}/\mathcal{A}^{(0)}$	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$(1^-, 2^-, 3^+, 4^+, 5^+)$	12.5000000	25.46246919	-1152.843107	-4072.938337	-3637.249566
$(1^-, 2^+, 3^-, 4^+, 5^+)$	12.5000000	25.46246919	-6.121629624	-90.22184214	-115.7836685

$$s_{ij} = \{-1, -8, -10, -7, -3\}$$

Scaling properties of gluon amplitudes

- Polynomial complexity to compute color-ordered amplitudes
- Asymptotic regime only for very large n at 1 and 2 loops
- Good initial benchmarking for two-loop five-point amplitudes

Outlook

- Multi-loop numerical unitarity appears as a robust and flexible method to tackle two-loop calculations relevant for phenomenology
- ► We presented results for 4- and 5-gluon helicity amplitudes
- As numerical unitarity methods are less sensitive to the presence of multiple scales, we expect to study more generic 5-point amplitudes and beyond
- Having exact numerical results can allow the study of analytic properties of the amplitudes

Outlook

- Multi-loop numerical unitarity appears as a robust and flexible method to tackle two-loop calculations relevant for phenomenology
- ► We presented results for 4- and 5-gluon helicity amplitudes
- As numerical unitarity methods are less sensitive to the presence of multiple scales, we expect to study more generic 5-point amplitudes and beyond
- Having exact numerical results can allow the study of analytic properties of the amplitudes

