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In the last few years, a lot of progress has been made 
in understanding the analytic structure of multi-loop 
amplitudes

we review what implications that progress has had 
on our understanding of:
— the Regge limit of QCD
— the Regge limit of N=4 Super Yang-Mills (SYM)



In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

Regge limit of QCD

For a tree 4-gluon amplitude, we obtain
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C⌫a⌫a0 (pa, pa0) are called impact factors

we may decompose the amplitude into t-channel SU(3) representations.
For gluon-gluon scattering, it is

we may break the amplitude into even/odd states under s ⇔ u crossing

M(±)(s, t) =
M(s, t)±M(�s� t, t)
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at tree level, and at leading power in t/s, there is only 8a

and only the odd amplitude under s ⇔ u crossing
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At leading logarithmic (LL) accuracy in s/t, there is still only 8a

and loops corrections are obtained by the substitution
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the Regge gluon trajectory is universal, i.e. process independent

in Mellin space, the amplitude displays a (Regge) pole

the exponentiation through a Regge trajectory is called Reggeisation
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The building blocks of the BFKL equation at LL accuracy are

real: the emission of a gluon along the ladder

virtual: the one-loop Regge trajectory
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Building blocks of BFKL at LL accuracy



BFKL resummation

BFKL is a resummation of multiple gluon radiation
out of the gluon exchanged in the t channel

the resummation yields an integral (BFKL) equation for the evolution 
of the gluon propagator in 2-dim transverse momentum space

the LL (Balitski Fadin Kuraev Lipatov 1976-77) and 
Next-to-Leading Logarithmic (Fadin-Lipatov 1998) 
contributions in log(s/|t|) of the radiative corrections to 
the gluon propagator in the t channel are resummed to 
all orders in αs

the BFKL equation is obtained in the limit of strong rapidity ordering
of the emitted gluons, with no ordering in transverse momentum - 
multi-Regge kinematics (MRK)

the solution is a Green’s function of the momenta flowing in and out 
of the gluon ladder exchanged in the t channel



BFKL theory

the BFKL equation describes the evolution of the gluon propagator
in 2-dim transverse momentum space
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note that in N=4 SYM the eigenfunctions and the eigenvalue are the same  
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gluon-gluon (odd) amplitude for 8a

strip colour off & expand at one loop

if factorisation holds, one can obtain the one-loop quark-gluon amplitude 
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit: it does

Regge-pole factorisation

the Regge gluon trajectory is universal, i.e. process independent

Fadin Lipatov 1993

the one-loop gluon impact factor            is a polynomial in t, ε
perform the Regge limit of the quark-quark amplitude 
→ get one-loop quark impact factor C(1)
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Regge-pole factorisation at NLL accuracy

in the Regge limit, the two-loop expansion of the gluon-gluon (odd) amplitude for 8a is

the two-loop Regge gluon trajectory is universal

gluon Reggeisation has been proven at NLL accuracy Fadin Fiore Kozlov Reznichenko 2006
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for the real part of the amplitude, at NLL accuracy in s/t there is still only 8a 

which yields the 2-loop gluon trajectory



Building blocks of BFKL at NLL accuracy
The building blocks of the BFKL equation at NLL accuracy are

RR: the emission of two gluons, or a qq pair, along the ladder

RV: the one-loop correction to the emission of a gluon along the ladder

VV: the two-loop Regge trajectory

Fadin Lipatov 1989
VDD 1996;  Fadin Lipatov 1996

Fadin Lipatov 1993
Fadin Fiore Quartarolo 1994
Fadin Fiore Kotsky 1996
VDD Schmidt 1998

Fadin Fiore Quartarolo 1995
Fadin Fiore Kotsky 1995, 1996
VDD Glover 2001



Mn({pi},↵s) = Zn({pi},↵s, µ)Hn({pi},↵s, µ)

Zn is solution to the RGE equation
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At 2 loops, Δ(2) = 0, 𝚪2 : Catani 1998;  Aybat Dixon Sterman 2006

At 3 loops,
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Infrared factorisation in the Regge limit
we introduce the colour operators 

Ts = Ta +Tb ,

Tt = Ta +Ta0 ,

Tu = Ta +Tb0

Ta +Tb +Ta0 +Tb0 = 0

colour and ln(s/t) dependence are in the operator Z̃

which is determined by the cusp anomalous dimension and by Q, through
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comparing infrared and Regge factorizations

the pole terms of the Regge trajectory are fixed by the operator K
and thus by the cusp anomalous dimension Korchemskaya Korchemsky 1994

the pole terms of the (one-loop) impact factor are fixed 
by the cusp and collinear anomalous dimensions 

VDD Falcioni Magnea Vernazza 2014

VDD Duhr Gardi Magnea White 2011

in infrared factorisation, gluon Reggeisation at LL and NLL accuracy
is due to the operator    being diagonal in the t-channel colour basisZ̃



a mysterious relation …

in infrared factorisation, we have a precise knowledge of how the infrared poles in ε
occur in the impact factors and in the Regge trajectory.
Their finite parts, though, are treated as free parameters

the Regge limit is an expansion in ln(s/t) and is valid to all orders of ε  

the two-loop Regge trajectory is

the O(ε) term of the one-loop gluon impact factor predicts
the O(ε0) term of the two-loop Regge trajectory

VDD 2017

Fadin Fiore 1992
Fadin Lipatov 1993
Bern VDD Schmidt 1998
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What is the O(ε0) term of the two-loop Regge trajectory?

Why does the O(ε) term of the one-loop gluon impact factor know
the O(ε0) term of the two-loop Regge trajectory?

In planar N=4 SYM, the BDS ansatz fixes the O(ε0) term of
the Regge trajectory to be the gluon collinear anomalous dimension

↵(l)
N=4(✏) = 2l�1 ↵(1)(l✏)
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f (l)
0 + ✏f (l)

1
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Drummond Korchemsky Sokatchev 2007
Naculich Schnitzer 2007
VDD Glover 2008

In QCD, the eikonal anomalous dimension, the collinear anomalous
dimension on a polygonal Wilson loop, the threshold soft anomalous
dimension in SCET, the D term in threshold resummation, all include
a block which up to the ζ3 term coincide with the O(ε0) term of the 
Regge trajectory

the ``eikonal” anomalous dimension of Erdogan Sterman 2011 agrees
with the O(ε0) term of the Regge trajectory

it hints at more structure in infrared factorisation than we currently know
(perhaps related to this being a two-hard-scale problem)



Regge-pole factorisation breaks at NNLO

at LL accuracy for the amplitude, and at NLL accuracy for the real part of the amplitude,
Regge-pole factorisation is based on the t-channel exchange of 8a only as one Reggeised gluon

one can see in 3 ways that this is not correct at NNLO:

—  if pole factorisation holds, one can obtain the two-loop quark-gluon amplitude 
by assembling the two-loop Regge trajectory and gluon and quark impact factors.
The result should match the quark-gluon amplitude in the high-energy limit.
It doesn’t by an Nc-subleading π2/ε2 factor VDD Glover 2001

— in infrared factorisation at NNLL accuracy,
the operator    is non-diagonal in the t-channel colour basisZ̃

— at NNLO, the picture based on one Reggeised-gluon exchange breaks down.
Using the Balitsky-JIMWLK rapidity evolution equation, or a direct computation,
one can see that a Nc-subleading 3-Reggeised-gluons exchange occurs at NNLO
and NNLL accuracy

VDD Duhr Gardi Magnea White 2011
VDD Falcioni Magnea Vernazza 2014

Caron-Huot Gardi Vernazza 2017
Fadin Lipatov 2017

It is still possible, though, to define a 2-loop impact factor,
based on one Reggeised-gluon exchange VDD Falcioni Magnea Vernazza 2014

Caron-Huot Gardi Vernazza 2017



Regge factorisation at 2 loops

in the Regge limit, the two-loop expansion of the gluon-gluon (odd) amplitude for 8a is
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Regge factorisation at NNLL accuracy

M(2,0,�) : 8a, Regge pole, one Reggeised gluon
8a, Regge cut, three Reggeised gluons (Nc-subleading)

M(3,1,�) : 8a, Regge pole, one Reggeised gluon
8a, Regge cut, three Reggeised gluons
           , Regge cut, three Reggeised gluons10� 10

Henn Mistlberger 2016

M(1,0,+) :

M(2,1,+) :

8s, Regge pole, one Reggeised gluon
1 and 27, Regge cut, two Reggeised gluons

the Nc-subleading pole-factorisation violation (8a, Regge cut, three Reggeised gluons)
predicted for               in VDD Falcioni Magnea Vernazza 2014
confirmed by the 3-loop 4-pt amplitude computation in full N=4 SYM

M(3,1,�)

1 and 27, Regge cut, two Reggeised gluons

one must also consider the imaginary parts at NLL accuracy,
since their squares would be relevant to resummations at NNLL accuracy

Caron-Huot Gardi Reichel Vernazza 2017

finally, we may ignore        since it contributes to the imaginary parts at NNLL accuracy, 
and to the real parts at N3LL accuracy

Q(3)
�

Caron-Huot Gardi Vernazza 2017

Caron-Huot Gardi Vernazza 2017



The building blocks of a would-be BFKL ladder at NNLL accuracy

RRR: the emission of three partons along the ladder

RRV: the one-loop correction to the emission of two gluons, or a qq pair, along the ladder

VVV: the three-loop Regge trajectory

VDD Frizzo Maltoni 1999

Caron-Huot Gardi Vernazza 2017

RVV: the two-loop correction to the emission of a gluon along the ladder

Building blocks of BFKL at NNLL accuracy

still unknown



Planar N=4 Super Yang Mills

In the last years, a huge progress has been made in understanding 
the analytic structure of the S-matrix of planar N=4 SYM 

Besides the ordinary conformal symmetry,
in the planar limit the S-matrix exhibits a dual conformal symmetry

Accordingly, the analytic structure of the scattering amplitudes is
highly constraint

Drummond Henn Smirnov Sokatchev 2006

4- and 5-point amplitudes are fixed to all loops by the symmetries
in terms of the one-loop amplitudes and the cusp anomalous dimension

Anastasiou Bern Dixon Kosower 2003, Bern Dixon Smirnov 2005
Drummond Henn Korchemsky Sokatchev 2007

Beyond 5 points, the finite part of the amplitudes is given in terms of a 
remainder function R. The symmetries only fix the variables of R (some 
conformally invariant cross ratios) but not the analytic dependence of R 
on them



for n = 6, the conformally invariant cross ratios are

thus x2
k,k+r = (pk + . . . + pk+r�1)2

u1 =
x2

13x
2
46

x2
14x

2
36

u2 =
x2

24x
2
15

x2
25x

2
14

u3 =
x2

35x
2
26

x2
36x

2
25

1

2

6

3

4

5
pi = xi � xi+1xi are variables in a dual space s.t.

for n points, dual conformal invariance implies dependence on 3n-15 
independent cross ratios

u1i =
x

2
i+1,i+5x

2
i+2,i+4

x

2
i+1,i+4x

2
i+2,i+5

, u2i =
x

2
N,i+3x

2
1,i+2

x

2
N,i+2x

2
1,i+3

, u3i =
x

2
1 i+4x

2
2,i+3

x

2
1,i+3x

2
2,i+4



Amplitudes in multi-Regge kinematics (MRK) at LL accuracy factorise 
in terms of building blocks, which are expressed through Regge poles 
and can be determined through the 4-pt and 5-pt amplitudes

Brower Nastase Schnitzer Tan; Bartels Lipatov Sabio-Vera; VDD Duhr Glover 2008

If, before taking the multi-Regge limit, we analytically continue to 
regions of the Minkowski space where some Mandelstam invariants
may pick up a phase, the amplitude may develop cuts,
due to 2-Reggeon exchange.
The discontinuity of the amplitude is described by a dispersion relation
for the adjoint, which is similar to the singlet BFKL equation in QCD

Bartels Lipatov Sabio-Vera 2008

Multi-Regge kinematics in planar N=4 SYM

In planar N=4 SYM, the symmetries (BDS ansatz) fix the 4-pt and 
5-pt amplitudes to all orders. Thus, it comes as no surprise that
(in the Euclidean region) the remainder functions R vanish at all points



The building blocks of the BFKL equation at LL accuracy are

real: the emission of a gluon along the ladder

virtual: the one-loop Regge trajectory
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in MRK, there is no ordering in transverse momentum,
i.e. only the n-2 transverse momenta are non-trivial

dual conformal invariance in transverse momentum space
implies dependence on n-5 cross ratios of the transverse 
momenta 

zi =
(x1 � xi+3) (xi+2 � xi+1)

(x1 � xi+1) (xi+2 � xi+3)
= � qi+1 ki

qi�1 ki+1
i = 1, . . . , n� 5

ℳ0,p = space of configurations of p points on the Riemann sphere

Moduli space of Riemann spheres

ℳ0,n-2 is the space of the n-pt amplitudes in MRK, with dim(ℳ0,n-2) = n-5

Because we can fix 3 points at 0, 1, ∞, its dimension is dim(ℳ0,p)= p-3

Its coordinates can be chosen to be the zi’s,
i.e. the cross ratios of the transverse momenta

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

on ℳ0,n-2,  the singularities are associated to degenerate configurations
when two points merge xi → xi+1

i.e. when momentum pi becomes soft  pi → 0

see Y. Geyer’s talk



Iterated integrals on ℳ0,n-2

iterated integrals on ℳ0,p can be written as multiple polylogarithms (MPL)
Brown 2006amplitudes in MRK can be written in terms of MPLs

except for the soft limit pi → 0, in MRK the transverse momenta never vanish

�(M) = ln |xi � xj |2 ⌦ . . .
dual conformal invariance requires that the first entry be a cross ratio
in particular, for amplitudes in MRK

|xi � xj |2 6= 0 single-valued functions

thus, n-point amplitudes in MRK of planar N=4 SYM can be written
in terms of single-valued iterated integrals on ℳ0,n-2

for n=6, iterated integrals on ℳ0,4 are harmonic polylogarithms
so, 6-point amplitudes in MRK of can be written in terms of
single-valued harmonic polylogarithms (SVHPL) Dixon Duhr Pennington 2012

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

unitarity implies that for massless amplitudes
�(M) = ln(sij)⌦ . . .



analytic structure of amplitudes is constrained by unitarity Disc(M) = iMM†

massless amplitudes may have branch points when Mandelstam invariants
vanish sij → 0 or become infinite sij → ∞
discontinuity acts in the first entry of the coproduct �Disc = (Disc⌦ id)�

Unitarity on massless amplitudes

then the coproduct of an amplitude is related to unitarity,
and for massless amplitudes �(M) = ln(sij)⌦ . . .

 Duhr 2012

see A. McLeod’s talk



MRK at LL accuracy

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

for MHV amplitudes in MRK at LL accuracy at:
• at 2 loop, the n-pt remainder function Rn(2) can be written as a sum 

of 2-loop 6-pt remainder functions R6(2)

• …
• …
• at 5 loops,  the n-pt remainder function Rn(5) can be written as a 

sum of 5-loop 6-, 7-, 8- and 9-pt amplitudes

In MRK, 6-pt MHV and NMHV amplitudes are known at any number of loops
Lipatov Prygarin 2010-2011
Dixon Duhr Pennington 2012
Lipatov Prygarin Schnitzer 2012

knowing the space of functions of the n-point amplitudes in MRK, 
(i.e. that is made of single-valued iterated integrals on ℳ0,n-2)
allowed us to compute all MHV amplitudes at ℓ loops in LL accuracy
in terms of amplitudes with up to (ℓ+4) points, in practice up to 5 loops,
and all non-MHV amplitudes in LL accuracy up 8 points and 4 loops

Prygarin Spradlin Vergu Volovich 2011
Bartels Kormilitzin Lipatov Prygarin 2011
Bargheer Papathanasiou Schomerus 2015

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

MRK factorisation works also for non-MHV amplitudes,
however at each loop the number of building blocks is infinite



Beyond the LL accuracy

The building blocks of 6-pt amplitudes:
impact factors and 2-Reggeon exchange,
have been determined at finite coupling

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2018

Basso Caron-Huot Sever 2014
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Beyond 6 points, the only additional building block
is the central-emission vertex. 
That has been determined at NLO, which allows for
computing the 7-pt amplitudes at NLL accuracy



Mueller & Navelet  evaluated analytically the inclusive dijet cross section 
up to 5 loops. We evaluated it analytically up to 13 loops

The singlet LL BFKL ladder in QCD, and thus the dijet cross section
in the high-energy limit, can also be expressed in terms of SVHPLs, 
i.e. in terms of single-valued iterated integrals on ℳ0,4

VDD Dixon Duhr Pennington 2013

Also, we could evaluate analytically the dijet cross section differential
in the jet transverse energies or the azimuthal angle between the jets
(up to 6 loops)

BFKL eigenvalue at LL accuracy in QCD



At NLL accuracy in QCD and in N=4 SYM, the eigenvalue is 

Fadin Lipatov 1998
Kotikov Lipatov 2000, 2002

with one-loop beta function and two-loop cusp anomalous dimension

and with
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BFKL eigenvalue at NLL accuracy in QCD



At NLL accuracy, the BFKL ladder is 
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the coefficients can be written as
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Fourier-Mellin transform



are SVHPLs of uniform weight k with singularities at z=0 and z=1

C(3)
k (z) are MPLs of type G(a1, . . . , an; |z|) with ak 2 {�i, 0, i}

they are SV functions of z because they have no branch cut on the positive real axis,
and have weight 0 ≤ w ≤ k

C(1)
k (z)

C(2)
k (z) one needs Schnetz’ generalised SVMPLs with singularities at

z =
↵ z̄ + �

� z̄ + �
, ↵,�, �, � 2 C

For
Schnetz 2016

are Schnetz’ generalised SVMPLsthen one can show that C(2)
k (z)

with singularities atG(a1, . . . , an; z) ai 2 {�1, 0, 1,�1/z̄}
VDD Duhr Marzucca Verbeek 2017

Interestingly, in transverse momentum space at NLL accuracy, the maximal weight 
of the BFKL ladder in QCD is not the same as the one of the ladder in N=4 SYM

In moment space, the maximal weight of the BFKL eigenvalue and of 
the anomalous dimensions of the leading twist operators which control 
the Bjorken scaling violations in QCD is the same as the corresponding
quantities in N=4 SYM (Principle of Maximal Transcendentality) Kotikov Lipatov 2000, 2002

Kotikov Lipatov Velizhanin 2003

SV functions

VDD Duhr Marzucca Verbeek 2017

see B. Penante’s talk



one can consider the BFKL eigenvalue at NLL accuracy in a SU(Nc) gauge theory
with scalar or fermionic matter in arbitrary representations
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BFKL ladder in a generic SU(Nc) gauge theory

number of  scalars (Weyl fermions) in the representation Rñs(ñf ) =
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Necessary and sufficient conditions for a SU(Nc) gauge theory to have a BFKL ladder
of maximal weight are:

— the one-loop beta function must vanish
— the two-loop cusp AD must be proportional to ζ2

—         must vanish  →  �(3,2)⌫n

There is no theory whose BFKL ladder has uniform maximal weight which agrees 
with the maximal weight terms of QCD

2Ñf = N2
c + Ñs

VDD Duhr Marzucca Verbeek 2017



Matter in the fundamental and in the adjoint

We solve the conditions above for matter in the fundamental F and in the adjoint A
representations. We obtain:

2nF
f = nF

s 2nA
f = 2 + nA

s

which describes the spectrum of a gauge theory with N supersymmetries
and nF = nfF chiral multiplets in F and nA = nfA - N chiral multiplets in A

There are four solutions to those conditions

— the first is N=4 SYM
— the second is N=2 superconformal QCD with Nf = 2Nc hypermultiplets
— the third is N=1 superconf. QCD

because the one-loop beta function is fixed by matter loops in gluon self-energies,
we are only sensitive to the matter content of a theory, and not to its details
(like scalar potential or Yukawa couplings)

VDD Duhr Marzucca Verbeek 2017





Lipatov large Nc picture

In MRK, amplitudes of QCD in the large Nc limit and amplitudes of 
planar N=4 SYM are described by similar (BFKL-like) Hamiltonians,
corresponding to the t-channel exchange of n Reggeons

Lipatov 1993 - 2009

those Hamiltonians coincide with the Hamiltonian 
of an integrable Heisenberg spin chain Lipatov 1994

Faddeev Korchemsky 1995

the Hamiltonians differ only by the boundary conditions, which one
chooses for the t-channel exchange of an adjoint (→ open spin chain)
in planar N=4 SYM, or of a singlet (→ closed spin chain) in large Nc QCD

the simplest case is the t-channel exchange of two Reggeons
(→ two links on the spin chain), which corresponds to the BFKL
equation in QCD and to the 6-pt amplitude in planar N=4 SYM

h12 = ln(p1p2) +
1
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ln(⇢12)p1 +
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p2
ln(⇢12)p2 � 2 (1)h =

nX

i=1

hi,i+1H = h+ h⇤

⇢12 = ⇢1 � ⇢2 ⇢k = xk + iyk pk = i
@

@⇢k

hn,1 ! ln
p1pn
q2

singlet adjoint



continue to a Minkowski region

s, s4567, s56 > 0
s34, s45, s67, s78 < 0

Double discontinuity of the amplitude in MRK

8-pt amplitude
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impact factor 

in planar N=4 SYM, 3-Reggeon exchange
starts occurring with the 8-pt amplitude.
We need take the double discontinuity

=

we examined the double discontinuity
of two-loop amplitudes, and found that
it is determined to any number of points
by building blocks which appear through
9 points.

This is consistent with the picture above: the building blocks 
of double Disc are impact factors and 3-Reggeon exchange. 
Beyond 8 points, the only additional building block
is the central-emission vertex, occurring at 9 points

Caron-Huot VDD Duhr Dulat Penante, in preparation



Conclusions

In QCD, amplitudes in the Regge limit features one-Reggeon exchange
through NLL accuracy (for the real part, and 2-Reggeon exchange for
the imaginary part)

3-Reggeon exchange appears in Nc-subleading pieces at NNLL accuracy
Although we are far from having a BFKL ladder,
we understand the NNLL context in which it would arise

In analogy to planar N=4 SYM, the functions which characterise
the BFKL ladder in QCD are single-valued functions,
specifically (generalised) SVMPLs

In planar N=4 SYM, 2-Reggeon exchange is understood, even at
finite coupling (where we just miss the central-emission vertex).
At weak coupling, we know amplitudes at LL and NLL accuracy,
in terms of SVMPLs

We have just begun exploring 3-Reggeon exchange



Back-up slides



Factorisation in MRK at LL accuracy

For the helicities h1, …, hN-4 define the ratio

factorisation in MRK at LL accuracy

with 𝛕k = function of cross ratios, and with coefficients

g(i1,...,iN�5)
h1,...,hN�4

(z1, . . . , zN�5) =
(�1)N+1

2

"
N�5Y

k=1

+1X

nk=�1

✓
zk
z̄k

◆nk/2 Z +1

�1

d⌫k
2⇡

|zk|2i⌫kEik
⌫knk

#

⇥ �h1(⌫1, n1)

2

4
N�5Y

j=2

Chj (⌫j�1, nj�1, ⌫j , nj)

3

5 ��hN�4(⌫N�5, nN�5)

where:
the 𝛘’s are the 2 impact factors,
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Factorisation in MRK at LL accuracy implies that the building blocks are:
the impact factors, the 2-Reggeon exchange, and the central-emission vertex



Convolutions

we use the Fouries-Mellin (FM) transform
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through the FM transform of the BFKL eigenvalue

E(z) = F [E⌫n]

we can write the recursion
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example for N=7, with h1 = h2

which connects amplitudes with a different number of legs
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Convolutions and factorization 



in fact, if all indices are zero except for one

g(0,...,0,ia,0,...,0)+...+ (⇢1, . . . , ⇢N�5) = g(ia)++ (⇢a)

which implies that 

which shows, as previously stated, that in MRK at LLA, the 2-loop n-pt remainder function Rn(2) 
can be written as a sum of 2-loop 6-pt amplitudes, in terms of SVHPLs
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At 3 loops, the n-pt remainder function Rn(3) can be written
as a sum of 3-loop 6-pt and 7-pt amplitudes
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Note that Rn(3) cannot be written only in terms of SVHPLs, but SVMPLs are necessary



Mueller-Navelet jets

pa = xaPA pb = xbPB

Dijet production cross section with two tagging 
jets in the forward and backward directions

incoming parton momenta

S:  hadron centre-of-mass energy

s = xaxbS:  parton centre-of-mass energy

ETj:  jet transverse energies

�y = |yj1 � yj2 | ' log

s

ETj1ETj2

is the rapidity interval between the tagging jets

gluon radiation is considered in MRK and 
resummed through the LL BFKL equation

Mueller Navelet 1987
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Mueller-Navelet dijet cross section

azimuthal angle distribution (ɸjj = ɸ-π)
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Mueller Navelet 1987

Mueller-Navelet evaluated the inclusive dijet cross section up to 5 loops



use complex transverse momentum

and a complex variable

the Green's function can be expanded into a power series in 

where the coefficient functions fk are given by the Fourier-Mellin transform

the fk have a unique, well-defined value for every ratio of the magnitudes 
of the two jet transverse momenta and angle between them.
So, they are real-analytic functions of w

BFKL Green’s function and single-valued functions
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Mueller-Navelet dijet cross section reloaded

the MN dijet cross section is 

the first 5 loops were computed by Mueller-Navelet.
We computed it through the 13 loops VDD Dixon Duhr Pennington 2013


