Simplicity in AdS Perturbative Dynamics

Ellis Ye Yuan

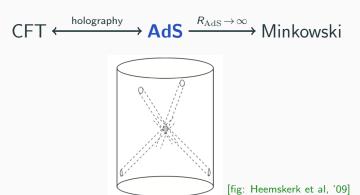
Institute for Advanced Study

Amplitudes 2018, SLAC

arXiv:1710.01361, arXiv:1801.07283

Why AdS?

Simplest curved space where a scattering problem can be well-defined.



Perturbative computation organized by Witten diagrams. Very recently: ideas from conformal bootstrap [see Agnese' and James' talks]

Aim of the talk

- Efficient and systematic computational methods.
- Detailed understanding of the analytic structure.

Scalar EFTs in pure AdS

$$\sum_{p=3}^{\infty} \frac{g_p}{p!} \phi^p$$

but we allow arbitrary species of particles with arbitrary masses, i.e., arbitrary scalar diagrams.

Review

Preliminary

Mellin amplitude [Mack, '09]

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle = \int_{\text{Mellin}} [\mathrm{d}\delta] \, \mathcal{M}[\delta] \, \prod_{i < j} \frac{\Gamma[\delta_{ij}]}{(x_i - x_j)^{2\delta_{ij}}}.$$

• $[\mathrm{d}\delta] \equiv \prod \frac{\mathrm{d}\delta_{ij}}{2\pi i}$ for any collection of independent δ_{ij} 's $(\frac{n(n-3)}{2})$.

$$\delta_{ij} = \delta_{ji}, \quad \delta_{ii} = -\Delta_i, \quad \sum_{i=1}^n \delta_{ij} = 0.$$

• δ analogous to $k \cdot k \Longrightarrow$ "Mandelstam variables"

e.g.,
$$s_A = \sum_{i \in A} \Delta_i - 2 \sum_{i < j \in A} \delta_{ij}$$
.

3

Propagators

• Bulk-to-boundary propagator $(m^2 = \Delta(\Delta - d))$

$$G_{\mathrm{b}\partial}^{\Delta}[X,x] = \frac{\mathcal{C}_{\Delta}}{(-2X\cdot x)^{\Delta}}$$

• Bulk-to-bulk propagator ($[dc]_{\Delta} = dc/((\underline{\Delta} - h)^2 - c^2)$, h = d/2)

$$\begin{pmatrix}
Y \\
\underline{\Delta} \\
X
\end{pmatrix} = \int_{\text{Mellin}} [dc]_{\underline{\Delta}} \frac{N_c}{C_{h\pm c}} \int_{\partial AdS} dy \qquad \qquad Y \\
G_{bb}^{\underline{\Delta}}[X, Y] \qquad G_{b\partial}^{h+c}[X, y] G_{b\partial}^{h-c}[Y, y]$$

split representation [Penedones, '10].

Mellin pre-amplitudes

$$\underbrace{\mathcal{M}[\delta,\{\Delta,\underline{\Delta}\}]}_{\text{amplitude}} = \int \mathcal{N} \underbrace{\mathcal{M}[\delta,\{\Delta,c\}]}_{\text{pre-amplitude}},$$

$$\mathcal{N} = \frac{\pi^{(1-L)h}}{2^{2V+L-1}} \prod_{i=1}^{n} \frac{\mathcal{C}_{\Delta_i}}{\Gamma[\Delta_i]} \prod_{a} \frac{[\mathrm{d} c_a]_{\underline{\Delta}_a}}{\Gamma[\pm c_a]}.$$

Contact diagram

$$M_{\mathrm{contact}} = \Gamma[\frac{\sum_{i} \Delta_{i}}{2} - h].$$

Tree Level

Pre-amplitudes at tree level

 M_{tree} factorizes: [EYY, '18]

Each bulk-to-bulk (tree) propagator a

• Each bulk vertex A ($\Delta_A \equiv \sum \Delta_i$)

$$\{s_1, c_1\}$$

$$\cdots$$

$$\{s_r, c_r\}$$

$$\int \frac{\prod_{a=1}^{r} dw_a}{(2\pi i)^r} \Gamma\left[\frac{\Delta_A + (r-2)h + \sum_{a=1}^{r} (c_a + 2w_a)}{2}\right] \times \prod_{a=1}^{r} \frac{\Gamma\left[-w_a\right] \Gamma\left[-c_a - w_a\right] \Gamma\left[\frac{h + c_a - s_a}{2} + w_a\right]}{\Gamma\left[\frac{h \pm c_a - s_a}{2}\right]}$$

Denote this as (C is free of poles)

$$V[\Delta_A; {}^{c_1, \dots, c_r}_{s_1, \dots, s_r}] \equiv \Gamma[\frac{\Delta_A + (r-2)h \pm c_1 \pm \dots \pm c_r}{2}] C[\Delta_A; {}^{c_1, \dots, c_r}_{s_1, \dots, s_r}]$$

(c.f., [Paulos, '11], [Fitzpatrick, Kaplan, '11], [Nandan et al, '11])

Amplitudes at tree level

Mellin contour: $\int_{-i\infty}^{+i\infty}$, right to all left poles, left to all right poles.

$$M: \qquad \Gamma\left[\frac{h+c_{a}-s_{a}}{2}\right] \bullet \bullet \bullet \bullet \qquad \Gamma\left[\frac{h-c_{a}-s_{a}}{2}\right]$$

$$\mathcal{N}: \qquad \frac{1}{(\underline{\Delta}_{a}-h)+c_{a}} \bullet \qquad \bullet \qquad \frac{1}{(\underline{\Delta}_{a}-h)-c_{a}}$$

$$\Gamma\left[\frac{h\pm c_{a}-s_{a}}{2}\right] \frac{1}{(\underline{\Delta}_{a}-h)\mp c_{a}} \cdots \xrightarrow{\int \mathrm{d}c_{a}} \underbrace{\gamma\left[\frac{\underline{\Delta}_{a}-s_{a}}{2}\right]}_{\text{poles of } \mathcal{M}} \cdots .$$

$$(\gamma[x]: \text{ a family of poles at } x+m=0, m\in\mathbb{N}.)$$

To study the residue at, e.g., the leading pole, replace $\int_{-i\infty}^{+i\infty} \frac{\mathrm{d}c_a}{2\pi i}$ to

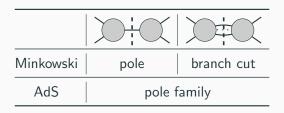
$$\underset{s_a = \underline{\Delta}_a}{\operatorname{Res}} \underset{c_a = h - \underline{\Delta}_a}{\operatorname{er}} \quad \text{or} \quad -\underset{s_a = \underline{\Delta}_a}{\operatorname{Res}} \underset{c_a = h - s_a}{\operatorname{Res}}$$

plus a similar contour for the other pinching.

AdS vs Minkowski

tree propagagtor $a \Longleftrightarrow \Gamma[\frac{\underline{\Delta}_a - s_a}{2}] \Longleftrightarrow \mathcal{O}_{\underline{a}} + \text{descendents}$

Many intuitions from Minkowski are expected to carry over

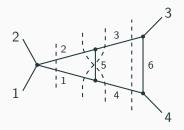


Mellin amplitudes are expected to be meromorphic at all loops.

A better chance for a precise understanding of loop-level dynamics?

Some diagrammatic intuitions

Cut: diagram → two *connected* diagrams.



Scattering amplitude (e.g., $m_{12} \equiv m_1 + m_2$):

[Educated guess] Mellin amplitude (e.g., $\underline{\Delta}_{12} \equiv \underline{\Delta}_1 + \underline{\Delta}_2$):

$$\Gamma\big[\frac{\underline{\Delta}_{12}-S}{2}\big]\,\Gamma\big[\frac{\underline{\Delta}_{34}-S}{2}\big]\,\Gamma\big[\frac{\underline{\Delta}_{135}-S}{2}\big]\,\Gamma\big[\frac{\underline{\Delta}_{245}-S}{2}\big].$$

Construction

Basic idea & strategy

• In general, $M_{\text{loop}} \Longrightarrow \mathcal{M}_{\text{loop}}.$ M is much simpler, but still keeps a lot of analytic features.

• Recursion.

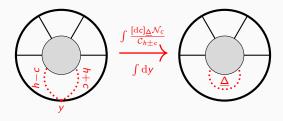
Utilize simpler diagrams in the computation of more complicated diagrams, in particular, from lower loops to higher loops.

• Mellin space.

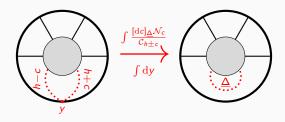
Carry out the computation fully in Mellin space. Advantage: unify with the spectrum integrals later on.

• Meromophicity.

The (pre-)amplitude is effectively tree-like at any loop level.

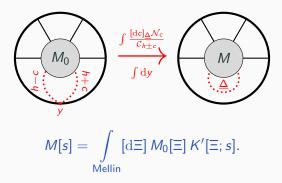


- Assume the complete knowledge about the original diagram.
- Assign $\Delta_0 = h c$, $\Delta_{n+1} = h + c$; identify $x_0 \equiv x_{n+1} \equiv y$.
- Integrate over the boundary $\int_{\partial AdS} dy$.
- ullet For the amplitude, further integrate the spectrum variable c.

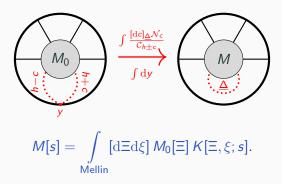


- Assume the complete knowledge about the original diagram.
- Assign $\Delta_0 = h c$, $\Delta_{n+1} = h + c$; identify $x_0 \equiv x_{n+1} \equiv y$.
- Integrate over the boundary $\int_{\partial AdS} dy$.
- For the amplitude, further integrate the spectrum variable c.

Implement this fully in Mellin space.

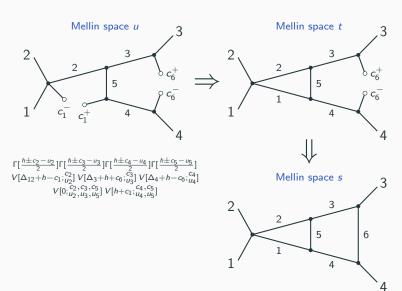


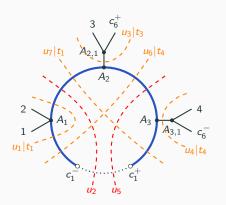
- s: Mandelstam variables for the new space.
- Ξ : Mandelstam variables in the original space.

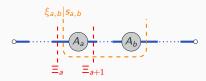


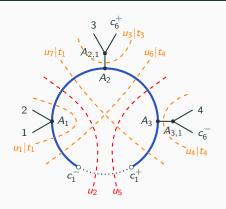
- s: Mandelstam variables for the new space.
- Ξ : Mandelstam variables in the original space.
- ξ : extra Mandelstam variables in the original space.

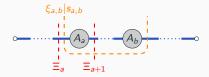
Recursive construction











Each
$$a$$
 ($B[_{y}^{x}] \equiv \frac{\Gamma[x]\Gamma[y-x]}{\Gamma[y]}$):

$$B_{a} \begin{bmatrix} \frac{(\xi_{a,r} - \xi_{a+1,r}) - (\Xi_{a} - \Xi_{a+1})}{(\xi_{a,r} - \xi_{a+1,r})^{2} - (\xi_{1,a-1} - \xi_{1,a})} \\ \frac{(\xi_{a,r} - \xi_{a+1,r})^{2} - (\xi_{1,a-1} - \xi_{1,a})}{(\xi_{a,r} - \xi_{a+1,r})^{2} - (\xi_{1,a-1} - \xi_{1,a})} \end{bmatrix}$$

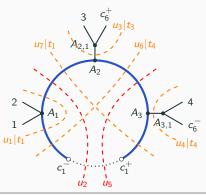
Each (a, b):

$$\mathbf{B}_{a,b}\left[\frac{\underline{\xi_{a,b-1}} + \xi_{a+1,b} - \xi_{a+1,b-1} - \xi_{a,b}}{\underline{s_{a,b-1}} + s_{a+1,b} - 2} \underline{s_{a+1,b-1}} - \underline{s_{a,b}} \right]$$

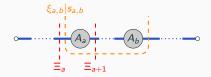
Each vertex in each branch:

$$\Xi_{(a,1)} = \Xi_{(a,m)}$$

$$B_{(a)} \begin{bmatrix} \Delta_{A_a} - \Xi_{(a)} + \sum_m \Xi_{(a,m)} \\ \Delta_{A_a} - s_{(a)} + \sum_m s_{(a,m)} \\ 2 \end{bmatrix}$$



$$\begin{split} & \text{B1} \begin{bmatrix} \frac{h+c_1+u_2-u_7}{2} \\ \frac{2h+u_1-u_7}{2} \end{bmatrix} \text{B2} \begin{bmatrix} \frac{u_5+u_7-u_2-u_4}{2} \\ \frac{u_6+u_7-u_1-u_4}{2} \end{bmatrix} \text{B3} \begin{bmatrix} \frac{h+c_1+u_4-u_5}{2} \\ \frac{2h+u_4-u_6}{2} \end{bmatrix} \\ & \text{B1,2} \begin{bmatrix} \frac{u_1+u_3-u_6}{2} \\ \frac{t_1+t_3-t_4}{2} \end{bmatrix} \text{B1,3} \begin{bmatrix} \frac{u_6+u_7-u_3-2h}{2} \\ \frac{t_1-t_2+t_4}{2} \end{bmatrix} \text{B2,3} \begin{bmatrix} \frac{u_3+u_4-u_7}{2} \\ \frac{t_3+t_4-t_1}{2} \end{bmatrix} \\ & \text{B(1)} \begin{bmatrix} \frac{\Delta_{12}-u_1}{2} \\ \frac{\Delta_{12}-t_1}{2} \end{bmatrix} \text{B(2,1)} \begin{bmatrix} \frac{\Delta_{3}+h+c_6-u_3}{2} \\ \frac{\Delta_{3}+h+c_6-t_3}{2} \end{bmatrix} \text{B(3,1)} \begin{bmatrix} \frac{\Delta_{4}+h-c_6-u_4}{2} \\ \frac{\Delta_{4}+h-c_6-t_4}{2} \end{bmatrix} \end{split}$$



Each
$$a$$
 ($B[x] = \frac{\Gamma[x]\Gamma[y-x]}{\Gamma[y]}$):

$$B_a \begin{bmatrix} (\xi_{a,r} - \xi_{a+1,r}) - (\Xi_a - \Xi_{a+1}) \\ (\xi_{a,r} - \xi_{a+1,r}) - (\xi_{1,a-1} - \xi_{1,a}) \end{bmatrix}$$

Each (a, b):

$$\mathbf{B}_{a,b} \left[\frac{\underline{s_{a,b-1} + \xi_{a+1,b} - \xi_{a+1,b-1} - \xi_{a,b}}}{\underline{s_{a,b-1} + s_{a+1,b} - 2} \underline{s_{a+1,b-1} - s_{a,b}}}{2} \right]$$

Each vertex in each branch:

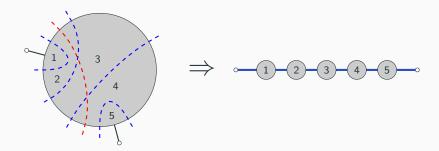
$$\Xi_{(a,1)} \cap \Xi_{(a,m)}$$

$$B_{(a)} \left[\frac{\Delta_{A_a} - \Xi_{(a)} + \sum_m \Xi_{(a,m)}}{2} \right]$$

$$\Xi_{(a)} \cap \Xi_{(a)} \cap \Xi_{$$

Meromorphicity: effective trees

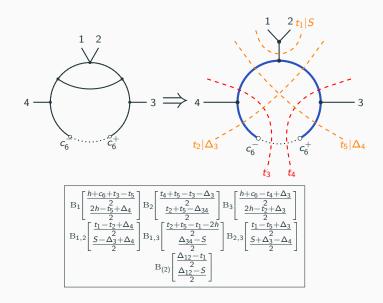
1. Collect a maximal set of channels separating the two points to be glued, such that OPEs can be performed sequentially. (In practice this is indicated in the poles of M_0 .) This effectively induces a chain diagram.



Meromorphicity: effective trees

- Collect a maximal set of channels separating the two points to be glued, such that OPEs can be performed sequentially.
 (In practice this is indicated in the poles of M₀.)
 This effectively induces a chain diagram.
- 2. The scattering may allow further OPEs, but they only lead to additional branches.





Mellin integral representation for (pre-)amplitudes

• 7 u, 5 t, and 6 c integrals. All are Mellin integrals.

$$M_1[t] = \int \mathrm{d}u_1 \cdots \mathrm{d}u_7 \ M_0[u] \ K_0[u,t],$$
 $M_2[s] = \int \mathrm{d}t_1 \cdots \mathrm{d}t_5 \ M_1[t] \ K_1[t,s],$ $M_2[s] = \int [\mathrm{d}c_1]_{\underline{\Delta}_1} \cdots [\mathrm{d}c_6]_{\underline{\Delta}_6} \ M_2[s].$

These are directly read from the diagram without computation.

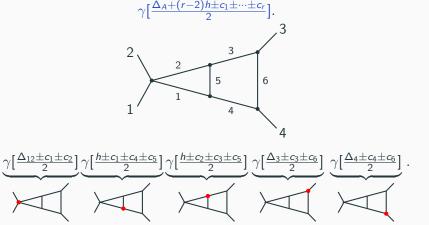
- Numerical integration can in principle be done efficiently.
- Hard to obtain analytic answer in terms of familiar functions (though in specific cases it reduces to ${}_pF_q$, e.g., [Aharony et al, '16]).

Mellin integral representation for (pre-)amplitudes

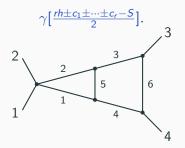
- It is guaranteed by this integral representation that both M and M are always meromophic functions.
- Hence we are interested in
 - determining the entire pole structure (i.e., existence, location);
 - estimating the order of each specific pole;
 - computing the residue at each pole
 (again in terms of Mellin integrals but usually much simpler).
- There is a systematic method for answering all these questions, but I will not develop this point in this talk.
- I will mainly describe the pole structure resulting from this analysis, which turns out to be **universal** to all (scalar) diagrams.

Mellin Pre-amplitudes

• **Vertex rule.** For each bulk vertex A (data: $\{\Delta_A, c_1, \dots, c_r\}$)



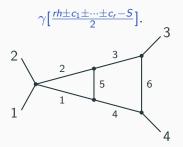
• Channel rule. For each cut in each channel S (data: $\{c_1, \ldots, c_r, S\}$)



S channel:

$$\underbrace{\gamma[\frac{2h\pm c_1\pm c_2-S}{2}]}_{2}\underbrace{\gamma[\frac{2h\pm c_3\pm c_4-S}{2}]}_{2}\underbrace{\gamma[\frac{3h\pm c_1\pm c_3\pm c_5-S}{2}]}_{2}\underbrace{\gamma[\frac{3h\pm c_2\pm c_4\pm c_5-S}{2}]}_{2}.$$

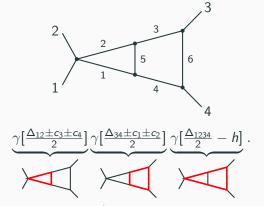
• Channel rule. For each cut in each channel S (data: $\{c_1, \ldots, c_r, S\}$)



Trivial channels:

$$\underbrace{\gamma[\frac{2h\pm c_3\pm c_6-\Delta_3}{2}]}_{}\underbrace{\gamma[\frac{3h\pm c_2\pm c_5\pm c_6-\Delta_3}{2}]}_{}\underbrace{\gamma[\frac{2h\pm c_4\pm c_6-\Delta_4}{2}]}_{}\underbrace{\gamma[\frac{3h\pm c_1\pm c_5\pm c_6-\Delta_4}_{}\underbrace{\gamma[\frac{3h\pm c_1\pm c_5\pm c_6-\Delta_4}_{}\underbrace{\gamma[\frac$$

• Loop contraction rule. For each new vertex emerged from contracting exisiting loops, apply the same vertex rule.



• Generalized bubble rules. (No need. And I will skip in this talk.)

Compositeness

Summary of *M*'s pole structure:

$$\begin{split} &\gamma\left[\frac{\Delta_{12}\pm c_1\pm c_2}{2}\right]\gamma\left[\frac{h\pm c_1\pm c_4\pm c_5}{2}\right]\gamma\left[\frac{h\pm c_2\pm c_3\pm c_5}{2}\right]\gamma\left[\frac{\Delta_3\pm c_3\pm c_6}{2}\right]\gamma\left[\frac{\Delta_4\pm c_4\pm c_6}{2}\right]\\ &\gamma\left[\frac{2h\pm c_1\pm c_2-S}{2}\right]\gamma\left[\frac{2h\pm c_3\pm c_4-S}{2}\right]\gamma\left[\frac{3h\pm c_1\pm c_3\pm c_5-S}{2}\right]\gamma\left[\frac{3h\pm c_2\pm c_4\pm c_5-S}{2}\right]\\ &\gamma\left[\frac{2h\pm c_3\pm c_6-\Delta_3}{2}\right]\gamma\left[\frac{3h\pm c_2\pm c_5\pm c_6-\Delta_3}{2}\right]\gamma\left[\frac{2h\pm c_4\pm c_6-\Delta_4}{2}\right]\gamma\left[\frac{3h\pm c_1\pm c_5\pm c_6-\Delta_4}{2}\right]\\ &\gamma\left[\frac{\Delta_{12}\pm c_3\pm c_4}{2}\right]\gamma\left[\frac{\Delta_{34}\pm c_1\pm c_2}{2}\right]\gamma\left[\frac{\Delta_{1234}}{2}-h\right]. \end{split}$$

Imagine that we further perform integrals on c's or Δ 's.

Example

$$\gamma \left[\frac{2h + c_1 + c_2}{2} \right] \gamma \left[\frac{h - c_2 + c_3 + c_5}{2} \right] \xrightarrow{\int dc_2} \gamma \left[\frac{3h + c_1 + c_3 + c_5 - S}{2} \right],
\gamma \left[\frac{2h + c_3 + c_4}{2} \right] \gamma \left[\frac{h + c_1 - c_4 + c_5}{2} \right] \xrightarrow{\int dc_4} \gamma \left[\frac{3h + c_1 + c_3 + c_5 - S}{2} \right].$$

We call these poles "composite".

Conjecture on Mellin pre-amplitudes

For an arbitrary scalar Witten diagram, we read off all the poles following

- 1. the vertex rule,
- 2. the channel rule,
- 3. the loop contraction rule,
- 4. the generalized bubble rule.

After eliminating the composite poles, the remaining families exactly constitute all the genuine poles of the pre-amplitude of the diagram.

Conjecture on Mellin pre-amplitudes

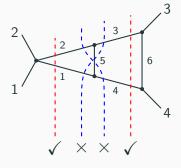
For an arbitrary scalar Witten diagram, we read off all the poles following

- 1. the vertex rule,
- 2. the channel rule,
- 3. the loop contraction rule,
- 4. the generalized bubble rule.

After eliminating the composite poles, the remaining families exactly constitute all the genuine poles of the pre-amplitude of the diagram.

The channel rule is ultimately responsible for the singularities of ${\cal M}$ in the "Mandelstam" variables.

Conjecture on Mellin pre-amplitudes



Mellin Amplitudes

Minimal/non-minimal cuts

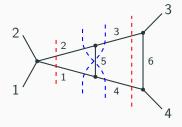


• **Minimal:** whose corresponding poles are present in *M*.

$$\frac{\gamma\big[\frac{2h+c_1+c_2-S}{2}\big]}{\frac{1}{(\underline{\Delta}_1-h)-c_1}\,\frac{1}{(\underline{\Delta}_2-h)-c_2}}\right\}\xrightarrow{\int \mathrm{d}c_1\mathrm{d}c_2}\gamma\big[\frac{\underline{\Delta}_{12}-S}{2}\big].$$

The corresponding poles in \mathcal{M} emerges from the spectrum integrals in the minimal way: only those associated to propagators in the cut are necessary (analogous to tree diagrams).

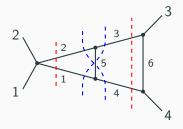
Minimal/non-minimal cuts



• **Non-minimal:** whose corresponding poles are absent from *M*.

$$\begin{array}{c} \gamma \left[\frac{3h+c_1+c_3+c_5-S}{2} \right] \\ \\ \frac{1}{(\underline{\Delta}_1-h)-c_1} \begin{array}{c} 1 \\ \underline{(\underline{\Delta}_3-h)-c_3} \end{array} \begin{array}{c} 1 \\ \underline{(\underline{\Delta}_6-h)-c_5} \end{array} \\ \\ \xrightarrow{\int \mathrm{d}c_1\mathrm{d}c_3\mathrm{d}c_5} \gamma \left[\underline{\underline{\Delta}_{135}-S} \right]. \end{array}$$

Minimal/non-minimal cuts



• **Non-minimal:** whose corresponding poles are absent from *M*.

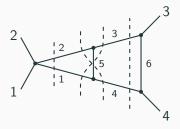
$$\begin{array}{c} \text{or} \begin{array}{c} \gamma[\frac{2h+c_1+c_2-S}{2}]\gamma[\frac{h-c_2+c_3+c_5}{2}] \xrightarrow{\int \mathrm{d}c_2} \\ \gamma[\frac{2h+c_3+c_4-S}{2}]\gamma[\frac{h+c_1-c_4+c_5}{2}] \xrightarrow{\int \mathrm{d}c_4} \end{array} \end{array} \\ \gamma[\frac{3h+c_1+c_3+c_5-S}{2}] \\ \frac{1}{(\underline{\Delta}_1-h)-c_1} \xrightarrow{(\underline{\Delta}_3-h)-c_3} \frac{1}{(\underline{\Delta}_6-h)-c_5} \\ \xrightarrow{\int \mathrm{d}c_1\mathrm{d}c_3\mathrm{d}c_5} \gamma[\frac{\underline{\Delta}_{135}-S}{2}]. \end{array}$$

Residue computation

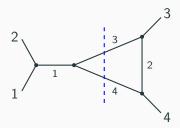
The above summary of the origin of poles also provide a guidance for the computation of the corresponding residues.

Detailed computation verifies the existence of all the four families

$$\gamma\left[\frac{\Delta_{12}-S}{2}\right]\gamma\left[\frac{\Delta_{34}-S}{2}\right]\gamma\left[\frac{\Delta_{135}-S}{2}\right]\gamma\left[\frac{\Delta_{245}-S}{2}\right].$$



Example



Pinching pattern:

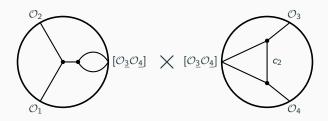
$$\gamma \left[\frac{h \pm c_1 - S}{2}\right] \gamma \left[\frac{h \mp c_1 \pm c_3 \pm c_4}{2}\right] \xrightarrow{\int dc_1} \gamma \left[\frac{2h \pm c_3 \pm c_4 - S}{2}\right] \xrightarrow{\int dc_3 dc_4} \gamma \left[\frac{\Delta_{34} - S}{2}\right].$$

One contribution to the residue at the leading pole:

$$\begin{split} &\gamma[\frac{h-c_1-S}{2}]\gamma[\frac{h+c_1-c_3-c_4}{2}]\frac{1}{(\underline{\Delta}_3-h)+c_3}\frac{1}{(\underline{\Delta}_4-h)+c_4}\\ \Longrightarrow &\underset{S=\underline{\Delta}_{34}}{\operatorname{Res}} \underset{c_4=h-\underline{\Delta}_4}{\operatorname{Res}} \underset{c_3=h-\underline{\Delta}_3}{\operatorname{Res}} \underset{c_1=c_3+c_4-h}{\operatorname{Res}}. \end{split}$$

Example

$$\begin{split} \underset{S = \underline{\Delta}_{34}}{\operatorname{Res}} \mathcal{M} &= \frac{\pi^{2h}}{4} \prod_{i=1}^{4} \frac{\mathcal{C}_{\underline{\Delta}_{i}}}{\Gamma[\underline{\Delta}_{i}]} \frac{\mathcal{C}_{\underline{\Delta}_{3}} \mathcal{C}_{\underline{\Delta}_{4}}}{\Gamma[\underline{\Delta}_{3}] \Gamma[\underline{\Delta}_{4}]} \times \\ &\underbrace{\frac{\Gamma[\frac{\Delta_{12} + \underline{\Delta}_{34}}{2} - h]}{(\underline{\Delta}_{1} - \underline{\Delta}_{34})(\underline{\Delta}_{134} - 2h)}}_{\mathcal{O}_{1} \mathcal{O}_{2}[\mathcal{O}_{\underline{3}} \mathcal{O}_{\underline{4}}]} \times \underbrace{\int \frac{[\mathrm{d}c_{2}]_{\underline{\Delta}_{2}}}{\Gamma[\pm c_{2}]} \frac{\Gamma[\frac{\Delta_{3} \pm (h - \Delta_{3}) \pm c_{2}}{2}] \Gamma[\frac{\underline{\Delta}_{4} \pm (h - \Delta_{4}) \pm c_{2}}{2}]}_{\Gamma[h + \frac{\underline{\Delta}_{34} - \Delta_{34}}{2}] \Gamma[\frac{\underline{\Delta}_{34} \pm (\Delta_{3} - \Delta_{4})}{2}]}. \end{split}$$



Summary

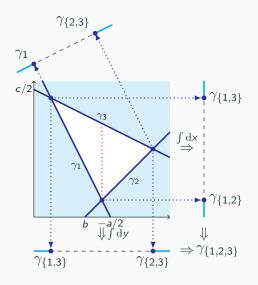
Summary

In this talk we have made some first investigations to perturbative dynamics to all loops.

- We designed a recursive construction that builds up arbitrary scalar Witten diagrams.
- This construction directly yields Mellin (pre-)amplitudes in terms of Mellin integrals, following simple diagrammatic rules.
- Analytic properties of (pre-)amplitudes can be extracted systematically using this integral representation
 - We conjectured that the pole structure of pre-amplitudes follows a set of diagrammatic rules.
 - Residues of Mellin amplitudes can be conveniently computed.

Many thanks for your attention!

Singularities from multivariate Mellin integrals



Singularities from multivariate Mellin integrals

