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Why AdS?

Simplest curved space where a scattering problem can be well-defined.
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[fig: Heemskerk et al, '09]

Perturbative computation organized by Witten diagrams.
Very recently: ideas from conformal bootstrap [see Agnese’ and James' talks]



Aim of the talk

e Efficient and systematic computational methods.

e Detailed understanding of the analytic structure.

Scalar EFTs in pure AdS
§
Z i

but we allow arbitrary species of particles with arbitrary masses,
i.e., arbitrary scalar diagrams.



Review



Preliminary

Mellin amplitude [Mack,'09]
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e Bulk-to-boundary propagator (m? = A(A — d))

Ca

GbAa[va] = m

X

e Bulk-to-bulk propagator ([dc]a = dc/((A—h)2—c?), h=d/2)

= /[dc]A Ne /dy y
= Chte

Mellin OAdS
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split representation [Penedones,'10].



Mellin pre-amplitudes

M5, {A,A)] = / N M5, {A, c}],
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amplitude pre-amplitude
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Contact diagram

Mcontact = r[% - h]



Tree Level



Pre-amplitudes at tree level

Mo factorizes: [EYY, ‘18]

e Each bulk-to-bulk (tree) propagator a

.&. [—[hicé?fsa] = r[h+c2a—5a]|'[h—c23—sa]

e Each bulk vertex A (A, =34))
{s1, a1}
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Denote this as (C is free of poles)

V[AA,g ..... ,] r[AA+ r— 2)h:|:cl:t :tCr] C[AA Sl:...,cr]
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(c.f., [Paulos,‘11], [Fitzpatrick,Kaplan,'11], [Nandan et al,'11])



Amplitudes at tree level

Mellin contour: fjl'oooo right to all left poles, left to all right poles.
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(v[x]: a family of poles at x + m =0, m € N.)
. . +ioco d 5
To study the residue at, e.g., the leading pole, replace f_,.oo = o
Res  Res or — Res Res

sa:Aa Ca:h_éa Sa:éa Ca=h—s,

plus a similar contour for the other pinching.



AdS vs Minkowski

tree propagagtor a <= F[#] <= O, + descendents

Many intuitions from Minkowski are expected to carry over

Minkowski ‘ pole ‘ branch cut
|

AdS

pole family

Mellin amplitudes are expected to be meromorphic at all loops.

A better chance for a precise understanding of loop-level dynamics?



Some diagrammatic intuitions

Cut: diagram — two connected diagrams.

[Educated guess] Mellin amplitude (e.g., A, = A,+A,):

M[S3=] M=) R[Ss=] [S2=].



Construction



Basic idea & strategy

e In general, Migop == Mioop.
M is much simpler, but still keeps a lot of analytic features.

e Recursion.
Utilize simpler diagrams in the computation of more complicated

diagrams, in particular, from lower loops to higher loops.

e Mellin space.
Carry out the computation fully in Mellin space.
Advantage: unify with the spectrum integrals later on.

e Meromophicity.
The (pre-)amplitude is effectively tree-like at any loop level.
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Creating a new loop

Jdy

Assume the complete knowledge about the original diagram.

Assign Ag = h— ¢, A1 = h+ c; identify xg = X541 = y.

Integrate over the boundary faAdS dy.

For the amplitude, further integrate the spectrum variable c.
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Creating a new loop

Jdy

Assume the complete knowledge about the original diagram.

Assign Ag = h— ¢, A1 = h+ c; identify xg = X541 = y.

Integrate over the boundary faAdS dy.

For the amplitude, further integrate the spectrum variable c.
Implement this fully in Mellin space.
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Creating a new loop

M[s] = / [d=] Mo[=] K'[Z; 5]

Mellin

e s: Mandelstam variables for the new space.

: Mandelstam variables in the original space.
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Creating a new loop

y

M[s] = / [d=de] Mo[=] K[Z, & 5.

Mellin

St

Mandelstam variables for the new space
[ J

Mandelstam variables in the original space

e ¢: extra Mandelstam variables in the original space
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Recursive construction

Mellin space u 3 Mellin space t 3

r[hiczzfuz]l_[hicg—%]r[hicé—uz;]r[hng—U5] U
VIAr+h—c1; 2] V[Bs+h+ce; 3] V[Aa+h—csifl] Mellin space s 3
V[o_C27C3aC5] V[h+C1'C4’C5]

'u2,U3,Us Uy, Us
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Integral kernel K

14



Integral kernel K

Ty =]
o)

(€a,r—€aq1, r) (Ea—Za11)
3| (Ea,r—at1,r)— (51.3 1—€1,a)
Each (a, b):
|:£a,bl+£a+l.b§a+l,blga.b:|

Each a (B[}] =

Ba,b

2
Sa,b—11Sa+1,b—Sa+1,b—1—5a,b
2

Each vertex in each branch:

7—(a +Zm (a,m)
AA;S(a)+Zm S(a,m)
2

14




Integral kernel K
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Meromorphicity: effective trees

1. Collect a maximal set of channels separating the two points to be
glued, such that OPEs can be performed sequentially.
(In practice this is indicated in the poles of Mp.)

This effectively induces a chain diagram.

= —0-0-0-0-6C—

ii5)



Meromorphicity: effective trees

1. Collect a maximal set of channels separating the two points to be
glued, such that OPEs can be performed sequentially.
(In practice this is indicated in the poles of Mp.)
This effectively induces a chain diagram.

2. The scattering may allow further OPEs, but they only lead to
additional branches.

ii5)



Integral kernel K;
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Mellin integral representation for (pre-)amplitudes

e 7 u,5t, and 6 c integrals. All are Mellin integrals.
Mi[t] = /du1 -+~ duy Mp[u] Kolu, t],
My[s] = /dtl---dt5 My[d] Kalt, 5],
Malsl = [ldala, -+ [desla, Mels)

These are directly read from the diagram without computation.
e Numerical integration can in principle be done efficiently.

e Hard to obtain analytic answer in terms of familiar functions
(though in specific cases it reduces to ,Fg, €.g., [Aharony et al,'16]).
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Mellin integral representation for (pre-)amplitudes

e It is guaranteed by this integral representation that both M and M
are always meromophic functions.
e Hence we are interested in
e determining the entire pole structure (i.e., existence, location);
e estimating the order of each specific pole;
e computing the residue at each pole
(again in terms of Mellin integrals but usually much simpler).
e There is a systematic method for answering all these questions,
but | will not develop this point in this talk.

e | will mainly describe the pole structure resulting from this analysis,
which turns out to be universal to all (scalar) diagrams.
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Mellin Pre-amplitudes




Diagrammatic rules for M’s pole structure

e Vertex rule. For each bulk vertex A (data: {Aa,c1,...,c})

,\/[AA"I‘(r_z)g:tCli"‘iCr]'

,Y[Alg:l:zclzl:Q],Y[h:tclzléa;:l:cs],y[h:I:Q:EQ:I:cs] ,Y[A3:t§3:|:c6] ,Y[A4:|:§4:tc6] ]

= = = =] =]
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Diagrammatic rules for M’s pole structure

e Channel rule. For each cut in each channel S (data: {c1,..., ¢, S})

,y[rhiclié-icrfs].

S channel:

7[2hic1§cc:2—5] ,}/[2hi63§:C4—5] 7[3hic1iz2:3ics—5] 7[3hiczi§4iC5—S] '
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Diagrammatic rules for M’s pole structure

e Channel rule. For each cut in each channel S (data: {c1,..., ¢, S})

,y[rhiclié-icrfs].

Trivial channels:

[2hi<:3j§c6 Ag],y[3hiczicsic6 A3]7[2hic:4j§c6 A4],y[3hic1icsic6 A4]

= = ==l =
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Diagrammatic rules for M’s pole structure

e Loop contraction rule. For each new vertex emerged from
contracting exisiting loops, apply the same vertex rule.

7[A12i263:|:54],Y[A34:|:2<:1:tc2] 7[A12234 o h] )

=] = =

e Generalized bubble rules. (No need. And | will skip in this talk.)
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Compositeness

Summary of M’s pole structure:

7[A12i2c1icz] ,y[hicljécz;ics] ,y[hiczizqics] V[Asi?i%] ,Y[A4i;4ic6]

,7[2h:|:c1§tC2—S] 7[2h:|:C3§:C4—S] ,y[3h:|:q:i:§3:|:65—5] 7[3h:|252:|:;4:‘:C5—S]

,)/[2h:|:C3:§c6—A3] 7[3h:|:cz:|:c§:|:c6—A3] ,)/[2h:|:C4:§c6—A4] 7[3h:|:c1:|:c§:|:c6—A4]

7[A12i2C3iC4] ,Y[A34i2clicz] ,Y[A12234 o h]

Imagine that we further perform integrals on ¢'s or A's.

Example

7[2h+§1+62],y[h—q—;q+65] [de 7[3h+<:1+;3+65—5]7

7[2h+c23+C4]7[h+Cr2C4+65] [ des 7[3h+C1+;3+C575].

We call these poles “composite”.
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Conjecture on Mellin pre-amplitudes

For an arbitrary scalar Witten diagram, we read off all the poles
following

1. the vertex rule,

2. the channel rule,

3. the loop contraction rule,
4

. the generalized bubble rule.

After eliminating the composite poles, the remaining families exactly
constitute all the genuine poles of the pre-amplitude of the diagram.
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Conjecture on Mellin pre-amplitudes

For an arbitrary scalar Witten diagram, we read off all the poles
following

1. the vertex rule,

2. the channel rule,

3. the loop contraction rule,
4. the generalized bubble rule.

After eliminating the composite poles, the remaining families exactly
constitute all the genuine poles of the pre-amplitude of the diagram.

The channel rule is ultimately responsible for
the singularities of M in the “Mandelstam” variables.
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Mellin Amplitudes




Minimal/non-minimal cuts

3

4

e Minimal: whose corresponding poles are present in M.

7[2h+q2ﬂ25]} Jdade AL-S
v[=

1 1 2 ]
Gi—h—a B-h-a

The corresponding poles in M emerges from the spectrum
integrals in the minimal way: only those associated to propagators
in the cut are necessary (analogous to tree diagrams).
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Minimal/non-minimal cuts

3

4

e Non-minimal: whose corresponding poles are absent from M.

,Y[3h+C1+§3+65—5]

1 1 1
(A;—h)—c1 (A3—h)—c3 (Bg—h)—cs
J dadesdes Aa—S
N=5—=1
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Minimal/non-minimal cuts

3

4

e Non-minimal: whose corresponding poles are absent from M.

,Y[Zh—&—q;—cz—S],y[ h—cz—;cﬁ-q; ] Jde

or

3ht+ci+c3+cs—S
2htcsta—S1.[ht +esq Jdes ! 2 ]
C Cq4— C1—C C
'Y[ 32 + ]7[ ! 5 + 5]

1 1 1
(A;—h)—c1 (A3—h)—c3 (Bg—h)—cs
J dadesdes Aa—S
N=5—=1

27



Residue computation

The above summary of the origin of poles also provide
a guidance for the computation of the corresponding residues.

Detailed computation verifies the existence of all the four families

A12 S A34 A135

A245 ] .

17 17

171

ol
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Pinching pattern:

V[hic{sh[h;qizc?,ia] Jda 7[2/ﬂ[c€[czﬁs]

J dezdes [é34_5]
1 1 =l
(As—h)Fcs (A4—h)Fc

One contribution to the residue at the Ieading pole:

h—c1 =S h+ 1
[ Cl ]7[ <5 63 C4] (A;— h)+C3 (Ay—h)+ca

— Res Res Res Res .
5:é34 C4:h—é4 C3:h—é3 ci=c3+c—h
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01 O4
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Summary




In this talk we have made some first investigations to perturbative
dynamics to all loops.

e We designed a recursive construction that builds up arbitrary scalar
Witten diagrams.

e This construction directly yields Mellin (pre-)amplitudes in terms of
Mellin integrals, following simple diagrammatic rules.

e Analytic properties of (pre-)amplitudes can be extracted
systematically using this integral representation

e We conjectured that the pole structure of pre-amplitudes follows a
set of diagrammatic rules.
e Residues of Mellin amplitudes can be conveniently computed.
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Many thanks
for your attention!
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Singularities from multivariate Mellin integrals

b —a/2
_ $Jay Y
3 . — =71.23
Y{1,3} 72,3}
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Singularities from multivariate Mellin integrals

Y{1,4} <

Y{2,3} 1
Y{2,4} B
Y{1,3} 14
13 v

T{13{1,2} V{3.4¥{2,4}

34



	Review
	Tree Level
	Construction
	Mellin Pre-amplitudes
	Mellin Amplitudes
	Summary

