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There is a coaction on Feynman diagrams.

At 1 loop, there is a basis for which the coaction is simply related to
pinches and cuts of the original diagram and corresponds to Goncharov’s
Hopf algebra on MPLs.

Natural interplay with discontinuities and differential equations is
potentially useful for computation.

Larger framework: coactions of the form

∆

(∫
γ

ω

)
=
∑
i

∫
γ

ωi ⊗
∫
γi

ω



Coaction operation

∆(log z) = 1⊗ log z + log z ⊗ 1

∆(log2 z) = 1⊗ log2 z + 2 log z ⊗ log z + log2 z ⊗ 1

∆(Li2(z)) = 1⊗ Li2(z) + Li2(z)⊗ 1 + Li1(z)⊗ log z

Discontinuities and cuts:

∆ Disc = (Disc⊗1) ∆

Differential operators:
∆ ∂ = (1⊗ ∂) ∆
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Master formula for coaction on integrals

We conjecture a framework as follows.

Coactions of the following form:

∆

(∫
γ

ω

)
=
∑
i

∫
γ

ωi ⊗
∫
γi

ω

with a duality condition

Pss

∫
γi

ωj = δij .

Pss is semi-simple projection (“drop logarithms but not π”).

The master formula coaction is like inserting a complete set of states (“ωi are a
set of master integrands for ω”).
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The “incidence” bialgebra [Joni, Rota]

A simple combinatorial algebra: let [n] = {1, 2, . . . , n}.
Elements: pairs of nested subsets S ⊆ T , where S ⊆ T ⊆ [n].

{1} ⊆ {1, 2} represented by 1 2
∅ ⊆ {1, 2} represented by 1 2
∅ ⊂ ∅ represented by ∗

Multiplication is a free operation, and the coproduct is defined by

∆(S ⊆ T ) =
∑

S⊆X⊆T

(S ⊆ X )⊗ (X ⊆ T ).

For example:

∆(1 2) = 1 2⊗ 1 2 + 1⊗ 1 2 + 2⊗ 1 2 + ∗ ⊗ 1 2

∆(1 2) = 1 2⊗ 1 2 + 2⊗ 1 2

∆(2) = 2⊗ 2 + ∗ ⊗ 2

∆(2) = 2⊗ 2

∆(S ⊆ S) = (S ⊆ S)⊗ (S ⊆ S)
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Example of the incidence algebra: edges of graphs

∆(1 2) = 1 2⊗ 1 2 + 1⊗ 1 2 + 2⊗ 1 2 + ∗ ⊗ 1 2

For graphs, set ∗ = (∅ ⊆ ∅) = 0.

Pinch and cut complementary subsets of edges:



Example of the incidence algebra: edges of graphs

∆(1 2 3) = 1 2 3⊗ 1 2 3 + 1 2⊗ 1 2 3 + 2 3⊗ 1 2 3 + 1 3⊗ 1 2 3

+1⊗ 1 2 3 + 2⊗ 1 2 3 + 3⊗ 1 2 3 + ∗ ⊗ 1 2 3

Pinch and cut complementary subsets of edges:



Example of the incidence algebra: edges of graphs

Can also start with a cut diagram.

∆(1 2) = 1 2⊗ 1 2 + 1⊗ 1 2

∆(1 2) = 1 2⊗ 1 2



Multiple polylogarithms (MPL)

A large class of iterated integrals are described by multiple polylogarithms:

G(a1, . . . , an; z) =

∫ z

0

dt

t − a1
G(a2, . . . , an; t)

Examples:

G(0; z) = log z , G(a; z) = log
(

1− z

a

)
G(~an; z) =

1

n!
logn

(
1− z

a

)
, G(~0n−1, a; z) = −Lin

(z
a

)
n is the transcendental weight.

MPLs obey shuffle product relations. There is a coaction on MPLs, graded by
weight, which thus breaks MPLs into simpler functions (lower weight). [Goncharov;

Duhr]



Contour integrals

The coaction is a pairing of contours and integrands. Recalls the incidence
algebra.

∆MPL(G(~a; z)) =
∑
~b⊆~a

G(~b; z)⊗ G~b(~a; z)

0 z

a4

a3

a2

a1

(a)

0 z

a4

a3

a2

a1

(b)

γb⃗

Contour (b) encircles a subset of residues in a given order.



Feynman integrals

A useful basis for all 1-loop integrals:

Jn =
ieγE ε

πDn/2

∫
dDnk

n∏
j=1

1

(k − qj)2 −m2
j

k is the loop momentum

qj are sums of external momenta, mj are internal masses

Dimensions:

Dn =

{
n − 2ε , for n even ,
n + 1− 2ε , for n odd .

e.g. tadpoles and bubbles in 2− 2ε dimensions,
triangles and boxes in 4− 2ε dimensions, etc.

Each Jn has uniform transcendental weight.



2 equivalent Hopf algebras

The combinatorial algebra agrees with the Hopf algebra on the MPL of
evaluated diagrams!

The graph with n edges is interpreted as Jn, i.e. in Dn dimensions, no
numerator.

Need to insert extra terms in the diagrammatic equation:

Isomorphic to the more basic construction. (For any value of 1/2.)

How do we evaluate the cut graphs?

[related work: Brown; Bloch and Kreimer]
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Generalized cuts as residues and determinants

1-loop cuts defined as residues:

CC [In] =
eγE ε

iπ
D
2

∫
ΓC

dDk
∏
j 6∈C

1

(k − qj)2 −m2
j + i0

mod iπ ,

C is the set of cut propagators

Contour ΓC encircles poles of cut propagators

Cut integrals give discontinuities of their uncut counterparts.
Some results:

CC In =
eγE ε√
YC

(
YC

GC

)(D−c)/2 ∫
dΩD−c+1

iπD/2

∏
j /∈C

1

(k − qj)2 −m2
j


C

where we often find Gram and modified Cayley determinants:

GC = det (qi · qj)i,j∈C\∗

YC = det

(
1

2
(m2

i + m2
j + (qi − qj)

2)

)
i,j∈C
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Maximal and next-to-maximal cuts

Some special cases:

C2k [J2k ] =
Γ(1− ε)

Γ(1− 2ε)

eγE ε√
Y2k

(
Y2k

G2k

)−ε
C2k+1[J2k+1] =

eγE ε

Γ(1− ε)
√
G2k+1

(
Y2k+1

G2k+1

)−ε
.

C2k−1[J2k ] = −Γ(1− 2ε)2

Γ(1− ε)3

eγE ε√
Y2k

(
Y2k−1

G2k−1

)−ε
2F1

(
1

2
,−ε; 1− ε; G2k Y2k−1

Y2k G2k−1

)
.

For more complicated cuts, we set up a Feynman parametrization.

Landau conditions are expressed in polytope geometry: these determinants are
volumes of simplices. [Cutkosky]



Landau conditions

αi

[
(kE − qE

i )2 + m2
i

]
= 0, ∀i .

n∑
i=1

αi (k
E − qE

i ) = 0 .

Therefore

 (kE − qE
1 ) · (kE − qE

1 ) . . . (kE − qE
1 ) · (kE − qE

c )
...

. . .
...

(kE − qE
c ) · (kE − qE

1 ) . . . (kE − qE
c ) · (kE − qE

c )


 α1

...
αc

 = 0 .

Nontrivial solution ⇔ YC = 0 and integral over ΓC : Landau singularities of the
first type.

Second-type singularities come from GC = 0 and integral over ΓC∪∞. Contour
is pinched at infinity.



Homology theory for Feynman contours

Homology describes the inequivalent integration contours. Also explains why
cuts are discontinuities. Use Leray residues. [Fotiadi, Pham; Hwa, Teplitz; Federbusch; Eden,

Fairlie, Landshoff, Nuttall, Olive, Polkinghorne,...]

Residues: if

ω =
ds

s
∧ ψ + θ

and S = {s = 0}, while ψ, θ are regular on S , then

ResS [ω] = ψ|S .

Cut integrals: if In =
∫
ωn, then

CC [In] =

∫
SC

ResSC [ωn]

= (2πi)−k

∫
δSC

ωn

where δ constructs a “tubular neighborhood” around SC = ∩i∈CSi , the
spherical locus of the cut conditions.



Homology theory for Feynman contours

Composed residues, e.g.:

ω =
ds1

s1
∧ ds2

s2
∧ ψ12 +

ds1

s1
∧ ψ1 +

ds2

s2
∧ ψ2 + θ

ResS1S2 [ω] = ψ12|S1∩S2

Residue theorem: ∫
δS1S2

σ

ω = (2πi)2

∫
σ

ResS2S1 [ω] ,

where δS1S2 ≡ δS1δS2 .



Compactification

Embedding formalism variables.

Z =

 zµ

Z−

Z+

 ∈ CPD+1

with bilinear form

(Z1Z2) = zµ1 z2µ −
1

2
Z+

1 Z−2 −
1

2
Z−1 Z+

2



Compactification

Uncut integrals:

IDn =
eγE ε

πD/2

∫
(YY )=0

dD+2Y

Vol(GL(1))

(X∞Y )n−D

(X1Y ) . . . (XnY )
,

where

Xi =

 (qE
i )µ

(qE
i )2 + m2

i

1

 for 1 ≤ i ≤ n , X∞ =

 0µ

1
0

 ,
[Dirac embedding formalism; Fotiadi et al; Simmons-Duffin; Caron-Huot, Henn]



Compactification

Landau conditions:
det(XiXj)i,j∈C = 0

X∞ → second type singularities.

det(XiXj)i,j∈C =

{
(−1)c YC , if ∞ /∈ C ,
(−1)c−1

4
GC\{∞} , if ∞ ∈ C .



Decomposition Theorem

For 1-loop Feynman integrals, the Decomposition Theorem shows that the
contours ΓC = δSC form a basis. [Fotiadi, Pham]

Γ∞C = −2xC ΓC −
∑

C⊂X⊆[n]

(−1)d
|C|

2
e+d |X|

2
e ΓX , xc =

{
1 , |C | odd ,
0 , |C | even .

It follows that

for |C | even,

C∞C In =
∑

i∈[n]\C

CCi In +
∑

i,j∈[n]\C
i<j

CCij In mod iπ .

for |C | odd,

C∞C In = −2CC In −
∑

i∈[n]\C

CCi In mod iπ .



Relations among cut integrals

Any linear relation among cut/uncut integrals can be cut as a whole
(cf. “reverse unitarity”)

For D = n, i.e. ε = 0, there is no singularity at (X∞Y ) = 0, so C∞C I
n
n = 0.

If n is even and c is odd, then

2CC I nn +
∑
i

CCi I nn = 0 mod iπ

Special case:

Cn−1I
n
n = −1

2
CnI nn +O(ε)

By examining Disc∞, we see that∑
i

Ci IDn +
∑
i<j

Cij IDn = C∞IDn

= −ε IDn mod iπ



Parametrization and evaluation

Both cut and uncut integrals are unified in the following class of functions:

QD
n (X1, . . . ,Xn,X0) =

eγE ε

πD/2

∫
(YY )=0

dD+2Y

Vol(GL(1))

(X0Y )n−D

(X1Y ) . . . (XnY )
,

Uncut: IDn (X1, . . . ,Xn) = QD
n (X1, . . . ,Xn,X∞)

Cut: CC IDn = 1√
YC

QD−c
n−c (X ′C ,c+1, . . . ,X

′
C ,n,X

′
C ,∞)

where X ′C ,i are projections of Xi onto the cut locus,

X ′C ,i =
1

YC
det


(X1X1) . . . (X1Xc) X1

...
...

...
(XcX1) . . . (XcXc) Xc

(XiX1) . . . (XiXc) Xi

 .



Parametrization and evaluation

Feynman parameters for cut integrals:

QD
n (X1, . . . ,Xn,X0) =

eγE ε

πD/2

Γ(D)

Γ(D − n)

∫
[da] a0

D−n−1 (ξξ)−D/2, (1)

where

ξ ≡ a0X0 + · · ·+ anXn ,

∫
[da] ≡

∫ ∞
0

da0 · · ·
∫ ∞

0

dan δ(1− h(a)) , (2)

and h(a) =
∑n

i=0 hiai such that hi ≥ 0.

[see also: Arkani-Hamed and Yuan]



Statement of the graphical conjecture

The coaction on 1-loop graphs defined by pinching and cutting subsets of
propagators,

when evaluated by Feynman rules,
if expanded order by order in ε,

agrees with the coaction on MPLs.



Examples of the graphical conjecture

∆MPL

[
e

]
= e ⊗ e .

e = −
eγE εΓ(1 + ε)

(
m2
)−ε

ε

e =
eγE ε

(
−m2

)−ε
Γ(1− ε) .

∆MPL

[
(m2)−ε

]
= (m2)−ε ⊗ (m2)−ε ,

∆MPL [eγE εΓ(1 + ε)] = (eγE εΓ(1 + ε))⊗ eγE ε

Γ(1− ε) ,



Examples of the graphical conjecture

∆

 e1

e2

 =

e1

e2

⊗
e1

e2

+ e1 ⊗

 e1

e2

+
1

2

e1

e2


+ e2 ⊗

 e1

e2

+
1

2

e1

e2



∆

(∫
Γ∅

ω12

)
=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
ω1 ⊗

(∫
Γ1

ω12 +
1

2

∫
Γ12

ω12

)
+ · · ·

=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
Γ∅

ω1 ⊗
∫
− 1

2
Γ1∞

ω12 +

∫
Γ∅

ω2 ⊗
∫
− 1

2
Γ2∞

ω12

The odd-shaped integrals have poles at infinity.



Examples of the graphical conjecture

∆

(∫
Γ∅

ω12

)
=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
ω1 ⊗

(∫
Γ1

ω12 +
1

2

∫
Γ12

ω12

)
+ · · ·

=

∫
Γ∅

ω12 ⊗
∫

Γ12

ω12 +

∫
Γ∅

ω1 ⊗
∫
− 1

2
Γ1∞

ω12 +

∫
Γ∅

ω2 ⊗
∫
− 1

2
Γ2∞

ω12

Basis of integrands and corresponding contours:

e1

e2

e1 e2

ωj : ω12 ω1 ω2

γj : Γ12 − 1
2
Γ1∞ − 1

2
Γ2∞

C12 C1 + 1
2
C12 C2 + 1

2
C12

They satisfy ∫
γi

ωj ∼ δij after dropping logs
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The master formula for the 2F1 family

Consider the diagrammatic coaction

∆


e2

e1

e3
1

 = e1 ⊗

 e1
e3

1

e2

+
1

2

e2

e1
e3

1



+

e1

e2

1 1 ⊗

e2

e1
e3

1

There is a coaction on 2F1 that gives

∆2F1 (1, 1 + ε, 2− ε, x) = 2F1 (1, ε, 1− ε, x)⊗ 2F1 (1, 1 + ε, 2− ε, x)

+2F1 (1, 1 + ε, 2− ε, x)⊗ 2F1

(
1, ε, 1− ε, 1

x

)
without expanding in ε!



Master formula for Hopf algebra on integrals

Coaction of the form

∆

(∫
γ

ω

)
=
∑
i

∫
γ

ωi ⊗
∫
γi

ω

with a duality condition

Pss

∫
γi

ωj = δij .

Pss is semi-simple projection (“drop logarithms but not π”).

To be precise, Pss projects onto the space of semi-simple numbers x satisfying
∆(x) = x ⊗ 1.



The master formula for the 2F1 family

Consider the family of integrands

ω(α1, α2, α3) = xα1 (1− x)α2 (1− zx)α3 dx

where αi = ni + εi and ni ∈ Z.

∫ 1

0

ω(α1, α2, α3) =
Γ(α1)Γ(α2 − α1)

Γ(α2)
2F1(−α3, α1 + 1;α2 + α1 + 2; z)

Basis of master integrands:∫ 1

0

ω = c0

∫ 1

0

ω0 + c1

∫ 1

0

ω1

where

ω0 = xε1 (1− x)−1+ε2 (1− zx)ε3 dx

ω1 = xε1 (1− x)ε2 (1− zx)−1+ε3 dx

With the two contours γ0 = [0, 1] and γ1 = [0, 1/z], we have Pss

∫
γi
ωj ∼ δij .

Similar for half-integer arguments.



Master formula for Appell F1

Family of integrands for F1.

ω(α1, α2, α3, α4) = xα1 (1− x)α2 (1− z1x)α3 (1− z2x)α4 dx

where αi = ni + εi and ni ∈ Z.

∫ 1

0

ω(α1, α2, α3, α4) =
Γ(α1)Γ(α2 − α1)

Γ(α2)
F1(α1, α3, α4, α2; z1, z2)

Master integrands:

ω0 = xε1 (1− x)−1+ε2 (1− z1x)ε3 (1− z2x)ε4 dx

ω1 = xε1 (1− x)ε2 (1− z1x)−1+ε3 (1− z2x)ε4 dx

ω2 = xε1 (1− x)ε2 (1− z1x)ε3 (1− z2x)−1+ε4 dx

Master contours: γ0 = [0, 1], γ1 = [0, z−1
1 ], γ2 = [0, z−1

2 ].



Diagrammatic example with F1

∆


e1

e2

e3

 = e1 ⊗


e1

e2

e3
+

1

2
e1

e2

e3



+ e2 ⊗


e1

e2

e3
+

1

2
e1

e2

e3



+

e1

e2

⊗

e1

e2

e3

+

e1

e2

e3
⊗

e1

e2

e3



Master formula for p+1Fp

Family of integrands for 3F2.

ω(α1, α2, α3, α4, α5) = xα1 (1− x)α2yα3 (1− y)α4 (1− zxy)α5 dx ∧ dy

where αi = ni + εi and ni ∈ Z.
Then ∫ 1

0

∫ 1

0

ω(α1, α2, α3, α4, α5) =

Γ()Γ()Γ()Γ()

Γ()Γ()
3F2(α1 + 1, α3 + 1,−α5; 2 + α1 + α2, 2 + α3 + α4; z)

Basis of master integrands:

ω0 = xε1 (1− x)−1+ε2y ε3 (1− y)−1+ε4 (1− zxy)ε5 dx ∧ dy

ω1 = xε1 (1− x)−1+ε2y ε3 (1− y)ε4 (1− zxy)−1+ε5 dx ∧ dy

ω2 = xε1 (1− x)ε2y ε3 (1− y)−1+ε4 (1− zxy)−1+ε5 dx ∧ dy

With the master contours γ0 = (0, 1)2, γ1 = (0, 1)× (0, 1
zx

),
γ2 = (0, 1

zy
)× (0, 1), we find that Pss

∫
γi
ωj ∼ δij



Diagrammatic example with 3F2

∆


1 2

 =

1 2

⊗
1 2

+ 1 ⊗
1 2

+ 2 ⊗
1 2

+ 1

2

⊗
1 2

+ 2

1

⊗
1 2

+ 1 2 ⊗
1 2

(with various prefactors inserted; terms are of uniform weight)



Features of diagrammatic coaction at two loops

Matrix of integrands and contours for each topology.

Example: sunrise with one internal mass. 2 master integrands in top topology.

=

∫
Γ∅

ω111 ∼ 2F1

(
1 + 2ε, 1 + ε, 1− ε, p2/m2

)
=

∫
Γ∅

ω121 ∼ 2F1

(
2 + 2ε, 1 + ε, 1− ε, p2/m2

)
For each, only two of the generalized cuts are linearly independent!

Thus 2 independent integration contours, e.g. Γ∅ and Γ123.

Diagonalize the matrix:
∫
γi
ωj ∼ δij with

ω1 = aε2ω111, ω2 = bεω111 + cεω121

γ1 = Γ∅, γ2 = − 1

6ε
Γ123 +

2

3
Γ∅

Coaction ∆
(∫

γ
ω
)

=
∑

i

∫
γ
ωi ⊗

∫
γi
ω is expressible in terms of diagrams.



Features of diagrammatic coaction at two loops

For example:

∆

( )
= ⊗

[
+

]

+

[
+

]
⊗

[

+ + +


(with prefactors as seen on previous slide)

In particular, we can recover weight 1 discontinuities:

∆1,k−1

( )
= log(p2 −m2)⊗ + log(m2)⊗



Master formula for Appell hypergeometric functions

Choose dlog forms for a basis of master integrals.

Another view of Appell F1:
Master integrands:

ϕ ≡ xaε(1− x)bε(1− z1x)cε(1− z2x)dε

ω0 = xaε(1− x)−1+bε(1− z1x)cε(1− z2x)dε = −d log(1− x)ϕ

ω1 = xaε(1− x)bε(1− z1x)−1+cε(1− z2x)dε = − 1

z1
d log(1− z1x)ϕ

ω2 = xaε(1− x)bε(1− z1x)cε(1− z2x)−1+dε = − 1

z2
d log(1− z2x)ϕ

Master contours: γ0 = (0, 1), γ1 = (0, z−1
1 ), γ2 = (0, z−1

2 ).

[cf. talks by He and Mizera]



Master formula for Appell hypergeometric functions

Double integral representation of Appell F1:

F1(α, β, β′, γ; x , y) =

Γ()

Γ()Γ()Γ()

∫ 1

0

dv

∫ 1−v

0

du uβ−1vβ
′−1(1− u − v)γ−β−β

′−1(1− ux − vy)−α

ϕ = uaεvbε(1− u − v)cε(1− ux − vy)dε

a

b

d

c

1
x

1
u

1
y

1

v

Combinatorial treatment.



Master formula for Appell hypergeometric functions

a

b

d

c

1
x

1
u

1
y

1

v

Basis of integration regions:
γabc bounded by lines a, b, c
γabd bounded by lines a, b, d
γbcd bounded by lines b, c, d

Basis of integrands:
ωac = d log(1− u − v) ∧ d log u
ωad = d log(1− ux − vy) ∧ d log u
ωcd = d log(1− u − v) ∧ d log(1− ux − vy)

Read off the duality matrix by intersections (residues).

Pss

∫
γ
ω ac ad cd

abc 1
acε2 0 0

abd 0 1
adε2 0

bcd 0 0 1
cdε2

Find a choice of dlog forms that naturally diagonalize the matrix, or else
diagonalize a posteriori.



Master formula for Appell hypergeometric functions

Appell F2: ϕ = uaεvbε(1− u)cε(1− v)dε(1− ux − vy)eε

a

b

c

d

e

1
x

1
u

1
y

1

v

Basis of integrands: [cf. Goto]

ωab = d log u ∧ d log v
ωbc = d log(1− u) ∧ d log v
ωcd = d log(1− u) ∧ d log(1− v)
ωda = d log u ∧ d log(1− v)

Basis of integration regions: γabe , γbce , γcde , γade

Read off the duality matrix by intersections (residues).

Pss

∫
γ
ω ab bc cd da

abe 1
abε2 0 0 0

bce 0 1
bcε2 0 0

cde 0 0 1
cdε2 0

ade 0 0 0 1
adε2

More generally, degenerate arrangements require blowups.



Summary & Outlook

We observe a Hopf algebra structure on Feynman diagrams. At 1 loop,
there is a basis for which the coaction on MPLs is simply related to
pinches and cuts of the original diagram. Beyond 1-loop: encounter matrix
equations (cf. higher-order differential equations).

Dimensional regularization works well. Deep mechanisms exist for
cancelling divergences.

Cuts should be understood through homology and Leray residues. Found
1-loop parametrization for computing cut integrals. Cuts at infinity carry
physical meaning.

Abstracted master formula: a Hopf algebra based on matched pairs of
integrands and contours. Applications to generalized hypergeometric
functions.

To explore further: systematic description beyond 1 loop, full range of
hypergeometric functions, applications to integral and amplitude
computations.





Application: cuts and discontinuities

∆ Disc = (Disc⊗1) ∆

∆ (Disc In) = (Disc⊗1) (∆In)

Since ∆ (Disc In) = 1⊗ (Disc In) + · · · , it is enough to look at the terms
∆1,w−1In.

The basis integrals of weight 1 are precisely the tadpoles and bubbles. The
corresponding cut diagrams have 1 or 2 propagators cut.

Therefore: the discontinuities are precisely the unitarity cut diagrams
(momentum invariant discontinuities) and the single-cut diagrams (mass
discontinuities).

Generalized cuts can be interpreted as well. Steinmann relations follow.



Application: differential equations

∆ ∂ = (1⊗ ∂) ∆

Likewise, we get differential equations by focusing on nearly-maximal cuts in
the second factor:

d

  =
∑
(ijk)

j

i

k d

 i

k
j

+
1

2

∑
l

i

k
j

l


ε0

+
∑
(ijkl)

i

j

k

l

d

 i

k
j

l


ε0

+ ε d

 
ε1

This also shows a way to identify the symbol alphabet.


	Diagrammatic coaction
	Cut integrals
	Master formula for coaction on integrals

