

Gravity Amplitudes

Can we study gravitational scattering on curved backgrounds?

AdS space a natural candidate - constant negative curvature.

AdS/CFT: CFT techniques can be deployed to study the problem.

AdS/CFT is a strong/weak duality.

Normally it is used to describe a strongly coupled gauge theory in terms of a weakly coupled gravity theory.

Even weakly coupled AdS gravity becomes more tractable from a boundary perspective.

Gravity Amplitudes as boundary correlators

Elementary gravitons/matter are single-trace operators.

AdS/CFT: bulk AdS amplitudes are boundary CFT correlators.

Their structure is governed by properties of multi-particle bound states which correspond to multi-trace operators.

The perturbative expansion is an expansion in

Gravity Amplitudes as boundary correlators

Why not just compute the bulk diagrams?

Moreover there are often infinitely many fields running in the loop!

Concrete AdS/CFT examples often have AdS x M.

Tower of Kaluza-Klein modes present.

For this talk:

$$\mathcal{N} = 4 \text{ SYM} \sim \text{IIB superstrings on } \text{AdS}_5 \times S^5$$

Half-BPS operators

Natural operators to consider: $(y^2 = 0)$

$$\mathcal{O}^{(p)}(x,y) = y^{R_1} \dots y^{R_p} \operatorname{tr}(\phi_{R_1} \dots \phi_{R_p})(x)$$

Two-point functions and three-point functions protected by SUSY.

Four-point functions non-trivial:

$$\langle p_1 p_2 p_3 p_4 \rangle = \langle \mathcal{O}^{(p_1)}(x_1, y_1) \mathcal{O}^{(p_2)}(x_2, y_2) \mathcal{O}^{(p_3)}(x_3, y_3) \mathcal{O}^{(p_4)}(x_4, y_4) \rangle$$

OPE involves exchange of unprotected operators.

Correlator depends on $\{x_i, y_i; N, g\}$

$$\Lambda = g^2 N$$

We study the correlation functions in the supergravity limit.

$$\langle 2222 \rangle = \langle 2222 \rangle^{(0)} + a \langle 2222 \rangle^{(1)} [\lambda] + a^2 \langle 2222 \rangle^{(2)} [\lambda] + \dots$$

$$a = \frac{1}{N^2 - 1}$$

We study the correlation functions in the supergravity limit.

$$\langle 2222 \rangle = \langle 2222 \rangle^{(0)} + a \langle 2222 \rangle^{(1)} [\lambda] + a^2 \langle 2222 \rangle^{(2)} [\lambda] + \dots$$

$$a = \frac{1}{N^2 - 1}$$

Leading term - disconnected part:

$$\langle 2222 \rangle^{(0)} = \sum \langle 22 \rangle \langle 22 \rangle$$

We study the correlation functions in the supergravity limit.

$$\langle 2222 \rangle = \langle 2222 \rangle^{(0)} + a \langle 2222 \rangle^{(1)} [\lambda] + a^2 \langle 2222 \rangle^{(2)} [\lambda] + \dots$$
$$a = \frac{1}{N^2 - 1}$$

Leading term - disconnected part:

$$\langle 2222 \rangle^{(0)} = \sum \langle 22 \rangle \langle 22 \rangle$$

First correction - classical strings:

$$\langle 2222 \rangle^{(1)}[\lambda] = \langle 2222 \rangle_0^{(1)} + \lambda^{-\frac{3}{2}} \langle 2222 \rangle_2^{(1)} + \dots$$

We study the simplest correlation function in the supergravity limit.

$$\langle 2222 \rangle = \langle 2222 \rangle^{(0)} + a \langle 2222 \rangle^{(1)} [\lambda] + a^2 \langle 2222 \rangle^{(2)} [\lambda] + \dots$$

$$a = \frac{1}{N^2 - 1}$$

Leading term - disconnected part:

$$\langle 2222 \rangle^{(0)} = \sum \langle 22 \rangle \langle 22 \rangle$$

First correction - classical strings:

$$\langle 2222 \rangle^{(1)} [\lambda] = \langle 2222 \rangle_0^{(1)} + \lambda^{-\frac{3}{2}} \langle 2222 \rangle_2^{(1)} + \dots$$

Leading term - classical supergravity: First stringy correction

We study the simplest correlation function in the supergravity limit.

$$\langle 2222 \rangle = \langle 2222 \rangle^{(0)} + a \langle 2222 \rangle^{(1)} [\lambda] + a^2 \langle 2222 \rangle^{(2)} [\lambda] + \dots$$

$$a = \frac{1}{N^2 - 1}$$

Leading term - disconnected part:

$$\langle 2222 \rangle^{(0)} = \sum \langle 22 \rangle \langle 22 \rangle$$

First correction - classical strings:

$$\langle 2222 \rangle^{(1)}[\lambda] = \langle 2222 \rangle_0^{(1)} + \lambda^{-\frac{3}{2}} \langle 2222 \rangle_2^{(1)} + \dots$$

Second correction - string loop:

$$\langle 2222 \rangle^{(2)}[\lambda] = \langle 2222 \rangle^{(2)}_0 + \dots$$

Kinematic dependence

Propagators:

U

$$_{ij} = \frac{y_{ij}^2}{x_{ij}^2}$$

$$x_{ij}^2 = (x_i - x_j)^2$$
 $y_{ij}^2 = y_i \cdot y_j$

Conformal and internal cross-ratios:

d

$$= x\bar{x} = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \qquad v = (1-x)(1-\bar{x}) = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}, \\ y\bar{y} = \frac{y_{12}^2 y_{34}^2}{y_{13}^2 y_{24}^2}, \qquad (1-y)(1-\bar{y}) = \frac{y_{14}^2 y_{23}^2}{y_{13}^2 y_{24}^2}.$$

Superconformal symmetry implies a decomposition:

 $\langle 2222 \rangle = \langle 2222 \rangle_{\rm free} + \langle 2222 \rangle_{\rm int}$

[Eden, Petkou, Schubert, Sokatchev] [Dolan, Osborn]

$$\langle 2222 \rangle_{\text{int}} = d_{13}^2 d_{24}^2 s(x, \bar{x}; y, \bar{y}) F(u, v)$$

$$s(x,\bar{x};y,\bar{y}) = (x-y)(x-\bar{y})(\bar{x}-y)(\bar{x}-\bar{y})$$

Kinematic dependence

Propagators:

U

$$_{ij} = \frac{y_{ij}^2}{x_{ij}^2}$$

0

$$x_{ij}^2 = (x_i - x_j)^2$$
 $y_{ij}^2 = y_i \cdot y_j$

Conformal and internal cross-ratios:

d

$$\begin{aligned} x &= x\bar{x} = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \\ y\bar{y} &= \frac{y_{12}^2 y_{34}^2}{y_{13}^2 y_{24}^2}, \end{aligned} \qquad \qquad v = (1-x)(1-\bar{x}) = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}, \\ (1-y)(1-\bar{y}) &= \frac{y_{14}^2 y_{23}^2}{y_{13}^2 y_{24}^2}. \end{aligned}$$

Free theory:

$$\langle 2222 \rangle_{\text{free}}^{(0)} = \left(d_{12}^2 d_{34}^2 + d_{13}^2 d_{24}^2 + d_{14}^2 d_{23}^2 \right),$$

$$\langle 2222 \rangle_{\text{free}}^{(1)} = 4 \left(d_{12} d_{34} d_{13} d_{24} + d_{12} d_{34} d_{14} d_{23} + d_{13} d_{24} d_{14} d_{23} \right),$$

Operator product expansion

Long superconformal blocks:

[Dolan, Osborn]

$$F_{t,l}^{\text{long}} = (x - y)(x - \bar{y})(\bar{x} - y)(\bar{x} - \bar{y})G_{t,l}(x, \bar{x})$$

$$G_{t,l}(x, \bar{x}) = \frac{f_{t+l}(x)f_{t-1}(\bar{x}) - f_{t+l}(\bar{x})f_{t-1}(x)}{x - \bar{x}}$$

$$f_{\rho}(x) = x^{\rho - 1}{}_{2}F_{1}(\rho + 2, \rho + 2, 2\rho + 4; x)$$

Supergravity Spectrum

In supergravity regime long single-trace operators decouple.

They cancel in the combination $\langle 2222 \rangle_{\text{free}}^{(1)} + \langle 2222 \rangle_{\text{int}}^{(1)}$

Remaining spectrum is made from products of half-BPS operators.

At leading order in large N only double-trace operators (degenerate):

At twist $2t \quad \{(\mathcal{O}_2 \Box^{t-2} \partial^l \mathcal{O}_2), (\mathcal{O}_3 \Box^{t-3} \partial^l \mathcal{O}_3), \dots, (\mathcal{O}_t \Box^0 \partial^l \mathcal{O}_t)\}$ have (t-1) of them. $K_{t,l,i} \quad i = 1, \dots, t-1$

From disconnected part (large N free fields):

$$\sum_{i=1}^{t-1} \langle \mathcal{O}^{(2)} \mathcal{O}^{(2)} K_{t,l,i} \rangle^2 = C_{t,l}^{(0)} = \frac{2(t+l+1)!^2 t!^2 (l+1)(2t+l+2)}{(2t)!(2t+2l+2)!}$$

Supergravity Expansion

Classical connected part:

$$\langle 2222 \rangle^{(1)} = \langle 2222 \rangle^{(1)}_{\text{free}} + \langle 2222 \rangle^{(1)}_{\text{int}}$$

Supergravity Expansion

Classical connected part:

$$\langle 2222 \rangle^{(1)} = \langle 2222 \rangle^{(1)}_{\text{free}} + d_{13}^2 d_{24}^2 s(x, \bar{x}, y, \bar{y}) F^{(1)}(u, v)$$

$$F^{(1)}(u,v) = -4\partial_u \partial_v (1+u\partial_u + v\partial_v) \Phi^{(1)}(u,v)$$

$$\int \frac{d^4 x_0}{x_{01}^2 x_{02}^2 x_{03}^2 x_{04}^2} = \frac{\Phi^{(1)}(u, v)}{x_{13}^2 x_{24}^2}$$

Supergravity Expansion

Classical connected part:

$$\sum_{i=1}^{t-1} \eta_{t,l,i}^{(1)} \langle \mathcal{O}^{(2)} \mathcal{O}^{(2)} K_{t,l,i} \rangle^2 = -C_{t,l}^{(0)} \frac{(t-1)t(t+1)(t+2)}{2(l+1)(2t+l+2)}$$

log u arises because twist is:

$$2t \longrightarrow 2(t + a\eta_{t,l,i}^{(1)} + a^2\eta_{t,l,i}^{(2)} + \ldots)$$

Mixing problem

Classical connected part:

$$\sum_{i=1}^{t-1} \eta_{t,l,i}^{(1)} \langle \mathcal{O}^{(2)} \mathcal{O}^{(2)} K_{t,l,i} \rangle^2 = -C_{t,l}^{(0)} \frac{(t-1)t(t+1)(t+2)}{2(l+1)(2t+l+2)}$$

Cannot extract 3-point functions and anomalous dimensions: mixing! (except at twist 4 where there is only one operator [Dolan, Osborn])

Mixing problem

Unmixing

Organise long conformal block coefficients into matrices:

Have $2 \times t(t-1)/2$ pieces of information.

Exactly enough information to resolve mixing!

Unmixing

Organise long conformal block coefficients into matrices:

Have $2 \times t(t-1)/2$ pieces of information.

Exactly enough information to resolve mixing!

Complicated algebraic solutions?

 $\mathbb{C} \cdot \mathbb{C}^T = \mathcal{A}$ $\mathbb{C} \cdot \eta \cdot \mathbb{C}^T = \mathcal{M}$

Solution

$$K_{t,l,i}$$

$$\{(\mathcal{O}_2\Box^{t-2}\partial^l\mathcal{O}_2), (\mathcal{O}_3\Box^{t-3}\partial^l\mathcal{O}_3), \dots, (\mathcal{O}_t\Box^0\partial^l\mathcal{O}_t)\}$$

Anomalous dimensions:

$$\eta_{t,l,i} = -\frac{2(t-1)_4(l+t)_4}{(l+2i-1)_6}$$

(generalises to all channels) (residual partial degeneracy)

Three-point functions:

$$\langle \mathcal{O}^{(2)} \mathcal{O}^{(2)} K_{t,l,i} \rangle^2 = C_{t,l}^{(0)} R_{t,l,i} a_{t,i}$$

(beautiful structure in non-degenerate cases)

$$R_{t,l,i} = \frac{2^{1-t}(2l+3+4i)(l+i+1)_{t-i-1}(t+l+4)_{i-1}}{(\frac{5}{2}+l+i)_{t-1}},$$

$$a_{t,i} = \frac{2^{(1-t)}(2+2i)!(t-2)!(2t-2i+2)!}{3(i-1)!(i+1)!(t+2)!(t-i-1)!(t-i+1)!}.$$

Surprisingly simple structure to resolve mixing!

From disconnected part:

$$\sum_{i=1}^{t-1} \langle \mathcal{O}^{(2)} \mathcal{O}^{(2)} K_{t,l,i} \rangle^2 = C_{t,l}^{(0)} = \frac{2(t+l+1)!^2 t!^2 (l+1)(2t+l+2)}{(2t)!(2t+2l+2)!}$$

From classical connected part (log u) term:

$$\sum_{i=1}^{t-1} \eta_{t,l,i}^{(1)} \langle \mathcal{O}^{(2)} \mathcal{O}^{(2)} K_{t,l,i} \rangle^2 = -C_{t,l}^{(0)} \frac{(t-1)t(t+1)(t+2)}{2(l+1)(2t+l+2)}$$

Predict one-loop (log u)^2 term:

$$\int \frac{1}{2} \sum_{t=2}^{\infty} \sum_{l=0}^{\infty} \sum_{i=1}^{t-1} \langle \mathcal{O}^{(2)} \mathcal{O}^{(2)} K_{t,l,i} \rangle^2 (\eta_{t,l,i}^{(1)})^2 G_{t,l}(x,\bar{x})$$

Predict one-loop (log u)^2 term:

$$\frac{1}{2} \sum_{t=2}^{\infty} \sum_{l=0}^{\infty} \sum_{i=1}^{t-1} \langle \mathcal{O}^{(2)} \mathcal{O}^{(2)} K_{t,l,i} \rangle^2 (\eta_{t,l,i}^{(1)})^2 G_{t,l}(x,\bar{x})$$

Can resum!

$$F_{2}^{(2)}(u,v) = \frac{1}{uv} \Big[p(u,v) \frac{\text{Li}_{1}(x)^{2} - \text{Li}_{1}(\bar{x})^{2}}{x - \bar{x}} + 2 \Big[p(u,v) + p \left(\frac{1}{v}, \frac{u}{v}\right) \Big] \frac{\text{Li}_{2}(x) - \text{Li}_{2}(\bar{x})}{x - \bar{x}} + q(u,v)(\text{Li}_{1}(x) + \text{Li}_{1}(\bar{x})) + r(u,v) \frac{\text{Li}_{1}(x) - \text{Li}_{1}(\bar{x})}{x - \bar{x}} + s(u,v) \Big]$$

$$p(u,v) = -24uv\partial_x^2\partial_{\bar{x}}^2 \left[\frac{u^2v^2(1-u-v)[(1-u-v)^4 + 20uv(1-u-v)^2 + 30u^2v^2]}{(x-\bar{x})^{10}}\right]$$

Double discontinuity:

$$F_{2}^{(2)}(u,v) = \frac{1}{uv} \Big[p(u,v) \frac{\text{Li}_{1}(x)^{2} - \text{Li}_{1}(\bar{x})^{2}}{x - \bar{x}} + 2 \Big[p(u,v) + p \left(\frac{1}{v}, \frac{u}{v}\right) \Big] \frac{\text{Li}_{2}(x) - \text{Li}_{2}(\bar{x})}{x - \bar{x}} + q(u,v)(\text{Li}_{1}(x) + \text{Li}_{1}(\bar{x})) + r(u,v) \frac{\text{Li}_{1}(x) - \text{Li}_{1}(\bar{x})}{x - \bar{x}} + s(u,v) \Big]$$

Also obtained in

[Alday, Caron-Huot]

Can promote to crossing symmetric function! (Analytic perturbative bootstrap)

$$F^{(2)}(u,v) = \frac{1}{2^5} \left[\Delta^{(8)} \frac{u^4 v^2 (1-u-v)}{(x-\bar{x})^7} \tilde{\phi}^{(2)}(x,\bar{x}) + \text{cross terms} \right] + \dots$$

Only two-loop ladder integrals appearing + lower weights!

A single ambiguity - corresponds to adding a D-function.

Next correction to twist 4 anomalous dimensions:

$$\eta_l^{(2)} = \begin{cases} \frac{1344(l-7)(l+14)}{(l-1)(l+1)^2(l+6)^2(l+8)} - \frac{2304(2l+7)}{(l+1)^3(l+6)^3} \\ \frac{9}{14}\alpha + \frac{1148}{3} \end{cases}$$

$$\left. \begin{array}{c} l = 2, 4, \dots \\ l = 0 \end{array} \right\}$$

Above formula for I=2,4 also obtained in [Alday, Bissi]

All spin formula reproduced in

[Alday, Caron-Huot]

Discussion and Outlook

Have obtained supergravity loop corrections from OPE consistency.

Relied on being able to resolve double-trace mixing from classical data.

Can now extract subleading corrections to anomalous dimensions & three-point functions.

Much more to explore in terms of the mixing problem.

Loop corrections to higher charge correlators:

Higher loops? (Triple trace ops!)

Mellin space representation?

Non-planar corrections not well understood - polygonalization?

Extra slides

Anatomy of an N=4 correlator

Anatomy of an N=4 correlator

Anatomy of an N=4 correlator

$$\begin{split} \langle 2222 \rangle &= \frac{\langle 2222 \rangle_{\text{free}}^{(0)} + a \langle 2222 \rangle_{\text{free}}^{(1)} \qquad \text{Protected}}{\langle 2222 \rangle_{\text{free}}^{(0)} + a \langle 2222 \rangle_{\text{free}}^{(1)} \qquad \text{Long}} \\ &+ a \langle 2222 \rangle_{\text{int}}^{(1)} + a^2 \langle 2222 \rangle_{\text{int}}^{(2)} + \dots \end{split}$$

Unmixing

Universal factor in three-point functions:

$$(C_{ppK_{t,l,i}})^2 = \frac{(l+t+1)!^2}{(2l+2t+2)!}c_{pi}^2, \qquad p=2,\ldots,t, \quad i=1,\ldots,t-1$$

 Twist 4 problem (t=2):
 [Dolan, Osborn]

 $(C_{22K_{t,l,1}})^2 = \mathcal{A}^{2222} \Rightarrow$ $c_{21}^2 = \frac{4}{3}(l+1)(l+6)$
 $\eta_1(C_{22K_{t,l,1}})^2 = \mathcal{M}^{2222} \Rightarrow$ $c_{21}^2 \eta_1 = -64$

solution:

$$\eta_1 = -\frac{48}{(l+1)(l+6)}, \qquad c_{21} = \sqrt{\frac{4(l+1)(l+6)}{3}}$$

Unmixing

large N free fields: $c_{21}^2 + c_{22}^2 = \frac{2}{5}(l+1)(l+8)$ Twist 6: $c_{31}^2 + c_{32}^2 = \frac{9}{40}(l+1)(l+2)(l+7)(l+8)$ $c_{21}c_{31} + c_{22}c_{32} = 0$ $c_{21}^2 \eta_1 + c_{22}^2 \eta_2 = -96$ classical log u: $c_{31}^2\eta_1 + c_{32}^2\eta_2 = -54(l^2 + 9l + 44)$ $c_{21}c_{31}\eta_1 + c_{22}c_{32}\eta_2 = 432$ $\eta_1 = -\frac{240}{(l+1)(l+2)}, \qquad \eta_2 = -\frac{240}{(l+7)(l+8)},$ solution! $c_{21} = -\sqrt{\frac{2(l+1)(l+2)(l+8)}{5(2l+9)}}, \qquad c_{22} = -\sqrt{\frac{2(l+1)(l+7)(l+8)}{5(2l+9)}},$ $c_{31} = \sqrt{\frac{9(l+1)(l+2)(l+7)^2(l+8)}{40(2l+9)}}, \qquad c_{32} = -\sqrt{\frac{9(l+1)(l+2)^2(l+7)(l+8)}{40(2l+9)}}$

Kaluza-Klein Correlators

We have also studied the first case involving Kaluza-Klein modes:

 $\langle 2233 \rangle$

Less crossing symmetry.

Need to consider different channels or equivalently also: $\langle 2323\rangle$ Even and odd spins contribute.

Anomalous dimensions: $\Delta = 2t + l + 1 + 2a\eta_{t,l,i}^{(1)} + 2a^2\eta_{t,l,i}^{(2)} + \dots$

$$\eta_{t,l,i}^{(1)} = \begin{cases} -\frac{2(t-1)_2(t+2)_2(l+t)_2(l+t+3)_2}{(l+2i-1)_6} & l = 0, 2, \dots \\ -\frac{2(t-1)_2(t+2)_2(l+t)_2(l+t+3)_2}{(l+2i)_6} & l = 1, 3, \dots \end{cases}$$