
James Drummond

Amplitudes 2018, SLAC

Quantum Gravity 
from

Conformal Field 
Theory



F. Aprile JMD

P. Heslop H. Paul

Based on:
1706.02822
1706.08456
1711.03903
1802.06889



Gravity Amplitudes

Even weakly coupled AdS gravity becomes more tractable from a 
boundary perspective.

Can we study gravitational scattering on curved backgrounds?

AdS space a natural candidate - constant negative curvature.

AdS/CFT: CFT techniques can be deployed to study the problem.

AdS/CFT is a strong/weak duality.

Normally it is used to describe a strongly coupled gauge theory in terms 
of a weakly coupled gravity theory.



Elementary gravitons/matter are single-trace operators.

AdS/CFT: bulk AdS amplitudes are boundary CFT correlators.

+ + +

Gravity Amplitudes as boundary correlators

Their structure is governed by properties of multi-particle bound states 
which correspond to multi-trace operators.

The perturbative expansion is an expansion in
1

N2



+ + +

Gravity Amplitudes as boundary correlators

Why not just compute the bulk diagrams?

Not simple - but see Ellis’ talk

Moreover there are often infinitely many fields running in the loop!

Concrete AdS/CFT examples often have AdS x M.

Tower of Kaluza-Klein modes present.

For this talk: N = 4 SYM ⇠ IIB superstrings on AdS5 ⇥ S5



Half-BPS operators

Natural operators to consider:

Two-point functions and three-point functions protected by SUSY.

Four-point functions non-trivial: 

OPE involves exchange of unprotected operators.

hp1p2p3p4i = hO(p1)(x1, y1)O(p2)(x2, y2)O(p3)(x3, y3)O(p4)(x4, y4)i

O1

O2

O3

O4

O�,l

Correlator depends on {xi, yi;N, g}

(y2 = 0)

O(p)(x, y) = y

R1
. . . y

Rptr(�R1 . . .�Rp)(x)

� = g2N



Supergravity limit

We study the correlation functions in the supergravity limit.

a =
1

N2 � 1

h2222i = h2222i(0) + ah2222i(1)[�] + a2h2222i(2)[�] + . . .
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We study the simplest correlation function in the supergravity limit.

h2222i = h2222i(0) + ah2222i(1)[�] + a2h2222i(2)[�] + . . .

h2222i(0) =
X

h22ih22i

Leading term - disconnected part:

First correction - classical strings:

Leading term - classical supergravity: First stringy correction

h2222i(1)[�] = h2222i(1)0 + �� 3
2 h2222i(1)2 + . . .

a =
1

N2 � 1

Supergravity limit



We study the simplest correlation function in the supergravity limit.

h2222i = h2222i(0) + ah2222i(1)[�] + a2h2222i(2)[�] + . . .

h2222i(0) =
X

h22ih22i

Leading term - disconnected part:

First correction - classical strings:

Second correction - string loop:

h2222i(2)[�] = h2222i(2)0 + . . .

h2222i(1)[�] = h2222i(1)0 + �� 3
2 h2222i(1)2 + . . .

a =
1

N2 � 1

Supergravity limit



h2222i = h2222ifree + h2222iint

Superconformal symmetry implies a decomposition:

h2222iint = d

2
13d

2
24s(x, x̄; y, ȳ)F (u, v)

s(x, x̄; y, ȳ) = (x� y)(x� ȳ)(x̄� y)(x̄� ȳ)
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2
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y
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Conformal and internal cross-ratios:

[Eden, Petkou, Schubert, Sokatchev]
[Dolan, Osborn]
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y

2
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x

2
ij

y2ij = yi · yjx

2
ij = (xi � xj)

2

Kinematic dependence

Propagators:
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y

2
14y

2
23

y

2
13y

2
24

.

Conformal and internal cross-ratios:
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ij
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ij

y2ij = yi · yjx
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Kinematic dependence

Propagators:

h2222i(0)free =

✓
d212d

2
34 + d213d

2
24 + d214d

2
23

◆
,

h2222i(1)free = 4

✓
d12d34d13d24 + d12d34d14d23 + d13d24d14d23

◆

Free theory:



Operator product expansion

O1

O2

O3

O4

O�,l

h2222i
long

= (d
13

d
24

)2
X

t,l�0

Ct,lF
long

t,l

2t = �� l

F

long

t,l = (x� y)(x� ȳ)(x̄� y)(x̄� ȳ)Gt,l(x, x̄)

Gt,l(x, x̄) =
ft+l(x)ft�1(x̄)� ft+l(x̄)ft�1(x)

x� x̄

f⇢(x) = x

⇢�1
2F1(⇢+ 2, ⇢+ 2, 2⇢+ 4;x)

Long superconformal blocks: [Dolan, Osborn]



Supergravity Spectrum

{(O2⇤t�2@lO2), (O3⇤t�3@lO3), . . . , (Ot⇤0@lOt)}

In supergravity regime long single-trace operators decouple. 

Remaining spectrum is made from products of half-BPS operators.

At leading order in large N only double-trace operators (degenerate):

At twist 2t

have              of them.(t� 1) Kt,l,i i = 1, . . . , t� 1

From disconnected part (large N free fields):

t�1X

i=1

hO(2)O(2)Kt,l,ii2 = C(0)
t,l =

2(t+ l + 1)!2t!2(l + 1)(2t+ l + 2)

(2t)!(2t+ 2l + 2)!

They cancel in the combination h2222i(1)free + h2222i(1)int



Supergravity Expansion

Classical connected part:

h2222i(1) = h2222i(1)free + h2222i(1)int

From disconnected part (large N free fields):

t�1X

i=1

hO(2)O(2)Kt,l,ii2 = C(0)
t,l =

2(t+ l + 1)!2t!2(l + 1)(2t+ l + 2)

(2t)!(2t+ 2l + 2)!

[also in Agnese’s talk]



Classical connected part:

From disconnected part (large N free fields):

t�1X

i=1

hO(2)O(2)Kt,l,ii2 = C(0)
t,l =

2(t+ l + 1)!2t!2(l + 1)(2t+ l + 2)

(2t)!(2t+ 2l + 2)!

h2222i(1) = h2222i(1)free + d

2
13d

2
24s(x, x̄, y, ȳ)F

(1)(u, v)

F (1)(u, v) = �4@u@v(1 + u@u + v@v)�
(1)(u, v)

Z
d

4
x0

x

2
01x

2
02x

2
03x

2
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=
�(1)(u, v)

x

2
13x

2
24

Supergravity Expansion



Classical connected part:

From disconnected part (large N free fields):

t�1X

i=1

hO(2)O(2)Kt,l,ii2 = C(0)
t,l =

2(t+ l + 1)!2t!2(l + 1)(2t+ l + 2)

(2t)!(2t+ 2l + 2)!

t�1X

i=1

⌘(1)t,l,ihO(2)O(2)Kt,l,ii2 = �C(0)
t,l

(t� 1)t(t+ 1)(t+ 2)

2(l + 1)(2t+ l + 2)

 log u arises because twist is: 2t �! 2(t+ a⌘(1)t,l,i + a2⌘(2)t.l,i + . . .)

Supergravity Expansion



Mixing problem

Classical connected part:

From disconnected part (large N free fields):

t�1X

i=1

hO(2)O(2)Kt,l,ii2 = C(0)
t,l =

2(t+ l + 1)!2t!2(l + 1)(2t+ l + 2)

(2t)!(2t+ 2l + 2)!

t�1X

i=1

⌘(1)t,l,ihO(2)O(2)Kt,l,ii2 = �C(0)
t,l

(t� 1)t(t+ 1)(t+ 2)

2(l + 1)(2t+ l + 2)

Cannot extract 3-point functions and anomalous dimensions: mixing!
(except at twist 4 where there is only one operator                )[Dolan, Osborn]



Mixing problem

Kt,l,i {(O2⇤t�2@lO2), (O3⇤t�3@lO3), . . . , (Ot⇤0@lOt)}

But: same operators arise in OPE of more general correlators: hppqqi

Disconnected piece simple.

Classical connected piece available in Mellin space rep.

Can play the same OPE game.

Unknowns:

⌘t,l,iAnom dims:

3-pt. functions: CppKt,l,i = hOpOpKt,l,ii

(t� 1)

(t� 1)2

[Rastelli, Zhou]



Unmixing

A(t|l)
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Organise long conformal block coefficients into matrices:

Large N free fields:

Classical part (log u) term:

Have 2 x t(t-1)/2 pieces of information.

Exactly enough information to resolve mixing!



Unmixing

M(t|l)
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Organise long conformal block coefficients into matrices:

Large N free fields:

Classical part (log u) term:

Have 2 x t(t-1)/2 pieces of information.

Exactly enough information to resolve mixing!

A(t|l)
���
[0,0,0]

=

0

BB@

A2222 0 . . . 0
A3333 . . . 0

. . . . . .
Atttt

1

CCA

Complicated algebraic solutions?

C · CT = A

C · ⌘ · CT = M



Solution

Kt,l,i {(O2⇤t�2@lO2), (O3⇤t�3@lO3), . . . , (Ot⇤0@lOt)}

hO(2)O(2)Kt,l,ii2 = C(0)
t,l Rt,l,iat,i

Surprisingly simple structure to resolve mixing!

Anomalous dimensions:

Three-point functions:

⌘t,l,i = �2(t� 1)4(l + t)4
(l + 2i� 1)6

Rt,l,i =
21�t(2l + 3 + 4i)(l + i+ 1)t�i�1(t+ l + 4)i�1

( 52 + l + i)t�1
,

at,i =
2(1�t)(2 + 2i)!(t� 2)!(2t� 2i+ 2)!

3(i� 1)!(i+ 1)!(t+ 2)!(t� i� 1)!(t� i+ 1)!
.

(generalises to all channels)

(beautiful structure in 
non-degenerate cases)

(residual partial degeneracy)



Loop predictions

From disconnected part:

From classical connected part (log u) term:

t�1X

i=1

hO(2)O(2)Kt,l,ii2 = C(0)
t,l =

2(t+ l + 1)!2t!2(l + 1)(2t+ l + 2)

(2t)!(2t+ 2l + 2)!

t�1X

i=1

⌘(1)t,l,ihO(2)O(2)Kt,l,ii2 = �C(0)
t,l

(t� 1)t(t+ 1)(t+ 2)

2(l + 1)(2t+ l + 2)

Predict one-loop (log u)^2 term:

1

2

1X

t=2

1X

l=0

t�1X

i=1

hO(2)O(2)
Kt,l,ii2(⌘(1)t,l,i)

2
Gt,l(x, x̄)



Loop predictions

Can resum!

F

(2)
2 (u, v) =

1

uv

h
p(u, v)

Li1(x)2 � Li1(x̄)2

x� x̄

+ 2


p(u, v) + p

✓
1

v

,

u

v

◆�
Li2(x)� Li2(x̄)

x� x̄

+ q(u, v)(Li1(x) + Li1(x̄)) + r(u, v)
Li1(x)� Li1(x̄)

x� x̄

+ s(u, v)
i

p(u, v) = �24uv@2
x

@

2
x̄


u

2
v

2(1� u� v)[(1� u� v)4 + 20uv(1� u� v)2 + 30u2
v

2]

(x� x̄)10

�

Predict one-loop (log u)^2 term:

1

2

1X

t=2

1X

l=0

t�1X

i=1

hO(2)O(2)
Kt,l,ii2(⌘(1)t,l,i)

2
Gt,l(x, x̄)



Loop predictions

Double discontinuity:

Can promote to crossing symmetric function! (Analytic perturbative bootstrap)

Also obtained in [Alday, Caron-Huot]

F

(2)
2 (u, v) =

1

uv

h
p(u, v)

Li1(x)2 � Li1(x̄)2

x� x̄

+ 2


p(u, v) + p

✓
1

v

,

u

v

◆�
Li2(x)� Li2(x̄)

x� x̄

+ q(u, v)(Li1(x) + Li1(x̄)) + r(u, v)
Li1(x)� Li1(x̄)

x� x̄

+ s(u, v)
i

F

(2)
(u, v) =

1

2

5


�

(8)u
4
v

2
(1� u� v)

(x� x̄)

7
˜

�

(2)
(x, x̄) + cross terms

�
+ . . .

A single ambiguity - corresponds to adding a D-function. 

Only two-loop ladder integrals appearing + lower weights!



Loop predictions

⌘(2)l =

(
1344(l�7)(l+14)

(l�1)(l+1)2(l+6)2(l+8) �
2304(2l+7)
(l+1)3(l+6)3 l = 2, 4, . . .

9
14↵+ 1148

3 l = 0

)
Next correction to twist 4 anomalous dimensions: 

Above formula for l=2,4 also obtained in [Alday, Bissi]

All spin formula reproduced in  [Alday, Caron-Huot]



Discussion and Outlook
Have obtained supergravity loop corrections from OPE consistency.

Relied on being able to resolve double-trace mixing from classical data.

Can now extract subleading corrections to anomalous dimensions & 
three-point functions.

Much more to explore in terms of the mixing problem.

Loop corrections to higher charge correlators: 

Higher loops? (Triple trace ops!) Mellin space representation?

Non-planar corrections not well understood - polygonalization?
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Anatomy of an N=4 correlator

O1

O2

O3

O4

O�,l

h2222i = h2222i(0)free + ah2222i(1)free

h2222i(0)free + ah2222i(1)free

+ ah2222i(1)int + a2h2222i(2)int + . . .

Protected

Long



Unmixing

Twist 4 problem (t=2):

(C22Kt,l,1)
2 = A2222 ) c221 =

4

3
(l + 1)(l + 6)

⌘1(C22Kt,l,1)
2 = M2222 ) c221⌘1 = �64

⌘1 = � 48

(l + 1)(l + 6)
, c21 =

r
4(l + 1)(l + 6)

3

solution:

[Dolan, Osborn]

(CppKt,l,i)
2 =

(l + t+ 1)!2

(2l + 2t+ 2)!
c2pi , p = 2, . . . , t, i = 1, . . . , t� 1

Universal factor in three-point functions:



Unmixing

Twist 6:

solution!

c221 + c222 =
2

5
(l + 1)(l + 8)

c231 + c232 =
9

40
(l + 1)(l + 2)(l + 7)(l + 8)

c21c31 + c22c32 = 0

c221⌘1 + c222⌘2 = �96

c231⌘1 + c232⌘2 = �54(l2 + 9l + 44)

c21c31⌘1 + c22c32⌘2 = 432

large N free fields:

classical log u:

⌘1 = � 240

(l + 1)(l + 2)
, ⌘2 = � 240

(l + 7)(l + 8)
,

c21 = �

s
2(l + 1)(l + 2)(l + 8)

5(2l + 9)
, c22 = �

s
2(l + 1)(l + 7)(l + 8)

5(2l + 9)
,

c31 =

s
9(l + 1)(l + 2)(l + 7)2(l + 8)

40(2l + 9)
, c32 = �

s
9(l + 1)(l + 2)2(l + 7)(l + 8)

40(2l + 9)



Kaluza-Klein Correlators

We have also studied the first case involving Kaluza-Klein modes:

h2233i
Less crossing symmetry.

Need to consider different channels or equivalently also: h2323i
Even and odd spins contribute.

⌘(1)t,l,i =

8
<

:
� 2(t�1)2(t+2)2(l+t)2(l+t+3)2

(l+2i�1)6
l = 0, 2, . . .

� 2(t�1)2(t+2)2(l+t)2(l+t+3)2
(l+2i)6

l = 1, 3, . . .

Anomalous dimensions: � = 2t+ l + 1 + 2a⌘(1)t,l,i + 2a2⌘(2)t,l,i + . . .


