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Gravity Amplitudes

Can we study gravitational scattering on curved backgrounds!?
AdS space a natural candidate - constant negative curvature.

AdS/CFT: CFT techniques can be deployed to study the problem.

AdS/CFT is a strong/weak duality.

Normally it is used to describe a strongly coupled gauge theory in terms
of a weakly coupled gravity theory.

Even weakly coupled AdS gravity becomes more tractable from a
boundary perspective.



Gravity Amplitudes as boundary correlators

Elementary gravitons/matter are single-trace operators.

AdS/CFT: bulk AdS amplitudes are boundary CFT correlators.

Their structure is governed by properties of multi-particle bound states
which correspond to multi-trace operators.

The perturbative expansion is an expansion in s

e



Gravity Amplitudes as boundary correlators

Why not just compute the bulk diagrams!?

Not simple - but see Ellis’ talk

Moreover there are often infinitely many fields running in the loop!

Concrete AdS/CFT examples often have AdS x M.

Tower of Kaluza-Klein modes present.

For this talk: N =4 SYM ~ IIB superstrings on AdSs x S°



Half-BPS operators

Natural operators to consider: (y* = 0)

@l R o on )

Two-point functions and three-point functions protected by SUSY.

Four-point functions non-trivial:
(p1p2p3pa) = (OPY) (31, y1)OP) (22, 42) OP3) (23, y3) OPH) (24, ya))

OPE involves exchange of unprotected operators.
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Correlator depends on {7, ¥%i; N, g} A — gzN




Supergravity limit

We study the correlation functions in the supergravity limit.
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Supergravity limit

We study the simplest correlation function in the supergravity limit.
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First correction - classical strings:
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Leading term - classical supergravity:  First stringy correction



Supergravity limit

We study the simplest correlation function in the supergravity limit.
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Leading term - disconnected part:

PP = ST o)
First correction - classical strings:
3
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Second correction - string loop:
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Kinematic dependence

Yij
Propagators: dij = —5 5 = (@~ ;)" W=y

Conformal and internal cross-ratios:
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Superconformal symmetry implies a decomposition:
[Eden, Petkou, Schubert, Sokatchev]

<2222> = <2222>free _I_ <2222>1nt [Dolan, Osborn]

<2222>int e d d248( 1550k g)F(uv U)
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Kinematic dependence

2
yij 2 2 2
Propagators: dij = —5 zy; = (T — z;) Yij = Yi * Yj
Conformal and internal cross-ratios:
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Free theory:
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Operator product expansion
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Long superconformal blocks: [Dolan, Osborn]
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Supergravity Spectrum
In supergravity regime long single-trace operators decouple.

They cancel in the combination <2222>(1) + (2222>.(1)

free int

Remaining spectrum is made from products of half-BPS operators.

At leading order in large N only double-trace operators (degenerate):

At twist 2t (OB 40°0,) (O Bz 005 (O['006 1

have (t —1) of them. Ky, p=lle e

From disconnected part (large N free fields):

t—1
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Supergravity Expansion [also in Agnese’s talk]

From disconnected part (large N free fields):
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Classical connected part:
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Supergravity Expansion

From disconnected part (large N free fields):

L
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Classical connected part:

(2222)V) = (2222)¢). + d35d3, (=, 2,1, 5)F D (u, v)
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Supergravity Expansion

From disconnected part (large N free fields):

L
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Classical connected part:

L) @O K, o e e
Zn S et 2(1 + 1)(2t + 1 + 2)

log u arises because twist is: 2t — 2(f + 0/771g l)z +a 7775 z)@ =



Mixing problem

From disconnected part (large N free fields):

L

2412
Z<O(2)O(2)Ktli>2 = Ct((z) C 2o sl V2Rl 2)
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Classical connected part:

L) @O K, o e e
Zn S et 2(1 + 1)(2t + 1 + 2)

Cannot extract 3-point functions and anomalous dimensions: mixing!

(except at twist 4 where there is only one operator [Dokn Osborn] )



Mixing problem

Ky flOE=0'@ (O B 00 (@ BE2e:0)

But: same operators arise in OPE of more general correlators:  (ppqq)

Disconnected piece simple.
Classical connected piece available in Mellin space rep. [Rastelli, Zhou]

Can play the same OPE game.

Unknowns:
Anom dims: ik (t—1)

3-pt. functions:  Cipk, ,;, = (OpOpKy ) (t — 1)



Unmixing

Organise long conformal block coefficients into matrices:

Large N free fields: / iz 2
3333
S e <

0,0,0]

Classical part (log u) term:

( M2222 M2233
M(t|1) -

[0,0,0]

Have 2 x t(t-1)/2 pieces of information.

Exactly enough information to resolve mixing!




Unmixing

Organise long conformal block coefficients into matrices:

Large N free fields:
/ A2222 0

3333

AED| = 8

[0,0,0]

Classical part (log u) term:

M(t|l) -

[0,0,0]

Have 2 x t(t-1)/2 pieces of information.
Exactly enough information to resolve mixing!

Complicated algebraic solutions?




Solution
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Anomalous dimensions:
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Three-point functions:
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T =
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(generalises to all channels)

(residual partial degeneracy)

(beautiful structure in

22U+ 3440+ i+ V)it T+ 1)

Reps =

(2+1414)-1

el L i — ==

Gy —

3 —-DIE+H DI - - D -+ 1)

Surprisingly simple structure to resolve mixing!

non-degenerate cases)



Loop predictions

From disconnected part:

t—1
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From classical connected part (log u) term:
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Predict one-loop (log u)*2 term:
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Loop predictions

Predict one-loop (log u)*2 term:
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Can resum!
v e . o
F2(2)(uvv) = ot P(UaU)Lll(x) I_Jll(x) < 2{p(u, V) -H?(l’ E)] el 1_112(95)
uv T — X v v e

i o Al S IR e T G ) Lil(i)j : Ia_;il(j) 4= S fu)}

(u,v) = —24uv0202 R0 — u =l — u — )t 20un(l — u — )2+ S0uv?
p ) T SR T (CE - x)lo



Loop predictions

Double discontinuity:
a@mW”o_]_@WﬂOUK@Z_MN@Q+2k@ﬂo+p<{u)riﬂw_Lb@)
Tr— T v A
L11 (.CC) = L11 (f)
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+ s(u, v)}

e o A Gl (e o)
Also obtained in [Alday, Caron-Huot]

Can promote to crossing symmetric function! (Analytic perturbative bootstrap)

)u4v2(1 — U — V)

( Sk 2 (z, Z) + cross terms| + ...
r— T

1
F2 (y,v) = o A8

Only two-loop ladder integrals appearing + lower weights!

A single ambiguity - corresponds to adding a D-function.



Loop predictions

Next correction to twist 4 anomalous dimensions:

( 1344(1—7)(14+14) ~2304(20+7) I —9 4
(2) — (l—l)(l+132(l+6)2(l+8) (1+1)3(1+6)3 A A
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Above formula for 1=2,4 also obtained in [Alday, Bissi]

All spin formula reproduced in [Alday, Caron-Huot]




Discussion and Outlook

Have obtained supergravity loop corrections from OPE consistency.
Relied on being able to resolve double-trace mixing from classical data.

Can now extract subleading corrections to anomalous dimensions &
three-point functions.

Much more to explore in terms of the mixing problem.
Loop corrections to higher charge correlators:

Higher loops? (Triple trace ops!) Mellin space representation!?

Non-planar corrections not well understood - polygonalization!?
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Planar theory

g =0 Ne— 50

N

Free theory
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Different regimes

Planar theory
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Anatomy of an N=4 correlator
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Anatomy of an N=4 correlator
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Unmixing




Unmixing

Twist 6: large N free fields: Coih ooy — %(l + 1)(I + 8)
9
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c21C31 + ca9c32 = 0

classical log u: i — =)
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Kaluza-Klein Correlators

We have also studied the first case involving Kaluza-Klein modes:

(2233)

Less crossing symmetry.
Need to consider different channels or equivalently also: <2323>
Even and odd spins contribute.

Anomalous dimensions: A=2t+1+1+2an") 424202 + ...

[ 2(0—=1),(+42),(I41), (I4+t43), [ =0.9
(1) (I4+2i—1)4 M Sy
Mei = C2(t=1) 5 (#42) 5 (14t) o (I4+t43), 1 —1.3
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