

Experimental Overview of Rare Decays at LHCb

Simone Bifani

University of Birmingham (UK) on behalf of the LHCb^tCollaboration

VII Workshop on Implications of LHCb Measurements and Future Prospects 8th November 2017

>Why rare decays?

>Rare decays @ LHCb

» Beauty

» Charm

» Strange

Summary and Outlook

> In presence of sizeable SM contributions, BSM effects might be hidden
 > Instead, look at suppressed decays e.g. b→sll Flavour Changing transitions that only occur at loop order (or beyond) in the SM

> New Particles can for example contribute to loop- or tree-level diagrams by enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

> Rare decays can place strong constraints on many BSM models by probing energy scales higher than those accessible with direct searches

Today's Shopping List

> Many new results since last LHCb Implication Workshop

> Beauty

	» R _{K*°}	<u>JHEP 08 (2017) 055</u>
	$\gg B^+ \longrightarrow K^+ \mu \mu$	[EPJC 77 (2017) 161]
	» $B^+ \rightarrow K^+ \chi(\mu \mu)$	[PRD 95 (2017) 071101] (see C.Vazquez Sierra's talk)
	$\gg B_{(s)} \rightarrow \mu \mu$	[PRL 118 (2017) 191801]
	$\gg B_{(s)} \rightarrow \tau \tau$	[PRL 118 (2017) 251802]
	$\gg B_{(s)} \rightarrow e\mu$	[arXiv:1710.04111]
	» $\Lambda_b \rightarrow ph \mu\mu$	[JHEP 06 (2017) 108, JHEP 04 (2017) 029]
>	Charm	
	» D ^o \rightarrow hh $\mu\mu$	<u>arXiv:1707.08377</u>
	$ > \Lambda_c \rightarrow p \ \mu\mu$	[LHCb-PAPER-2017-039] (see also J.Brodzicka's talk)
>	Strange	
	» K _S $\rightarrow \mu\mu$	EPJC 77 (2017) 678

A Forward Spectrometer

> Optimized for beauty and charm physics at large pseudorapidity (2< η <5)

- » Trigger: >95% (60-70%) efficient for muons (electrons)
- » Tracking: $\sigma_p/p 0.4\%-0.6\%$ (p from 5 to 100 GeV), $\sigma_{IP} < 20 \ \mu m$
- » Calorimeter: $σ_E/E$ ~ 10% / √E ⊕ 1%
- » PID: >90% μ , e and K ID for 1–5% misID from π

> Analyses presented today based on Run-1 and/or Run-2 datasets

Beauty

b-Hadron Anomalies

> Intriguing anomalies in rare decays of b-hadrons emerged in recent years

Simone Bifani

> Or is this a problem with the understanding of QCD? e.g. Correct estimate of the contribution from charm loops?

> Measure interference between penguin and cc from data

> $B^+ \rightarrow K^+ \mu \mu$: "The measured phases of the J/ ψ and $\psi(2S)$ resonances are such that the interference with the short-distance component in dimuon mass regions far from their pole masses is small"

> $B^{o} \rightarrow K^{*o} \mu \mu$: see <u>G.J.Pomery</u> and <u>A.Mauri</u>'s talks

Tests of Lepton Universality

- > Ratios of branching fractions are powerful tests of LU as experimental systematics are reduced and theoretical uncertainties largely cancel
- > Extremely challenging due to differences in the way muons and electrons "interact" with the detector

Simone Bifani

$B_{(s)} \rightarrow \mu \mu$

- > Occur at loop level, helicity suppressed
 > Very precise SM prediction [PRL 112 (2014) 101801]
 » B(B_s→µµ) = (3.65 ± 0.23)×10⁻⁹
 » B(B^o→µµ) = (1.06 ± 0.09)×10⁻¹⁰
- > Combined fit to Run-1 data by CMS and LHCb
 - » First observation of $B_s \rightarrow \mu\mu$ (6.2 σ , SM at 1.2 σ)
 - » 3.0 σ excess of B° \rightarrow µµ (SM at 2.2 σ)
- > New LHCb measurement adds 1.4 fb⁻¹ of Run-2
 - » First observation by single experiment of $B_s \rightarrow \mu \mu$ (7.8 σ)
 - » $\mathcal{B}(B_s \rightarrow \mu \mu) = (3.0 \pm 0.6 \pm 0.3) \times 10^{-9}$
 - » $\mathcal{B}(B^{\circ} \rightarrow \mu \mu) < 3.4 \times 10^{-10} @ 95\% CL (1.2\sigma excess)$
 - » First measurement of B_s effective lifetime
 - » $\tau(B_s \rightarrow \mu \mu) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$
 - » Still large uncertainty, but important proof of concept for the future

Simone Bifani

$B_{(s)} \rightarrow \tau \tau$

- > Less helicity suppressed than $B_{(s)} \rightarrow \mu\mu$ > Very precise SM prediction [PRL 112 (2014) 101801] $\gg \mathcal{B}(B_s \rightarrow \tau\tau) = (7.73 \pm 0.49) \times 10^{-7}$
 - » $\mathcal{B}(B^{\circ} \rightarrow \tau \tau) = (2.22 \pm 0.19) \times 10^{-8}$
- > Hints of LU violation could imply increase of $\mathcal{B}(B_{(s)} \rightarrow \tau \tau)$ by several orders of magnitude

> Search on Run-1 data

- » Tau reconstructed using $\tau \rightarrow 3\pi v$
- » Exploit $a_1(1260) \rightarrow \rho(770)[\pi\pi]\pi$ to identify signal
- » First direct limit: $\mathcal{B}(B_s \rightarrow \tau \tau) < 6.8 \times 10^{-3}$ @ 95% CL
- » World's best limit: $\mathcal{B}(B^{\circ} \rightarrow \tau \tau) < 2.1 \times 10^{-3} @ 95\%$ CL

Simone Bifani

- > Hints of LU violation could be associated to LF violation and enhance $\mathcal{B}(B_{(s)} \rightarrow e\mu)$ up to 10⁻¹¹ [MPLA 32 (2017) 1730006]
- > Search on 1 fb⁻¹ of Run-1 data [PRL 111 (2013) 141801]
- > New search on full Run-1 data » World's best limits (2-3x improvement) » $\mathcal{B}(B_s \rightarrow e\mu) < 6.3 \times 10^{-9}$ @ 95% CL » $\mathcal{B}(B^{\circ} \rightarrow e\mu) < 1.3 \times 10^{-9}$ @ 95% CL

Simone Bifani

> Occurs at loop level, $b \rightarrow d CKM$ suppressed

> Suppression not necessarily present in BSM

> Search on Run-1 data » First observation of $\Lambda_{b} \rightarrow p K \mu \mu$ » $\Delta A_{CP} = (-3.5 \pm 5.0 \pm 0.2) \times 10^{-2}$ » $a_{CP}^{\hat{T}-\text{odd}} = (1.2 \pm 5.0 \pm 0.7) \times 10^{-2}$ $C_{\widehat{T}} \equiv \vec{p}_{\mu} + \cdot (\vec{p}_{p} \times \vec{p}_{K-})$ $A_{\widehat{T}} \equiv \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)} = a_{CP}^{\widehat{T}-\text{odd}} \equiv \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right)$ charge conjugate

» First observation of b→d transition in a baryonic decay at 5.5σ
» $\mathcal{B}(\Lambda_b \rightarrow p\pi\mu\mu) = (6.9 \pm 1.9 \pm 1.1 \pm 1.3) \times 10^{-8}$

Charm

$D^{o} \rightarrow hh \mu\mu$

- > **c** \rightarrow **ull transitions less explored than b** \rightarrow **sll** > Short-distance $\mathcal{B}_{SM}(D\rightarrow X\mu\mu) \sim O(10^{-9})$
- > Long-distance $\mathcal{B}_{SM}(D \rightarrow XV[\mu\mu])$ up to O(10⁻⁶) [PRD 83 (2011) 114006]
- > BSM could enhance $\mathcal{B}(D \rightarrow X \mu \mu)$
- > Search on 2 fb⁻¹ of Run-1 data » 5 q² regions: <525MeV, η , ρ^{0}/ω , ϕ , >1100MeV » First observation of D⁰ $\rightarrow \pi\pi\mu\mu$ and D⁰ $\rightarrow KK\mu\mu$ » Rarest charm decays ever measured to date » $\mathcal{B}(D^{0} \rightarrow \pi\pi\mu\mu) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$ » $\mathcal{B}(D^{0} \rightarrow KK\mu\mu) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$ (\mathcal{B} integrated over full q²)

- > c→ull transitions less explored than b→sll
 > Short-distance ℬ_{SM} ~O(10⁻⁹)
 > Long-distance ℬ_{SM} up to O(10⁻⁶)
 > BSM could enhance ℬ(Λ_c→pµµ)
- > Search on Run-1 data » 3 q² regions: a) short-distance, b) ϕ , c) ω » First observation of $\Lambda_c \rightarrow p\omega$ at 5 σ » $\mathcal{B}(\Lambda_c \rightarrow p\omega) = (7.6 \pm 2.6 \pm 0.9 \pm 3.1) \times 10^{-4}$ » $\mathcal{B}(\Lambda_c \rightarrow p\mu\mu) < 7.68 \times 10^{-8}$ @ 90% CL

(see also J.Brodzicka's talk)

Simone Bifani

Strange

O(10)

> Dominated by long-distance > $\mathcal{B}_{SM}(K_S \rightarrow \mu\mu) = (5.0 \pm 1.5) \times 10^{-12} [JHEP 01 (2004) 009]$ > New light scalars could increase $\mathcal{B}(K_S \rightarrow \mu\mu)$ by

- > Search on 1 fb⁻¹ of Run-1 data [JHEP 01 (2013) 090]
- > New search on Run-1 data > World's best limits (10x improvement) > $\mathcal{B}(K_S \rightarrow \mu\mu) < 1 \times 10^{-9} @ 95\% CL$

Summary

> Rare decays are particularly sensitive probes for BSM physics

- > LHCb has an extensive programme of studies of rare b-, c- and squark decays
- > Intriguing set of anomalies in rare decays of b-hadrons observed in the recent years
- > If taken together these probably represent the largest "coherent" set of BSM effects in the present data

Outlook

- > Near-term updates (+½ Run-2 data) should clarify the experimental situation and can help constrain some of the theoretical issues
 - » $B^{0} \rightarrow K^{*0} \mu \mu$ angular analysis: ~ $\sqrt{2}$ improved precision
 - » R_{K} and R_{K**} : ~1.8 and ~ $\sqrt{2}$ improved precision
- > Wide range of measurements will be added/updated with full Run-1+Run-2 data to broaden the constraints on BSM physics
 - » B⁰→K^{*}⁰ee angular analysis: LU tests using angular observables
 - » R_{x} : additional final states e.g. ϕ , $K_{S_{y}}K^{*+}$, higher K^{*} resonances, Λ , pK
 - » **b** \rightarrow **dll**: test if $R_K = R_\pi$ (should give ~500 B⁺ $\rightarrow \pi^+\mu\mu$, with $R_K = R_\pi$ expect ~50 B⁺ $\rightarrow \pi^+ee$)
 - » **b** \rightarrow II: $\Delta \mathcal{B}(B_s \rightarrow \mu \mu) / \mathcal{B}(B_s \rightarrow \mu \mu) \sim 15\%$, $B_{(s)} \rightarrow ee$
 - » LFV: $B \rightarrow K^{(*)}e\mu$, $B \rightarrow K^{(*)}\tau\mu$
 - » CP asymmetry in $D^0 \rightarrow hh\mu\mu$
 - » $K_s \rightarrow \pi^o \mu \mu$ [LHCb-PUB-2016-016] and $K_s \rightarrow \pi \pi ee$ [LHCb-PUB-2016-017]

(see G.Cowan's talk for long-term prospects)

- > Near-term u situation and » B^o→K^{*o}µµ a » R_K and R_{K^{*o}}:
- > Wide range Run-1+Run-2
 - » B°→K*°ee a
 - » R_x: addition
 - » **b** \rightarrow **dll**: test B⁺ \rightarrow π ⁺ee)
 - » **b**→ll: $\Delta \mathcal{B}(\mathsf{B}_{\mathsf{s}})$
 - » LFV: B→K^(*)
 - » CP asymmet
 - » К_s→π⁰µµ [<u>I</u>

Simone Bifani

ssues ed with full sics Λ, pK R_{π} expect ~50 <u>6-017</u> m prospects) 20

experimental

Backup

Theoretical Framework – I

> FCNC effective Hamiltonian described by Operator Product Expansion

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \underbrace{\left[\mathcal{C}_i(\mu)\mathcal{O}_i(\mu)\right]}_{\text{left-handed part}} + \underbrace{\mathcal{C}'_i(\mu)\mathcal{O}'_i(\mu)}_{\text{right-handed part}}\right]$$

$C_i(\mu)C$	i (μ
right-hande	ed	pa
suppressed	in	S

=1,2	Tree
=3-6, 8	Gluon penguin
=7	Photon penguin
=9,10	Electroweak penguin
=S	Higgs (scalar) penguir
=P	Pseudoscalar penguin

- > C_i (Wilson coefficients): perturbative, short-distance physics, sensitive to $E > \Lambda_{FW}$
- > O_i (Operators): non-perturbative QCD, long-distance physics, depends on hadronic form-factors

0.2GeV4GeV80GeV~ 100 Te\						
Лоср (non-perturbative regime)	Λ _b (b mass)	∧ EW (W mass)	Λ _{NP} (new physics scale)			

Theoretical Framework – II

> BSM physics can

» alter the SM operator contributions (Wilson coefficients) » enter through new operators (right-handed O_i ', $O_{S,P}$)

> Different q² regions probe different operators

Simone Bifani

Calorimeter System

- > Composed of a Scintillating Pad Detector (SPD), a Preshower (PS), an electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL)
- > The SPD and the PS consist of a plane of scintillator tiles (2.5 radiation lengths, but to only ~6% hadronic interaction lengths)
- > The ECAL has shashlik-type construction, i.e. a stack of alternating slices of lead absorber and scintillator (25 radiation lengths)
- > The HCAL is a sampling device made from iron and scintillator tiles being orientated parallel to the beam axis (5.6 interaction lengths)

Simone Bifani

Event Anatomy

Simone Bifani

Bremsstrahlung – I

 Electrons emit a large amount of bremsstrahlung that results in degraded momentum and mass resolutions

> Two types of bremsstrahlung

- » Downstream of the magnet
 - photon energy in the same calorimeter cell as the electron
 - momentum correctly measured
- » Upstream of the magnet
 - photon energy in different calorimeter cells than electron
 - momentum evaluated after bremsstrahlung

Simone Bifani

Bremsstrahlung – II

- A recovery procedure is in place to improve the momentum reconstruction
- > Events categorised depending on the number of recovered brem γ s

 Residual inefficiencies cause the reconstructed B mass to shift towards lower values and events to migrate in q²
 JHEP 08 (2017) 055

Simone Bifani

- > Trigger system split in hardware (Lo) and software (HLT) stages
- > Due to higher occupancy of the calorimeters compared to the muon stations, hardware thresholds on the electron E_T are higher than on the muon p_T (Lo Muon, p_T > 1.5-1.8 GeV)
- > To partially mitigate this effect, 3 exclusive trigger categories are defined for the electron sample
 - » **Lo Electron:** electron trigger fired by clusters associated to at least one of the two electrons ($E_T > 2.5-3.0$ GeV)
 - » **Lo Hadron:** hadron trigger fired by clusters associated to at least one of the K^{*o} decay products ($E_T > 3.5$ GeV)
 - » Lo TIS: any trigger fired by particles in the event not associated to the signal candidate

Part-Reco Background

- > Partially-reconstructed backgrounds arise from decays involving higher K resonances with one or more decay products in addition to a $K\pi$ pair that are not reconstructed
- > Large variety of decays, most abundant due to $B \rightarrow K_1(1270)ee$ and $B \rightarrow K_2^*(1430)ee$
- > Modelled with a simulation cocktail or using $B^+ \rightarrow K^+ \pi^- \mu \mu$ data

Simone Bifani

Muon Reconstruction

Simone Bifani

Effective Theory Approach

Simone Bifani

Sensitivity to Wilson Coefficients

> Different observables are complementary in constraining NP
 > Leptonic decay uniquely sensitive to scalar operators

Decay	C ₇ ^(')	C ₉ ^(')	C ^(') ₁₀	$C_{S,P}^{(\prime)}$
$B ightarrow X_s \gamma$	Х			
$B ightarrow K^* \gamma$	Х			
$B ightarrow X_{ m s} \ell^+ \ell^-$	Х	Х	Х	
$B ightarrow K^{(*)} \ell^+ \ell^-$	Х	Х	Х	
$B_s ightarrow \mu^+ \mu^-$			Х	Х

Global Fits – I

> Several attempts to interpret results by performing global fits to data

- > Take into account O(100) observables from different experiments, including $b \rightarrow \mu\mu$, $b \rightarrow sll$ and $b \rightarrow s\gamma$ transitions
- > All global fits require an additional contribution wrt the SM to accommodate the data, with a preference for BSM physics in C₉ at 3-5 σ
- > Or is this a problem with the understanding of QCD? e.g. Correct estimate of the contribution from charm loops?

Global Fits – II

- > Good consistency among different fits
 - » BFs and Angular Observables
 - » Different modes
 - » Different q² regions

> n.b. Different theory issues in each case

Simone Bifani

- > Renewed scrutiny of theoretical uncertainties
- > The O_{1,2} operator has a component that could mimic BSM effect in C₉ through $c\bar{c}$ loop

> "The absence of a q² and helicity dependence is intriguing, but cannot exclude a hadronic effect as the origin of the apparent discrepancies"

Phase difference in $B^+ \rightarrow K^+ \mu^+ \mu^-$ decays

- Fit of to full dimuon mass distribution
 - Sum of relativistic Breit–Wigner amplitudes to describe resonances
 - short-distance contribution in terms of an effective field theory description
 - B+- J/ ψ (- $\mu^+\mu^-$)K+ as normalisation channel
- Magnitudes and relative phases between the resonances and the short-distance contribution allowed to vary in the fit
- Model includes: resonances (ρ, ω, φ, J/ψ, ψ(2S)), charmonium states: (ψ(3770), ψ(4040), ψ(4160), ψ(4415))
 [Eur. Phys. J. C (2017) 77: 161]

[Eur. Phys. J. C (2017) 77: 161]

Sensitive to C_9 and C_{10} :

 $\begin{aligned} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = & \frac{G_F^2 \alpha^2 |V_{tb} V_{ts}^*|^2}{128\pi^5} |\mathbf{k}| \beta \left\{ \frac{2}{3} |\mathbf{k}|^2 \beta^2 \left(\mathcal{C}_{10} f_+(q^2) \right)^2 + \frac{4m_\mu^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} \left(\mathcal{C}_{10} f_0(q^2) \right)^2 \right. \\ & + |\mathbf{k}|^2 \left[1 - \frac{1}{3} \beta^2 \right] \left(\mathcal{C}_9 f_+(q^2) + 2\mathcal{C}_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right)^2 \right\} \end{aligned}$

BF of the short-distance component:

$$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (4.37 \pm 0.15 \pm 0.23) \times 10^{-7}$$

In very good agreement with the old result [JHEP 06 (2014) 133]

Measurement of the Wilson coefficient:

- $|C_{10}| < |C_{10}^{\text{SM}}|$ and $|C_9\>| > |C_9^{\text{SM}}|$ if both free
- $|C_9\,| < |C_9^{\text{SM}}|$ if C_{10} constrained to the SM

Exclusion of C9 = 0 hypothesis > 5 σ Compatible with previous measurement Working on measurement in B⁰ \rightarrow K^{*0}µ⁺µ⁻

28

Is it a Z', a LQ or ... ?

> Models containing a new heavy gauge boson or leptoquarks have been proposed to explain the anomalies in the flavour sector

